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1. Introduction 

In Chapter 10, we highlighted two important factors that limit 

application of finite element method in predicting the brain responses 

for surgery simulation and pose a significant challenge in application 

to injury biomechanics when the body tissues undergo rupture/failure: 

1) Time consuming generation of patient-specific finite element 

meshes of the brain and other body organs [1].   

2) Deterioration of the solution accuracy and instability when the 

finite element meshes undergo distortion induced by large 

localised deformations caused by interactions between the organ 

and surgical tool [3] and by injury. 

Meshless algorithms [4-6], in which the analysed continuum is 

discretised by nodes (where forces and displacements are calculated) 

with no assumed structure for the interconnection of the nodes and 

integration points (where stresses and strains are calculated) (Figure 

1), have been proposed in the literature for generating computational 

grids of domains with complex geometry and providing reliable 

results for large deformations [7-10]. 

Smoothed particle hydrodynamics SPH is regarded as the first 

meshless method. It utilises a strong form of equations of continuum 

mechanics [12]. SPH and other particle methods (such as material 

point method in which a strong form of equations of continuum 

mechanics is used) were applied in injury biomechanics [14-16]. 
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However, the literature indicates several important shortcomings of 

the SPH method, which includes instabilities in tension and accuracy 

inferior to that of the finite element method [4]. The quest for 

eliminating this shortcomings and advancing the SPH continues [17] 

in parallel with development of new algorithms that apply a strong 

form of  equations of solid mechanics [19]. So far, however, such 

methods have found only limited application in computational 

biomechanics [20]. 

Therefore, we focus on meshless methods that utilise the weak 

form of equations of continuum mechanics and background 

integration grid. As an example, we discuss the meshless 

computational biomechanics framework that utilises Total 

Lagrangian formulation and explicit integration in time domain: 

Meshless Total Lagrangian Explicit Dynamics (MTLED) [7, 21-26] 

(Figure 2). Dynamic relaxation and real-time computation of soft 

tissue deformations through algorithm implementation on Graphics 

Computing Units (GPUs) discussed in the Chapter 10 for finite 

element method apply also to this framework.  

 

 
 

Figure 1 Meshless discretisation (interpolation nodes) of the patient-

specific brain geometry for computing deformations within the brain 

due to the craniotomy induced brain-shift. Adapted from Horton et al. 

[27].   
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Figure 2 Flowchart of the Meshless Total Lagrangian Explicit 

Dynamics (MTLED) framework for surgical simulation. Note the 

important difference with the finite element Total Lagrangian Explicit 

Dynamics (TLED) algorithm discussed in Chapter 10. In the MTLED 

framework, the spatial discretisation is done over a cloud of points 

and the spatial integration is done using the background grid. 

Therefore, unlike in the TLED, the loop is over the integration points 

rather than the elements.  

 

 

 The key motivation for Meshless Total Lagrangian Explicit 

Dynamics (MLTED) framework is the need for computational 

biomechanics simulations to satisfy the constraints and requirements 

of neurosurgical navigation. This includes fast creation of patient-

specific (representing a given patient) computational biomechanics 

models and conducting surgical simulations without the requirement 

for the user to become an expert in computational mechanics (as 

hospitals are unlikely to hire PhDs in computational mechanics to do 

surgery planning). In the MTLED framework, we propose to achieve 

this through introducing specialised shape functions and adaptive 

spatial integration that facilitate accurate solution even if the analysed 
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continuum is discretised using irregularly/non-uniformly distributed 

nodes, and through the specialised algorithm that employs the 

visibility criterion for surgical dissection and tissue rupture 

simulation.  Therefore, in the subsequent sections of this Chapter, we 

discuss the following topics: 

•   Section 2: Shape functions for meshless algorithms for 

computing soft tissue deformations;  

•   Section 3: Spatial integration schemes for meshless algorithms 

for computing soft tissue deformations; 

•   Section 4: Visibility criterion for modelling of surgical dissection 

and soft tissue rupture; 

•   Section 5: Stability of the specialised meshless explicit dynamics 

algorithm for surgical simulation;  

•   Section 6: Algorithm verification.  

 

 

2.  Shape Functions for Meshless Algorithms for Computing 

Soft Tissue Deformations 

 

The method for interpolation/approximation of the displacement field 

and the type of shape functions used for such interpolation are some 

of the crucial differences between the MTLED framework and the 

Total Lagrangian Explicit Dynamics (TLED) finite element algorithm 

described in Chapter 10. The TLED, and vast majority of finite 

element algorithms, use polynomial shape functions. In the MTLED 

framework, we use Moving Least-Squares shape functions that were 

initially proposed by Lancaster and Salkuaskas [28] for 

approximation of scattered data and later applied by Nayroles et al. 

