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Abstract

Many of the computer vision algorithms have been posed in

various forms of differential equations, derived from min-

imization of specific energy functionals, and the finite el-

ement representation and computation have become the

de facto numerical strategies for solving these problems.

However, for cases where domain mappings between nu-

merical iterations or image frames involve large geometri-

cal shape changes, such as deformable models for object

segmentation and nonrigid motion tracking, these strate-

gies may exhibit considerable loss of accuracy when the

mesh elements become extremely skewed or compressed.

We present a new computational paradigm, the meshfree

particle method, where the object representation and the

numerical calculation are purely based on the nodal points

and do not require the meshing of the analysis domain. This

meshfree strategy can naturally handle large deformation

and domain discontinuity issues and achieve desired numer-

ical accuracy through adaptive node and polynomial shape

function refinement. We discuss in detail the element-free

Galerkin method, including the shape function construc-

tion using the moving least square approximation and the

Galerkin weak form formulation, and we demonstrate its

applications to deformable model based segmentation and

mechanically motivated left ventricular motion analysis.

1 Introduction

1.1 Finite Element Methods

Many of the computer vision algorithms are posed as vari-

ous energy minimization problems, and become partial dif-

ferential equations (PDEs) subject to image data constraints

through natural and essential boundary conditions. Because

the analysis domains in these problems are often spatially

irregular and sampled at discrete points, the finite element

methods (FEMs) have become the de facto computational

strategy to provide numerical solutions through the dis-

cretization of the analysis domains into meshes with prede-

fined connectivity between nodal points. The main compu-

tational power of these approaches results from the funda-

mental idea of replacing a continuous function f(x) defined

over the entire analysis domain by piecewise polynomial

approximations over a set of finite number of geometrically

simple sub-domains such as triangles. With suitable regu-

larization constraints (i.e. smoothness, continuum mechan-

ical models, etc.) and proper formulation principles (i.e.

the virtual work), governing differential equations can be

approximated by a set of algebraic equations for all the ele-

ments, and image-derived boundary conditions are enforced

to provide the solutions. An incomplete survey of more

recent works shows a wide range of FEM-based strategies

in computer vision, including object segmentation [5, 23],

shape representation and characterization [11, 20], corre-

spondence and motion estimation [18, 21], image registra-

tion [9], and image guided surgery [4, 7].

Although the idea of domain division has been proven

really ingenious and well-suited for many vision problems,

proper mesh generation from the sampling nodes can some-

times be difficult and time consuming, especially for con-

strained meshing of material and/or kinematics discontinu-

ities and for three-dimensional (3D) cases. Furthermore,

in dynamic formulation which is common for computer vi-

sion problems such as segmentation and motion analysis,

the numerical accuracy and efficiency of FEM decreases

drastically whenever the mesh becomes extremely skewed

or compressed, i.e. there is large geometrical shape changes

of the objects between numerical iterations or image frames.

In these situations, adaptive remeshing and/or node refine-

ment must be performed throughout the evolution in order

to prevent the severe distortion of elements [11], to allow

mesh lines to remain coincident with any discontinuities [1],

and to maintain reasonable numerical accuracy. However,

remeshing requires the projection of field variables between

meshes in successive stages of the problem, which leads to

huge logistical problems even for medium size problems.

Further, for large three-dimensional problems which are be-

coming more common, the computational cost of remeshing

at each step often becomes prohibitively expensive.

1.2 Meshfree Particle Methods

The emerging meshfree particle methods (MPMs) offer

computationally efficacious alternatives to circumvent the

aforementioned problems encountered by the FEMs. Orig-
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inated as special numerical methods for computational me-

chanics analysis, with variations such as the smooth particle

hydrodynamics methods, the diffuse element methods, the

element free Galerkin methods, the reproducing kernel par-

ticle methods, and the partitions of unity methods, MPMs

have recently shown their prowess in solving general PDEs

over complex domain [16, 19].