[29] in the Diffuse Element Method: 𝑢"(𝐱) = 𝐩𝐓(𝐱)𝐚(𝐱),          
(1) 

where uh is the approximation of the displacement u, p(x) is the 

vector of monomial basis function, a(x) is the vector of coefficients 

that need to be calculated, and x is the point belonging to the analysed 

continuum but not located at the node. In the MTLED framework, 

low order (up to quadratic order) monomial basis functions are used 
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[7]: 

    𝐩0(𝐱) = (1	|𝑥	𝑦	𝑧|	𝑥𝑦	𝑥𝑧	𝑦𝑧|	𝑥7	𝑦7	𝑧7).  (2) 

The coefficients a(x) are computed by minimising an error functional J defined based on the weighted least squares errors for n points 

located at positions xj	(j=1,	…,	n) : 
   𝐽(𝐱) = ∑ ?@𝑢"@𝐱AB − 𝑢AB7	𝑤@E𝐱 − 𝐱AEBF𝒏𝒋I𝟏 , (3) 

where w is the weight function (positive weight function is used) and 

||×|| denotes the Euclidean distance. Given Eq. (1), the error functional J	(defined in Eq. 3) can be rewritten as [30] 

    𝐽 = (𝐏𝐚 − 𝐮)𝐓𝐖(𝐏𝐚 − 𝐮),                                               (4)

    

where 

  𝐮𝐓 = [𝑢O, 𝑢7…	𝑢P],  (5) 

  

 𝑷 =		 ⎣⎢⎢
⎢⎡𝑝1(𝐱1)			𝑝2(𝐱1)				⋯				𝑝𝑚(𝐱1)𝑝1(𝐱2)			𝑝2(𝐱2) ⋯ 𝑝𝑚(𝐱2)⋮																			⋮ ⋱ ⋮𝑝1(𝐱n)			𝑝2(𝒙𝑛) ⋯ 𝑝𝑚(𝑥𝑛)⎦⎥⎥

⎥⎤, (6) 

 𝑾= b𝑤(||𝐱− 𝐱1||)	0⋮0
0𝑤(||𝐱 − 𝐱2||)⋮0

⋯⋯										⋱										⋯							
00⋮𝑤(||𝐱 − 𝐱𝑛||)d, (7) 

where ui is the value of the field variable (displacement) at node i. To 

minimise the error functional J given in Eq. (4), it’s partial derivatives fgf𝐚 are set to zero [30] 

 
fgf𝐚 = 𝐏0𝐖𝐏𝐚(𝐱) − 𝐏0𝐖𝐮 = 0 (8) 

and the coefficients a(x) at the evaluation points are obtained as 

 𝐚(𝐱) = (𝐏0𝐖𝐏)-O𝐏0𝐖𝐮, (9) 

where 𝐏0𝐖𝐏  is also referred to as the moment matrix 𝐌 = 𝐏0𝐖𝐏.	
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Following Joldes et al. [30],  from Eq. (9), the shape functions F can 

be defined as: 

 𝚽(𝐱) = [𝜙O(𝐱)…𝜙P(𝐱)] = 𝐏0(𝐏0𝐖𝐏)l𝟏𝐏0𝐖. (10) 

According to Eq. (10), the shape functions can be constructed only if 

the moment 𝐌 = 𝐏0𝐖𝐏 is non-singular. This implies that although 

the requirements regarding the nodal distribution are much less 

stringent that in the Finite Element Method, where the nodes need to 

be arranged in a mesh of high-quality tetrahedral or hexahedral 

elements (see Chapter 10), some conditions still apply and not all the 

nodal distributions are acceptable/admissible. These conditions 

depend on the bases of the shape functions. This poses a challenge for 

meshless algorithms for surgical simulation as the end-users are 

medical professionals rather than experts in computational mechanics 

and, due to complex geometry of the brain and other body organs, 

irregular nodal distributions are an effective and convenient approach 

for spatial discretisation [31, 32]. Application of such distributions 

makes it possible to generate patient-specific computational 

biomechanics models of the brain and other organs directly from 

images [32, 33, 34] (Figure 3).  However, unlike in the case of the 

finite element method discussed in Chapter 10, there are no 

specialised computational grid generators for the MTLED framework 

and other meshless methods using weak form of equations of 

continuum mechanics. In the examples showed in  

Figure 3, Figure 4, Figure 7 and Figure 8, the nodes were created 

using the established algorithms available in the HyperMeshTM finite 

element preprocessing software package (by Altair, MI, USA; 

https://altairhyperworks.com/product/hypermesh).  The process is 

similar to automated generation of nodal distributions for tetrahedral 

finite element meshes, but as no elements need to be constructed, the 

usual constraints on the node placement due to element quality 

considerations disappear.  

 We require from the shape functions in the MTLED framework 

to facilitate robust approximation for irregular nodal distributions 

without the need for the user to control/adjust the parameters of the 

distributions to achieve accurate solution. Modified Moving Least 

shape functions introduced by Joldes et al. [30] and Chowdhury et al. 

[25] address this challenge for higher order bases functions. 
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Figure 3 Irregular nodal distribution applied in Miller et al. [31] for 

computing the deformations within the brain due to craniotomy-

induced brain shift.  

 

 The key idea behind the Modified Moving Least Square (MMLS) 

function comes from the realisation that the singularity of the moment 

matrix 𝐌 = 𝐏0𝐖𝐏  in Eq. (8) originates from the fact that Eq. (9), 

applied for computing the coefficients a(x), has multiple solutions. 

This implies that functional J (Eq. 4) does not include sufficient 

constraints to guarantee a unique solution for a given nodal 

distribution. Therefore, to prevent singularities for the second order 

bases functions, we add additional constraints to the functional J  [30]:  

 𝐽(𝐱) = ∑ ?@𝑢"@𝐱AB − 𝑢AB7 +	𝜇op𝑎op7 + 𝜇or𝑎or7 + 𝜇rp𝑎rp7 F ,PAIO  

   (11)

 where 

 𝛍 = t𝜇op 		𝜇or		𝜇rpu (12) 

is the vector of positive weights for the additional constraints.  From 

Eq. (4), that defines the functional for MLS shape functions, and       

Eq. (11), a new functional	𝐽	for (new) MMLS shape functions can be 

rewritten as: 

 𝐽 = (𝐏𝐚-𝐮)0𝐖(𝐏𝐚-𝐮) + 𝐚0𝐇𝐚,	 (13) 

where H is the matrix with all elements 033 equal to zero except the 
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last three diagonal entries that are equal to the weights µ of the 

additional constraints (see Eq. 12):     

 𝐻 = z𝟎|| 𝟎||𝟎|| diag(𝛍)�. (14) 

To compute the coefficients a(x) for the MMLS shape functions, we 

minimise the functional 𝐽 (Eq. 13) following the procedure previously 

used for MLS (as given by Eq. 8, Eq. 9 and Eq. 10). This leads to the 

following formula for computing (new) MMLS shape functions [30]: 

 𝚽�(𝐱) = [𝜙�O(𝐱)…𝜙�P(𝐱)] = 𝐏0(𝐏0𝐖𝐏+𝐇)lO𝐏0𝐖. (15) 

This formula differs from that for the traditional MLS functions (Eq. 

10) by the constraints weight matrix H. The constraints are to prevent 

singularities in the error functional 𝐽 ̅(Eq. 11, Eq. 12 and Eq. 13). 

 In has been indicated in Chowdhury et al. [25] and Joldes et al. 

[30] that the MMLS shape functions appreciably improve accuracy of 

prediction of the brain deformations due to surgery in comparison to 

the traditionally used MLS functions (Figure 4) and provide solution 

for irregular nodal distributions where the MLS functions exhibit 

singularity.  
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a)  b) 

 

 

 
Figure 4 Evaluation of the Meshless Total Lagrangian Explicit 

Dynamics (MTLED) framework with traditionally used Moving 

Least Square (MLS) shape functions and Modified Moving Least 

Square (MMLS) shape functions introduced by Joldes et al. [30] and 

Chowdhury et al. [25]. The evaluation is conducted through 

application in predicting the brain deformations due to craniotomy-

induced brain shift. a) Differences between the deformations 

predicted using the MTLED with MLS shape functions and well-

established non-linear finite element code ABAQUS [35]; b) 

Differences between the deformations predicted using the MTLED 

with MMLS shape functions and well-established non-linear finite 

element code ABAQUS. The solution obtained using ABAQUS finite 

element code is regarded as the reference. Accuracy improvement due 

to application of MMLS shape functions is clearly visible. Adapted 

from Chowdhury et al. [36]. 
 

 

  

µ

  

𝜇𝜇
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3.  Spatial Integration Schemes for Meshless Algorithms for 

Computing Soft Tissue Deformations 
 

Two main types of integration schemes are used in the meshless 

methods of computational mechanics:  

1) Gaussian quadrature Q over a background grid where the 

integration is done over the integration cells D with one or more 

integration points per cell [7, 24, 37, 38]: 

 𝐼 = ∫ 𝑓(𝐱)� 𝑑𝐷, (16) 

 𝐼 ≅ 𝑄P(𝐷) = ∑ 𝑤�P�IO 𝑓(𝐱�),  (17) 

where f is the function we intend to integrate, I is the integral 

approximated using the n-point Gaussian quadrature Qn over the 

integration cell D, xi are the integration points, and wi are the 

corresponding weights. 

2) Nodal integration where the interpolating nodes are also used as 

integration points [39, 40]. 

As the literature  indicates that Gauss quadrature over the background 

integration cells tends to be less computationally demanding than 

nodal integration schemes [42], in the Meshless Total Lagrangian 

Explicit Dynamics (MTLED) framework we use the background 

integration (Figure 5).  

In the MTLED framework (and other meshless algorithms that 

rely on weak formulation of equations of continuum mechanics), 

application of background integration using Gaussian quadrature is 

associated with errors that originate from two sources:  

1) Shape functions in meshless methods are not polynomials [42];  

2) Shape functions’ support may not align with the integration cells.  

Difficulty in estimation and control of such errors is a common 

challenge for many of the existing integration schemes [24].  
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Figure 5 Meshless discretisation of the problem domain by an 

irregular nodal distribution with a background grid of quadrilateral 

integration cells. Adapted from Joldes et al. [44].  

 

In 2011 edition of this book [43], we advocated hexahedral cells 

with a single integration point per cell (the idea similar to the one used 

in underintegrated hexahedral elements discussed in Chapter 5) 