The main motive to adopt MPMs is to eliminate at least

part of the mesh structure by constructing the approxima-

tion of the field function f(x) entirely in terms of the nodal

points, whereas no specific pairwise characterization of the

nodal interrelationship is defined or needed [1]. MPMs rep-

resent the analysis domain with only a set of nodal points

without mesh constraints, and establish a system of alge-

braic equations for the whole problem domain based on the

particle-derived interpolating shape functions. Procedure-

wise, MPMs are actually very similar to FEMs, with the

fundamental differences in the elimination of mesh and the

construction of the shape functions from nodes only. In

FEMs, the shape functions are constructed using the mesh

structure, and they are the same for all the elements of the

same type in the natural coordinates systems. These shape

functions are usually predetermined for different types of

elements before the analysis starts. In MPMs, however,

the shape functions are usually constructed for a particular

point of interest (POI), and they will change as the location

of the POI changes. Hence, the construction of the meshfree

shape function is performed during the analysis.

MPMs are better suited to cope with geometric changes

of the domain of interest, e.g. free surfaces and large de-

formations, than FEMs [1, 15, 16]. From numerical effi-

ciency and accuracy point of view, the principal attraction

of MPMs is the possibility of simplifying spatial adaptivity

(node addition or elimination) and shape function polyno-

mial order adaptivity (approximation/interpolation types),

and handling moving boundaries and discontinuities. Adap-

tive meshing procedure, which may be needed for a large

variety of problems including deformable models, image

registration, and motion detection, can be effectively treated

in a much simpler manner as a node refinement problem. In

areas where more refinement is needed, nodes can be added

easily to achieve desired numerical accuracy. Since there is

no need to generate the mesh representation and the connec-

tivity between nodes is generated as part of the computation

and can be changed over time, MPMs facilitate the handling

of very large deformations and material/kinematics discon-

tinuity. An illustration of the accuracy advantage of MPM

over FEM (without adaptive remeshing) in a deformation

simulation is shown in Figure 1. Further, several recent

meshfree efforts incorporate the multi-scale concept for

problems involving widely varying scales through wavelet

based basis function enhancement [24], which meshes well

with the scale-space tradition in computer vision research.

Figure 1: Comparison of FEM and MPM computed vertical

strains for a simple elastic deformation simulation: exper-

iment setup and theoretical strain distribution (left), FEM

mesh and strain map (middle), and MPM representation and

strain map (right). All the strain maps here use the same

color scale.

1.3 Contributions

In this paper, we present a meshfree particle computational

paradigm for certain computer vision problems involving

object deformation. We want to emphasize that we are

not presenting a new deformable model per se, but rather

novel ways for object representation and numerical calcu-

lation. The framework has its roots in the popular finite

element methods, but is purely based on the nodal points

and does not require the meshing of the analysis domain.

This meshfree strategy can naturally handle large deforma-

tion and domain discontinuity issues and achieve desired

numerical accuracy through adaptive node and polynomial

shape function refinement. We discuss in detail the element-

free Galerkin method, one of the more robust and better

developed meshfree methods, through the construction of

the shape functions using the moving least square approx-

imation, the Galerkin weak form formulation, and the im-

position of boundary conditions using the penalty method.

We demonstrate the computational power of this framework

with applications in object segmentation with one- and two-

dimensional deformable models (contours and annuli), and

multi-frame non-rigid motion analysis of the left ventricle

using mechanical model constrained optimal filtering.

2 EFGM Framework for Vision

Computation

Various meshfree particle methods have emerged in the last

a few years, as summarized in [1, 15], and the most ba-

sic common feature is that a predefined mesh is not nec-
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essary, at least not for field function interpolation. We fo-

cus on the element-free Galerkin method (EFGM) in this

paper because it is relatively well developed, robust, and

has straightforward and obvious links to the finite element

methods [2]. In many applications, EFGM has shown su-

perior rate of convergence and high efficiency in modelling

moving interfaces [16].

As a meshfree particle method, EFGM requires only

the definition of a set of nodes distributed over the entire

analysis region, and the definition of the boundary condi-

tions (Figure 1). The all important shape functions are con-

structed using the moving least square (MLS) approxima-

tions, generated at each nodal point and its associated local

influence domain. However, EFGM does require the back-

ground cells for the integration of system matrices derived

from the Galerkin weak form over the problem domain,

which in practice can be very easily created. Further, EFGM

does not allow direct imposition of essential boundary con-

ditions, which are instead enforced via Lagrange multipliers

[2] or penalty methods [10]. In the derivation of the EFGM

procedures for vision computation, we assume that we are

dealing with domain evolution problems (i.e. segmentation)

or domain mapping problems (i.e. non-rigid motion) using

elastic continuum mechanical models. However, this as-

sumption is only used as an example to develop the weak

form and the differential governing equations. In reality,

EFGM can be used as the computational tools for any of

the energy or variational formulations in computer vision.

2.1 Galerkin Weak Form Formulation

A Galerkin statement incorporates differential equations in

their weak form so that they are satisfied over a domain in

an integral or average sense rather than at every point [6].

Under the Hamilton’s principle of energy and work [16],

assuming commonly used linear elastic materials with the

material constitutive equation σ = cε where c is the ma-

terial matrix, and the strain-displacement equation ε = Lu

where L is a differential operator matrix dependent on the

strain types (infinitesimal or finite), we arrive at:

∫

Ω

δ(Lu)T c(LU) dΩ −
∫

Ω

δuT b dΩ −
∫

Γt

δuT t dΓ

+

∫

Ω

ρδuT ü dΩ = 0 (1)

where Ω is the volume of the domain, u the displacement

field variable, ρ the material density, σ the stress tensor, ε
the strain tensor, b the body force, Γt the surface where

external forces are prescribed, and t the traction force. For

static problems, i.e. only essential boundary conditions are

available as in most vision problems where the process of

the evolution or mapping is not of essential concern, the last

term on the left hand of Equation (1) is dropped.

2.2 Meshfree Particle Representation

The analysis domain is modelled and represented using sets

of sampling nodes scattered in the analysis domain and its

boundaries. The density of the nodes are controlled by the

needs on numerical accuracy and by the available compu-

tational resources, and they can be non-uniformly sampled

with denser distributions in areas with larger shape variation

and larger field variable gradient. Further, because of the in-

trinsic spatial adaptivity of the EFGM, the node density can

be automatically and adaptively controlled, and the initial

nodal distribution quality needs not to be of major concerns

[16]. See Figures 1, 4, and 5 for examples.

2.3 Shape Function Construction

The purpose of the shape functions is to approximate the

field functions using their values at sampling nodes in the

analysis domain. In FEMs, the shape functions are con-

structed using the mesh of elements. For meshfree par-

ticle methods, the challenges are to construct shape func-

tions using only the sampling nodes in the domain with-

out any predefined node connectivity, and to satisfy the ba-

sic requirements of compatibility throughout analysis do-

main, arbitrary node distribution for easy node adaptivity,

stability and consistency to ensure numerical convergence,

compact support for computational accuracy and efficiency,

and Kronecker delta function property for imposing of es-

sential boundary condition [16]. The moving least squares

(MLS) approximation [14] has been used for constructing

the shape functions in EFGM, and it has provided continu-

ous and smooth field variable approximation throughout the

problem domain with desired order of consistency.

2.3.1 Moving Least Squares Approximation

MLS approximation is a method of finite series representa-

tion of function through local regression. Let u(x) be the

field variable function defined in domain Ω, and uh(x) the

approximation of u(x) at point x. In MLS approximation,

uh(x) =

m
∑

j=1

pj(x)aj(x) ≡ pT (x)a(x) (2)

where p(x) is the polynomial basis functions, m the num-

ber of terms in p(x), and a(x) the unknown location-

dependent coefficients which can be obtained at any point x

by minimizing a weighted, discrete L2 norm:

J =

n
∑

I

w(x − xI)[p
T (xI)a(x) − uI ]