(Figure 6). As integration cells do not have to conform to the 

boundary of the analysed continuum, they can be generated 

automatically even for complex geometry. The nodes, where the 

displacements are calculated, are independent of the background 

integration grid [7]. Simplicity and flexibility are key advantages of 

spatial integration using hexahedral background grids. Almost 

arbitrary placement of the nodes throughout the analysed continuum 

can be used, which is well suited for complex geometry of the brain 

and other human body organs. However, restrictions on the ratio of 

the number of integration points and nodes apply. Through parametric 

study, we estimated in in Horton et al. [7] that the number of 

integration points should be twice the number of nodes for accurate 

and convergent solution. Although we successfully used this estimate 

in predicting the deformations within the brain due to craniotomy-

induced brain shift [31] (Figure 7), it provides only very limited 

control of the integration error. Consequently, the analyst’s 

knowledge of meshless methods of computational mechanics and 

experience in using them are crucial for ensuring accuracy of the 

computations. This poses a challenge for clinical applications where 

the users are medical professionals rather than experts in 

𝑖𝑖 𝑃𝑃𝐼𝐼 𝑐𝑐2 − 𝑦𝑦2
𝑠𝑠𝜕𝜕 𝑥𝑥 𝑦𝑦 −𝑃𝑃𝑥𝑥2𝑦𝑦𝐸𝐸𝐼𝐼 − 𝜈𝜈𝑃𝑃𝑦𝑦3𝐸𝐸𝐼𝐼 𝑃𝑃𝑦𝑦3𝐼𝐼𝐼𝐼 �𝑃𝑃𝑙𝑙2𝐸𝐸𝐼𝐼 − 𝑃𝑃𝑐𝑐2𝐼𝐼𝐼𝐼�𝑦𝑦𝑠𝑠𝜕𝜕 𝑥𝑥 𝑦𝑦 𝜈𝜈𝑃𝑃𝑥𝑥𝑦𝑦2𝐸𝐸𝐼𝐼 𝑃𝑃𝑥𝑥3𝐸𝐸𝐼𝐼 − 𝑃𝑃𝑙𝑙2𝑥𝑥𝐸𝐸𝐼𝐼 𝑃𝑃𝑙𝑙3𝐸𝐸𝐼𝐼𝐼𝐼 2 𝑐𝑐33 𝐸𝐸 𝜈𝜈𝐼𝐼 𝐸𝐸2 1+𝜈𝜈

𝑃𝑃 𝐸𝐸 𝜈𝜈𝑙𝑙 𝑐𝑐
𝜏𝜏

 

𝜏𝜏
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computational mechanics. To address this challenge, we incorporated 

into the MTLED framework an adaptive integration scheme that 

adapts the quadrature to the behaviour of the function being integrated 

[24, 44]. 
  

 

Figure 6 Background regular integration grid for a patient-specific 

meshless model of the brain with tumour. The integration points are 

indicated as (�). Note that the background grid does not conform to 

the geometry boundary. Adapted from Horton et al. [27]. 
 

   
Figure 7 3-D patient-specific meshless model for computing the 

deformations within the brain due to craniotomy-induced brain shift 

for image-guided neurosurgery. The model was implemented using 

the Meshless Total Lagrangian Explicit Dynamics MTLED 

framework. Detailed description and the results obtained using this 

model are in Miller et al. [31]. The integration points are indicated as 

(+) and interpolating nodes — as (�) for the brain parenchyma, (�) for 

the ventricles, and (�) for the tumour. Regular hexahedral background 

integration grid (similar to that shown for two-dimensional 2-D  

model in Figure 6) was used.  

Parenchyma 

Parenchyma 

Tumour 

Parenchyma 

Ventricles 

Parenchyma 
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For the Meshless Total Lagrangian Explicit Dynamics (MTLED) 

framework, we proposed an adaptive integration scheme where the 

integration cells D (see Eq. 16 and Eq. 17) are recursively subdivided 

into m smaller cells until the desired integration tolerance	 t	 is	achieved	 [24, 44]. Using notation	𝑄P�(𝐷)	to indicate the	 n-point 

quadrature applied on m subdivided regions of the integration cell	D,	
our adaptive integration scheme (as proposed in [24, 44]) can be 

described using the following pseudo-code: 	Adaptive	Integration	Scheme	 𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞	[𝑄, 	𝑥�, 	𝑤�] = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒	(𝑓, 𝐷, 𝜏)					 [𝑄, 𝑥�, 𝑤�] = 𝑄PO[𝐷]	//	𝑥� = integration	points	used,																																																				𝑤� = associated	weights		 [𝑄𝑀, 𝑥¨ , 𝑤¨] = 𝑄P�(𝐷)	𝐈𝐟	(|𝑄𝑀 − 𝑄| > 𝜏|𝑄𝑀|)		𝐓𝐡𝐞𝐧	 	𝐷 → {𝐷O, 𝐷7, … ,𝐷�};//	subdivision		 	 𝐅𝐨𝐫	𝐷A	in	{𝐷O, 𝐷7, … ,𝐷�}	𝐃𝐨		 t𝑄A , 𝑥�A , 𝑤�Au = 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒	@𝑓, 𝐷A, 𝜏B;	//	recursion		 𝐄𝐧𝐝	𝐅𝐨𝐫		 𝑄 = 𝑠𝑢𝑚(𝑄1,𝑄2,…𝑄𝑚);										 		𝑥� = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥�O, 𝑥�7, … 𝑥��);		 𝑤� = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑤�O, 𝑤�7, …𝑤��)		 𝐄𝐧𝐝	𝐈𝐟		 𝐑𝐞𝐭𝐮𝐫𝐧	𝑄, 𝑥�, 𝑤� 	𝐄𝐧𝐝	𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞			
The above integration scheme has the following properties that make 

it very attractive for application in computational biomechanics of the 

brain and other body organs: 

• The size of the integration cells is automatically adjusted (the 

number of integration cells in the areas where the shape functions 

exhibit large variations is automatically increased to maintain the 

integration accuracy); 
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• New integration points are introduced only in the areas where the 

integration accuracy is below the desired (required) accuracy; 

• The scheme works for any shape and size of support domains; 

• The scheme is particularly effective for irregular/non-uniform 

nodal distributions.  

In practice, defining the relative integration tolerance 𝜏  is the 

only input required from the analyst for the adaptive integration 

scheme used in the MTLED framework. Although it is rather difficult 

to formulate detailed guidelines regarding selection of such tolerance, 

the numerical experiments we conducted in Joldes et al. [24] have 

indicated that the solution accuracy does not appreciably increase 

after the integration accuracy reaches a certain level/threshold. This, 

in turn, suggests that it is not necessary to use very high integration 

accuracy (low tolerance 𝜏) resulting in many subdivisions of each 
integration cell.  