2 (3)

with n the number of points xI in the neighborhood of x

(the influence domain) (Figure 2) for which the weight func-

tion w(x − xI) �= 0, and the nodal value uI = u(xI).
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Figure 2: Influence domains and cubic spline weighting

function

The stationarity of J in Equation (3) with respect to

a(x), ∂J
∂a

= 0, leads to:

a(x) = A−1(x)B(x)Us (4)

where

A(x) =

n
∑

I

w(x − xI)p(xI)p
T (xI) (5)

B(x) = [B1,B2, ...,Bn] (6)

with BI = w(x − xI)p(xI) and UT
s = {u1, u2, ..., un}.

Note that we require n >> m which prevents the singu-

larity of the matrix A and ensures the existence of A−1,

and this condition can be guaranteed by the adaptively con-

trolled influence domain size. Substituting the results into

Equation (2), and we have

uh(x) =

n
∑

I

m
∑

j

pj(x)(A−1(x)B(x))jIuI (7)

≡
n

∑

I

φI(x)uI ≡ Φ(x)Us (8)

where the MLS-derived shape function φI(x) is

φI(x) =

m
∑

j

pj(x)(A−1(x)B(x))jI = pT A−1BI (9)

and Φ(x) = [φ1(x), φ2(x), ..., φn(x)] = pT A−1B. Fur-

ther, the derivatives of the shape functions that are necessary

to compute the gradients of the approximations are given

by:

Φ′(x) = (pT )′A−1B + pT ((A−1)′B + A−1B′) (10)

It can be shown that if the weight functions w(x − xI)
is continuous together with its first k derivatives, then the

shape function is also continuous together with its first k
derivatives [14]. More efficient schemes for derivatives

computation can be found in [3].

2.3.2 Basis and Weighting Functions

The use of the basis functions p(x), including special terms

such as singularity functions, ensures the consistency of the

approximation and the accuracy of the results. Typically,

the basis functions consist of monomials of the lowest or-

ders to ensure minimum completeness:

Linear : pT
(m=3) = {1, x, y} (11)

Quadratic : pT
(m=6) = {1, x, y, x2, xy, y2} (12)

Singular enhancement functions can be included in the ba-

sis to achieve better efficiency or to produce solutions of

special characteristics such as singularity because function

included in the basis can always be reproduced exactly by

an MLS approximation [14].

The weight functions w(x − xI) play important roles in

constructing the MLS shape functions. They should be pos-

itive to guarantee a unique solution for a(x); they should

decrease in magnitude as the distance dI = |x − xI | in-

creases to enforce proper local neighbor influence; and they

should ensure that nodes leave or enter the local influence

domains in a gradual (smooth) manner when x moves, such

that the MLS shape functions satisfying the compatibility

condition of the Hamilton’s principle.

Theoretically, the weighting functions can be any func-

tions as long they are positive and continuous together with

its derivatives up to the desired degree, and they satisfies

the positivity (w(x − xI) > 0 inside influence domain

dΩ), compactness (w(x − xI) = 0 outside dΩ), and unity

(
∑

I w(x − xI) = 1) conditions. In our implementation,

we choose to use the cubic spline function (Figure 2):

w(r) =







2
3 − 4r2 + 4r3 for r ≤ 1

2
4
3 − 4r + 4r2 − 4

3r3 for 1
2 < r ≤ 1

0 for r > 1
(13)

in which r = dI/dmI is a normalized radius from the Ith

node to the POI, and the support size dmI is set by

dmI = dmaxcI (14)

where dmax is a scaling parameter, and the distance cI is

determined by searching for enough neighbor nodes for the

matrix A in Equation (5) to be regular, i.e. invertible at

every point in the domain. This notion actually relates to

the scale-space concept in vision, and it facilitates the spa-

tial adaptivity of the node distribution as well. For two-

dimensional case, tensor product concepts are employed to

determine the influence domains and the construction of the

weighting functions (Figure 2) [8].