We recommend to conduct a convergence analysis to determine 

the best integration accuracy for a given spatial discretisation. Such 

analysis has been conducted by Joldes et al. [44] for the problem of 

computation of the brain deformations due to craniotomy induced 

brain shift (Figure 8).  In such problems, the required solution 

accuracy is within the voxel size of the intraoperative Magnetic 

Resonance (MR) images —between 1 mm and 2 mm. The results 

obtained by Joldes et al. [44] suggest that such accuracy of prediction 

of the brain deformations can be achieved using the relative 

integration tolerance 𝜏 ≤ 0.1  (i.e. 0.1 is the maximum acceptable 

tolerance) (Figure 8).  
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Figure 8 Application of the MTLED framework with the adaptive 

integration scheme in predicting the brain deformations due to 

craniotomy-induced brain shift. The figure shows the influence of the 

integration tolerance on the solution (predicted brain deformations) 

accuracy. a) Meshless discretisation using nodes and triangular 

background integration cells. The nodes define vertices of the cells. 

b) Differences between the deformations predicted using three Gauss 

points per integration cell and the reference solution using very 

stringent relative integration tolerance 𝜏 = 0.001. For the tolerance 𝜏 = 0.1,  the maximum difference with the reference solution is 
around 0.035 mm. As this difference is well within the required 

accuracy of 1 mm (less than half of the voxel size of a typical 

intraoperative Magnetic Resonance Image MRI), we recommend 

tolerance 𝜏 slightly below 0.1 Adapted from Joldes et al. [44]. 

 

4. Visibility Criterion for Modelling of Surgical Dissection and 

Soft Tissue Rupture  

Surgical dissection and injury-related rupture introduce 

discontinuities/cracks in the body tissues and organs. In the 

computational biomechanics algorithms that rely on finite element 

discretisation discussed in Chapter 10, surgical dissection is simulated 

by subdividing the elements forming the mesh [45-49]. This requires 

sophisticated re-meshing techniques to generate new elements with 

good aspect ratio and map the field variables from the original to the 

new mesh. With an exception of Bui et al. [49], the re-meshing is in 

 

a) b)  

𝜏𝜏 −3

  

a) b) 
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practice limited to tetrahedral elements that exhibit volumetric 

locking when applied to soft tissues and other incompressible 

continua unless special countermeasures are applied (see Chapter 10). 

Furthermore, error accumulation due to re-meshing tends to constrain 

the accuracy of finite element method in modelling of surgical 

cutting/dissection [47, 50]. As the meshless methods utilise spatial 

discretisation in a form of a “cloud” of points/nodes, the burden 

associated with re-meshing required by finite element method is to 

large extend alleviated. Therefore, meshless discretisation has been 

proposed by several authors as a method of choice for modelling of 

continua undergoing crack propagation and fragmentation [8, 51-57]. 

 The specialised algorithm, created for the MTLED framework by 

Jin et al. [23] at the Intelligent Systems for Medicine Laboratory at 

The University of Western Australia, models the progressive surgical 

cutting by adding and/or splitting nodes on the cutting path using the 

visibility criterion. The visibility criterion prevents the nodes located 

on the opposites side of dissection/crack from interacting with each 

other (they are “invisible” to each other) [4, 58]. In the algorithm by 

Jin et al. [23], the surgical cut and injury-caused rupture/crack are 

geometrically represented using a series of line segments with the aid 

of the level set method [59, 60] to mathematically describe the 

location of all the nodes and integration points in relation to the 

cutting/rupture path (Figure 9). The effect of cutting/rupture induced 

discontinuity is entirely reflected in the changes of the shape and size 

of the nodal influence domains (Figure 10). 
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Figure 9 Specialised visibility for modelling dissection and rupture 

in the MTLED framework. The cutting/crack direction is represented 

as the zero level set of function 𝜓(𝑥, 𝑦) = @𝑥 − 𝑥½¾B ¿À‖𝐕‖ − @𝑦 −𝑦½¾B ¿Ã‖𝐕‖  , where (𝑥, 𝑦)  is the coordinate of a given point in the 

problem domain; @𝑥½¾, 𝑦½¾B is the coordinate of the end-point of the 

cutting/crack path; Vx and Vy are the components of vector V 

representing the cutting/crack direction; and ‖𝐕‖ is the length of 

vector V.  The end-point of the cut/crack is represented as the 

intersection of the zero level set of function 𝜓(𝑥, 𝑦)  with the 

orthogonal zero level set of function 𝜑(𝑥, 𝑦) = @𝑥 − 𝑥½¾B ¿Ã‖𝐕‖−@𝑦 − 𝑦½¾B ¿À‖𝐕‖.	The domain is divided into four subdomains according 

to the sign of level sets of functions 𝜓	and 𝜑. Division into these four 

subdomains is used to determine the position of a point and 

supporting node in relation to the cutting/crack line L. Adapted from 

Jin et al. [23]. 
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Figure 10 Specialised visibility criterion for modelling dissection and 

rupture in the Meshless Total Lagrangian Explicit Dynamics MTLED 

framework. The effect of cutting/rupture induced discontinuity is 

entirely reflected in the changes of the shape and size of the nodal 

influence domain. The influence domain of node N1 intersects the 

cutting/crack line L; points P1 and P2 are eliminated from the 

influence domain of this node. The influence domain of node N2 

passes through the cutting endpoint T only, so it does not need an 

update. Adapted from Jin et al. [23]. 

 

Quantitative evaluation through application in modelling of rupture-

causing elongation of the specimen of pia-arachnoid complex has 

confirmed the robustness and accuracy of the specialised visibility 

criterion for modelling dissection and rupture in MTLED framework 

[18] [23] (Figure 11). However, application in modelling of dissection 

of 3-D continua indicated challenges associated with high 

computational cost of the visibility criterion and level set method in 

3-D [61]. Therefore, we recommend visibility criterion only for 

modelling of dissection and rupture of thin tissue layers such as the 

brain meninges. To be best of our knowledge, despite ongoing 

research effort that includes application of the methods such as the 

phase-field approach [62], the problem of modelling of crack 

propagation in 3-D continuum subjected to large deformations and 
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exhibiting non-linear stress–strain relationship still awaits solution 

that can be regarded as accurate (in a sense of quantitatively accurate 

predictions of forces and deformations), robust, computationally 

efficient and suitable for application in surgery simulation where the 

users are unlikely to have expert knowledge of computational 

mechanics. Therefore, we offer no recommendation regarding the 

method of choice for 3-D computational biomechanics modelling of 

surgical dissection and rupture propagation.  

a) 

 

 

 

b) 

 

 

 

c) 
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Fig. 7 Results of application of our meshles

a) 
Figure 11 Quantitative evaluation of 

the performance of the Meshless Total 

Lagrange Explicit Dynamics 

(MTLED) framework with the 

specialised visibility criterion for 

modelling surgical cutting/dissection 

and soft tissue rupture. The results 

obtained when applying the MTLED 

framework to  model rupture-causing 

elongation of pia-arachnoid-complex 

tissue specimen are compared with the 

experimental data obtained by Jin et al. 

[2] at the Bioengineering Center, 

Wayne State University. The strain 

rate is 0.05 s-1.  a) The specimen 

deformation for the overall sample 

elongation of 42.5% of the initial 

length predicted using the MTLED 

framework. Dimensions are in mm; b) 

Photograph of the deformed tissue 

specimen. Adapted from Jin [11] 

(Bioengineering Center, Wayne State 

University). c) Comparison of the 

nominal stress-strain relationship 

predicted using the MTLED 

framework [18] with the experimental 

results reported in [2]. The figures and 

the photograph are adapted from  [11] 

and [18]. 
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5.  Stability of Explicit Dynamics Meshless Algorithms 

 For Computation of Soft Tissue Deformation 

Both the Meshless Total Lagrangian Explicit Dynamics (MTLED) 

framework discussed here and the Total Lagrangian Explicit 

Dynamics (TLED) finite element algorithm for neurosurgical 

simulation described in Chapter 10, use the central difference method 

for time stepping. This method is only conditionally stable. The 

critical time step ∆𝑡ÈÉ�Ê that ensures the computation stability can be 

determined from the maximum frequency of vibrations 𝜔�Ìo  (or the 

maximum eigenvalue 𝐴�Ìo) of a given system (as represented by the 

model) [63]: 

 ∆𝑡ÈÉ�Ê = 7ÎÏÐÃ = 7ÑÒÏÐÃ. (18) 

In Chapter 10, when discussing the TLED finite element algorithm, 

we stated that it can be demonstrated from Gerschgorin’s theorem 

[64, 65] that the maximum eigenvalue of an assembled finite element 

mesh is bounded by the maximum eigenvalue of any of the elements 

in the mesh. Consequently, for the TLED algorithm, we obtain the 

maximum eigenvalue of the analysed system 𝐴�Ìo 	by estimating the 

maximum eigenvalue of each element in the mesh 𝜆�Ìo½ . In Joldes et 

al. [66], we applied this reasoning to the MTLED framework by 

replacing the element eigenvalues with the eigenvalues 𝜆�ÌoÔ  for the 

integration points. This leads to the following conservative estimate 

of critical time step Δ𝑡ÈÉ�Ê for the MTLED framework [66]: 

 ∆𝑡ÈÉ�Ê = 7ÎÏÐÃ = 7ÑÒÏÐÃ ≈ 7×maxØ @ÙÏÐÃØ B = minÔ Ú 7×ÙÏÐÃØ Û	. (19) 

Following Bathe [67], the maximum eigenvalue 𝜆�ÌoÔ  for a given 

integration point I  can be estimated from the Rayleigh quotient as 

 𝜆�ÌoÔ = sup𝐮 𝒖Ý𝐊Ø𝐮𝐮Ý𝐌Ø𝐮, (20) 

where 𝐊Ô is the stiffness matrix for the integration point I, 𝐮 is the 

vector of nodal displacements for the nodes associated with the 
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integration point I, and 𝐌Ô is the mass matrix for the integration point I.  
 In both, the finite element TLED algorithm described in Chapter 

10 and in the MTLED framework discussed here, lumped mass 

matrices are used. Physical interpretation of such matrices is that the 

system mass is assigned entirely (lumped) to the nodes. In the 

MTLED framework, the mass allocated to the integration point I is 
distributed equally to all nodes within the support domain of that 

integration point [66]. Therefore, Eq. (20) can be rewritten as [66]: 