It should be noted that the MLS shape functions do not

satisfy the Kronecker delta criterion and result in uh(xI) �=
uI . Therefore, they are not interpolants but rather approxi-

mants of the field function. The approximation of the func-

tion at the Ith node uh(xI) depends not only on the nodal

4
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parameter uI but also on the nodal parameters of all the

nodes within the influence domain of node I . This property

makes the imposition of essential boundary conditions more

complicated than that in the FEM. Modified interpolating

MLS approximations have been proposed to eliminate this

issue by employing singular weight functions [12, 14].

2.3.3 Remarks

As mentioned earlier, an attractive property of MLS approx-

imations is that their continuity is related to the continuity of

the weighting functions. Therefore, a low order polynomial

basis p(x) such as the linear one can be used to generate

highly continuous approximations by choosing appropriate

weight functions. Thus, unlike FEM, there is no need of

post-processing to generate smooth stress and strain fields.

The standard least-squares interpolant/approximant is

obtained if the weight functions are constant over the en-

tire domain. The FEM equivalents can also be reached if

the weight functions are defined as piecewise-constant over

each influence domain.

2.4 Imposing Essential Boundary Conditions

In general, the MLS shape functions lack the Kronecker

delta function property of the FEM shape functions, which

implies difficulties when imposing essential (displacement

or kinematic) boundary conditions on the boundaries, dis-

crete curves, and isolated points of the analysis domain.

Thus, the Galerkin weak form formulation of Equation (1)

has to be modified or constrained to overcome the problem.

We have adopted a constrained variational principle with

a penalty function, which has roots in FEMs [10]. Consider

the example problem of making a functional Π stationary

subject to the unknown u obeying some set of additional

constraints C(u) = 0 on the boundary of domain Ω. We

would add to the original functional Π a penalty term

Θ = Π +
1

2

∫

Ω

CT (u)αC(u) dΩ (15)

where α is a penalty number vector. Using the Hamilton’s

principle, we come to the modified Galerkin weak form:

∫

Ω

δ(Lu)T c(LU) dΩ −
∫

Ω

δuT b dΩ −
∫

Γt

δuT t dΓ

−
∫

Ω

δ
1

2
C(u)

T
αC(u) dΩ +

∫

Ω

ρδuT ü dΩ = 0 (16)

For the most common Dirichlet boundary condition where

displacement u = ū is prescribed on the essential boundary

Γu, C(u) = u − ū is inserted into Equation 16.

In practice, the boundary conditions will not be prop-

erly enforced if the penalty factor α is too small. On

the other hand, numerical problems will arise if it is

too large. We have used the general rule of α =
104−13×max (diagonal elements in the stiffness matrix) as

suggested in [16]. Further, α can be a varying function re-

lated to the trustworthiness of the prescribed boundary con-

ditions, i.e. the reliability of the image data constraints.

2.5 Construction of System Equations

2.5.1 System Dynamics

From Equation 16, we arrive at the following governing sys-

tem equations following the minimum work principles [6]:

MÜ + CU̇ + [K + Kb]U = R + Rb (17)

where U = [u1,u2, ...,unt
]T is the displacement vector

with nt the total number of nodes in the domain, M the

mass matrix, C the damping matrix, K the stiffness matrix,

R the external force, Kb the boundary condition penalty

matrix, and Rb the boundary condition force:

MI,J =

∫

Ω

ρΦT
I ΦJ dΩ (18)

KI,J =

∫

Ω

ST
I cSJ dΩ (19)

CI,J = λ1MI,J + λ2KI,J (Rayleigh Damping)(20)

Kb
I,J =

∫

Γu

ΦT
I αΦJ dΓ (21)

Rb
I =

∫

Γu

ΦT
I αū dΓ (22)

with

ΦI =

[

φI 0
0 φI

]

, SI = LΦI =





φI,x 0
0 φI,y

φI,y φI,x



 (23)

where φI,x and φI,y represent the derivatives of the MLS

shape functions with respect to x and y.