 𝜆�ÌoÔ = ßØ�Ø sup𝐮 𝐮Ý𝐊Ø𝐮𝐮Ý𝐮 = ßØ�Ø 𝜌�Ìo(𝐊Ô), (21) 

where  𝑁Ô  is the number of nodes in the support domain of the 

integration point I,  𝑚Ô is the mass allocated to the integration point I, 
and 𝜌�Ìo(𝐊Ô) is the maximum eigenvalue of the stiffness matrix 𝐊Ô 
for the integration point I.  
 The stiffness matrix is defined in terms of the strain–

displacement matrices 𝐁Ô  for a given integration point I, elasticity 

matrix C that contains the information about the constitutive 

properties, and volume 𝑉Ô allocated to the integration point I	[66, 68]: 

 𝐊�gåæÔ = 𝐁AgÔ (𝐱Ô)𝐂�Aèå𝐁åæÔ (𝐱Ô) ∙ 𝑉Ô, (22) 

where the subscripts indicate	 the tensor order, i.e. ijkl and iJlk 
indicate the fourth order tensor, jJ and lK – the second order tensor. 

For the homogenous materials with the constitutive properties defined 

using Lame constants (l and µ), the maximum eigenvalue of the 

stiffness matrix 𝜌�Ìo(𝐊Ô) for the integration point I can be estimated 

as [68]: 

 𝜌�Ìo(𝐊Ô) ≤ (l+ µ) ∙ 𝑉Ô ∙ ‖𝐁Ô‖ê7 , (23) 

where ‖𝐁Ô‖ê  is Frobenius norm ‖𝐁Ô‖ê7 = 𝐁AÔ𝐁AÔ .  Substituting Eq. 

(23) into Eq. (21) leads to the following formulae for the upper bounds 

of the maximum eigenvalues of the stiffness matrix for the integration 

point I [66]:  

 𝜆�ÌoÔ ≤ 𝑁Ô(𝑐Ô)7 ∙ 𝐁AÔÔ 𝐁AÔÔ ,  (24) 
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where c is the dilatational (acoustic) wave speed. By substituting Eq. 

(24) into Eq. (18), the critical time step Δ𝑡ÈÉ�Ê  for the MTLED 

framework can be conservatively estimated as: 

 Δ𝑡ÈÉ�Ê ≈ MinÔ Ú 7×ßØ(ÈØ)p∙𝐁ìØØ 𝐁ìØØ Û. (25) 

The formula for determining the bounds for maximum eigenvalue 𝜆�ÌoÔ  of the stiffness matrix given in Eq. (24) is valid also for the finite 

element method, as long as the same mass lumping scheme is used. 

Therefore, it applies also to the 8-noded hexahedral element with a 

single integration point we discussed in Chapter 10 as the element of 

choice for computational biomechanics of the brain.  

6. Algorithm Verification 

We follow the verification approach introduced in Chapter 10 where 

the results obtained by means of new algorithms of non-linear 

computational mechanics are compared with the solutions from the 

established algorithms. However, none of the existing weak-form 

meshless methods of computational mechanics has been recognised 

by the research community as a gold-standard yet. Therefore, 

following Chapter 10, also in this Chapter, we use the results obtained 

from the established algorithms implemented in commercial non-

linear finite element codes as a reference solution. 

 In the following sections we present verification results for some 

of the algorithms described in this Chapter: Meshless Total 

Lagrangian Explicit Dynamics (MTLED) framework, Modified 

Moving Least Square (MMLS) shape function for deformation 

interpolation, and specialised visibility criterion for modelling 

surgical dissection/tissues rupture.  
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6.1 Meshless Total Lagrangian Explicit Dynamics (MTLED) 

framework 

The Meshless Total Lagrangian Explicit Dynamics (MTLED) 

framework has been verified by comparing the results obtained using 

this framework with the established finite element code (ABAQUS 

implicit dynamics non-linear solver [35]) was used when modelling 

semi-confined uniaxial compression and shear of a cylinder made 

from a very soft (shear modulus of 1 kPa) hyperelastic (neo-Hookean) 

material. In the meshless discretisation of the cylinder almost 

arbitrary node placement and hexahedral integration cells non-

conforming to the geometry were used (Figure 12). 

 

Figure 12 Meshless model of a cylinder used in verification of the 

MTLED algorithm by Horton et al. [7]. The nodes are indicated as (.) 

and integration points as (+). Note almost arbitrary node placement. 

The integration points do not conform to geometry. The boundary 

conditions are shown in the right-hand-side figure: the nodes on the 

top boundary were constrained and the prescribed displacement was 

applied to the nodes on the bottom boundary. Adapted from Horton 

et al. [7]. 

 

 For 20% compression and shear of the cylinder, the difference in 

the total reaction force on the displaced cylinder surface between 

MTLED framework and ABAQUS implicit finite element solver [35] 

was no more than 5% (Figure 13a). The force—time histories 

obtained using the meshless framework were qualitatively similar to 
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those from the finite element method. The maximum relative 

difference in the computed deformations between the MTLED 

framework and ABAQUS was around 3.5% (it can be seen in Figure 

13b that some of the nodes in meshless discretisation do not sit exactly 

on the deformed finite element boundary). 
 

a)   b) 

 

 

Figure 13 Comparison of the results obtained when modelling 20% 

compression and shear of a cylinder using meshless (MTLED 

framework) and finite element (ABAQUS implicit solver [35]) 

discretisation. a) Reaction force – time histories; b) Contour of the 

deformed cylinder at time of 3 s. The displacement u was enforced 

over a period T=3 s using a 3-4-5 polynomial that ensures zero 

velocity and acceleration at time t=0 and time t=T [69]. The 

displacement magnitude was 0.02 m in z direction for compression 

and 0.02 m in x direction for shear. x and z directions are defined in 

Figure 12. Adapted from Horton et al. [7]. 