2.5.2 Evaluation of Integrals and Background Cells

In practice, in order to evaluate the entries of the system

matrices, one needs to integrate over the problem domain or

the curves for boundaries. This can be carried out through

numerical techniques such as the Gauss quadrature [6], us-

ing a mesh of non-overlapping cells, called the background

mesh in EFGM. The background cells are usually totally

independent of the arrangement of nodes, such as the ex-

ample in Figure 2 which shows a regular-grid background

mesh used for the integration process. These cells also fa-

cilitate the identification of nodes which contributes to the

discrete L2 norm at a quadrature point as in Equation (3).

In FEM, the integration mesh is the same as the element

mesh, which must be sufficiently fine with a sufficient num-

ber of integration points. The background mesh in EFGM,

5
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however, is used merely for the integration of the system

matrices but not for field variable interpolation, and needs

to be properly designed to obtain an appropriate solution of

desired accuracy [2]. In the regular-grid cell structure, there

may exist cells that do not entirely belong to the analysis

domain. It means that only a portion of a such cell belongs

to the domain. A visibility scheme that automatically sepa-

rates the portion of the cell which lies outside of the physi-

cal domain is employed. Another important question is the

number of cells to be used. Following the spirit of [2], we

have used mc ×mc cells, where mc =
√

(nt) and nt is the

total number of nodes in the domain. In each cell, Gauss

quadrature is used, and the number of quadrature points de-

pends on the number of nodes in a cell, and we have used

nQ × nQ Gauss quadrature where nQ =
√

m + 2 and m is

the number of nodes in a cell. Alternatively, we have used

4 × 4 Gauss quadrature with reasonable results.

3 Applications and Experiments

We have applied the meshfree EFGM framework to several

image analysis problems involving domain evolution and

domain mapping. Here, we present the applications to 1D

and 2D deformable models, i.e. contours and annuls, for ob-

ject segmentation, and to multiframe nonrigid motion anal-

ysis of the left ventricle using biomechanical constraints.

3.1 Object Segmentation

We formulate the segmentation problems using active

deformable models with inherent smoothness constraints

(mathematical or mechanical) where the EFGM-derived

PDEs define the dynamical behavior under the image forces

that push the models interfaces towards object boundaries.

This becomes the classical Snakes model [13] for 1D con-

tour case and we use an elastic solid model for the detec-

tion of annulus objects in 2D. While the MPMs do not have

obvious numerical advantages for 1D contour situations be-

cause node addition/elimination is trivial for contours, we

use this classic model to illustrate the applicability of MPMs

to non-mechanical PDE formulations.

3.1.1 Deformable Contour

Assuming parametric active contour v(s) = (x(s), y(s)),
with s ∈ [1, 0] the parameter, equilibrium of the model is

obtained through the minimization of energy functional:

E = Edata + Emodel (24)

=

∫ 1

0

(w1(s)|
∂v

∂s
|2 + w2(s)|

∂2v

∂s2
|2) ds +

∫ 1

0

P (v(s)) ds

Figure 3: Top: active contour segmentation for synthetic

image: initialization (left), FEM result (middle), and EFGM

result (right). Bottom: EFGM solutions of the active con-

tour segmentation for cardiac MRI image: initial, middle

stage, and final results.

where P (v(s)) denotes a potential function defined from

the image data. In our implementation, a force potential

field is generated from the gradient vector flow (GVF) [22].

The contour v(s) which minimizes the energy E must

satisfy the Euler-Larange equation:

− ∂

∂s
(w1

∂v

∂s
) +

∂2

∂s2
(w2

∂2v

∂s2
) + ∇P (v(s)) = 0 (25)

Applying the Galerkin principle to Equation (25), we have

∫ 1

0

[− ∂

∂s
(w1

∂v

∂s
) +

∂2

∂s2
(w2

∂2v

∂s2
) + ∇P (v(s))]χ(s) ds = 0 (26)

where χ(s) is an arbitrary test function. Let v = φiui where

φi is the MLS shape function, ui a vector field variable for

node i, and UT = [u1, u2, ..., un], undergoing the EFGM

procedures developed earlier, Equation (26) yields

KU = R (27)

where Ri =
∫ 1

0
φT

i tds, t = −∇Pi(v(s)), K =
∑

Ki, and

Ki = Kα + Kβ (28)

=

∫ 1

0

(
∂φi

∂s
)T w1(

∂φi

∂s
)ds +

∫ 1

0

(
∂2φi

∂s2
)T w2(

∂2φi

∂s2
)ds

Solving the equilibrium Equation (27), we arrive at the de-

tected object boundary. Figure 3 shows the segmentation

result comparison on noisy synthetic image (SNR = 5dB)

using FEM (without node addition/elimination) and EFGM

strategies, as well as the EFGM segmentation results of the

left ventricle from MRI image.

3.1.2 Elastic Deformable Solid

For annulus-shape object (Figure 4), we use an elastic solid

mechanical model for the simultaneous segmentation of
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Figure 4: FEM (left) and EFGM (middle) solutions of the

annulus-shaped elastic solid model segmentation for syn-

thetic image, and EFGM results for cardiac MRI image

(right): initialization (top) and final results (bottom).

both boundaries. The object is define by the two bound-

aries and scattered particles in-between. Once again, we

relate the image GVF to our external data force t, and for

equilibrium state, Equation (17) becomes

KU = ηF (29)

where external image force component Fi =
∫

Γ
φT

i tdΓ and

η is a weighting constant. Figure 4 shows the FEM (without

adaptive remeshing) and EFGM results on noisy synthetic

image, and the EFGM results on a cardiac MRI image.

3.2 Multi-frame Cardiac Motion Analysis

Recovery of the non-rigid kinematics of the heart is essen-

tial in medical image analysis. Here, we apply the EFGM

framework to the analysis of biomechanically constrained

left ventricular motion throughout the cardiac cycle, rely-

ing on a state space strategy which performs optimal multi-

frame estimation using H2 filter (see details in [17]).

Assuming Markov process, the system dynamics equa-

tion (Equation 17) is transformed into a discrete-time state-

space representation of a linear time-invariant stochastic

system. Along with the associated measurement equation

which describes the observed imaging data y(t), we have

x(t + 1) = Ax(t) + Bw(t) + v(t) (30)

y(t) = Dx(t) + e(t) (31)

where A = eAc∆T and B = A−1
c (eAc∆T − I)Bc, with

x(t) =

[

U(t)

U̇(t)

]

, w(t) =

[

0
R + Rb

]

(32)

Ac =

[

0 I
−M−1(K + Kb) −M−1C

]

(33)

Bc =

[

0 0
0 M−1

]

(34)

Figure 5: Segmented MRI tagging image and its meshfree

particle representation.

D is a known measurement matrix, v(t) is the zero-

mean, white process noise (E[v(t)] = 0, E[v(t)v(s)′] =
Qv(t)δts, e(t) is the zero mean, and white measurement

noise (E[e(t)] = 0, E[e(t)e(s)′] = Re(t)δts), and ∆T is

the time interval. A recursive procedure is then used for the

optimal state estimation based on H2 filtering [17].

The MR tagging images are segmented and the tag-tag

and tag-boundary crossing are detected for all sixteen im-

ages of the cardiac cycle (Figure 5). These crossings pro-

vide a set of 2D displacements between images frames,

and are used as the prescribed boundary conditions in the

EFGM framework. The state space representation is estab-

lished, and the optimal estimates of the displacement field

is achieved through the recursive process. Further, cardiac

specific strain maps are derived (Figure 6).

4 Conclusions

we present a meshfree particle computational paradigm for

computer vision problems. It is purely based on the nodal

points and does not require the meshing of the analysis do-

main. This meshfree strategy can better handle large defor-

mation and domain discontinuity issues and achieve desired

numerical accuracy. We demonstrate the computational

power of this framework with applications in object seg-

mentation with deformable models, and multi-frame non-

rigid motion analysis of the left ventricle using mechanical

model. This work is supported by RGC-HKUST 6031/01E.
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