 

 The MTLED framework produces stable results even for very 

large deformations as indicated by the energy – time histories 

obtained when modelling the cylinder compressed to 20% of it’s 

original height (nominal compressive strain of 0.8) (Figure 14). For 
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such large compression no verification against the ABAQUS finite 

solver could be done as the finite element solution became unstable. 

This is also demonstrated by recent results obtained when comparing 

the performance of the MTLED framework with the non-linear finite 

procedures available in ABAQUS solver in modelling of indentation 

of cylindrical samples made from soft incompressible material 

(Sylgard 527 silicone gel by Dow Corning) with properties similar to 

the brain tissue (Figure 15a) [70]. The MTLED framework facilitates 

the solution for the indentation depth of 59% of the sample initial 

height while the finite element procedures become unstable (the 

solution “fails”) for the indentation depth of only 24% of the sample 

initial height (Figure 15b and 15c). 

 

 
 

Figure 14 MTLED algorithm. External work and strain energy when 

compressing a cylinder to 20% of its original height (and returning to 

the initial state). The displacement was enforced using a 3-4-5 

polynomial [69]. Adapted from Horton et al. [7]. 
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a) 

 
b)  c) 

  

 

Figure 15 Verification of the MTLED algorithm through modelling 

of indentation of cylindrical samples made from soft incompressible 

material (Sylgard 527 silicone gel by Dow Corning) with properties 

similar to the brain tissue. a) Experimental set-up. b) Overall 

deformation of the meshless model for the indentation depth of 10 

mm (the displacement scale in the figure is in meters). The 

interpolating nodes were connected to form the triangles to visualise 

the deformed model surface. c) Comparison of the force – indentation 

depth relationship obtained using the MTLED framework (green 

dotted line), non-linear finite element procedures available in 

ABAQUS finite element (FE) code (blue dotted line), and the 

experimental data (black solid line) — average from three 

experiments. Using ABAQUS finite element code [35] we were able 

to obtain the results for the indentation depth of up to only 4 mm after 

which the solution diverged. For the indentation depth of up to 4 mm, 

the results obtained using the MTLED framework and ABAQUS 

code are very close and cannot be visually distinguished. Adapted 

from Wittek et al. [70]. 

 

 

a)                                             b) 

Experiments 

MTLED 

FE (ABAQUS) 

Indentation Depth [m] 
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6.2 Modified Moving Least Square (MMLS) shape functions for 

computing soft tissue deformation 

 

We verified the performance of the MTLED framework with 

Modified Moving Least Square (MMLS) shape functions trough 

application in modelling of an extension of a 2-D rectangular 

specimen (dimensions 10 cm ´ 4 cm) (Figure 16) [30]. The results 

obtained using the MTLED framework were compared with well-

established non-linear finite element code (ABAQUS static non-

linear solver [35] with default configuration was used). Detailed 

description is provided in Joldes et al. [30]. The rectangular specimen 

was discretised using 57 nodes. To ensure the integration accuracy, a 

dense regular background integration grid was used. It consisted of 

4000 rectangular integration cells with a single integration (Gauss) 

point per cell. The nodes on the left-hand-side edge of the specimen 

were rigidly constrained while the displacement of 3 cm (30% of the 

initial specimen length) was applied to the nodes on the right-hand-

side edge (Figure 16a). In the finite element model implemented using 

the ABAQUS code, the spatial discretisation was done using 57 nodes 

and 84 four-noded rectangular elements. 

 As reported in Joldes et al. [30], the results indicate a very good 

agreement between the results obtain using the MTLED framework 

with  MMLS shape functions and ABAQUS static non-linear finite 

element solver — the maximum difference in the computed 

deformations was under 0.5 mm (Figure 16b). They also show 

appreciable accuracy improvement in comparison to the traditionally 

used Moving Least Square (MLS) shape functions. However, it 

should be noted that as the resolution of intraoperative (acquired 

during surgery) Magnetic Resonance Images (MRIs) and accuracy of 

state-of-the-art neurosurgery techniques is not better than 1 mm [71], 

even the accuracy achieved using MLS can be confidently regarded 

as sufficient for application in image-guided neurosurgery. 
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a) 

 
b) 

 
Figure 16 Verification of the Modified Moving Least Square 

(MMLS) shape functions implemented in the MTLED framework 

through application in modelling of elongation of a rectangular 

specimen with the constitutive properties consistent with the brain 

tissue. a) Geometry and boundary conditions for the model. b) 

Differences in the computed deformations between the MTLED 

framework with MMLS shape functions and ABAQUS static non-

linear finite element solver. Adapted from Joldes et al. [30].  
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6.3  Visibility criterion for modelling of surgical dissection and soft 

tissue rupture  

Verification of visibility criterion for modelling of surgical dissection 

and soft tissue rupture was conducted through application in 

simulation of dissection of a rectangular (dimensions 100 mm ´ 100 

mm) specimen of soft hyperelastic material undergoing elongation of 

20% of the initial length (Figure 17). We used the neo-Hookean 

hyperelastic constitutive model [72], with the parameters (Young’s 

modulus of	𝐸 = 3000	Pa	, Poisson’s ratio of 𝜈 = 0.49, mass density 

of 𝜌 = 1000kg/m| ) consistent with the brain tissue constitutive 

properties.  

 
Figure 17 Geometry for the model for verification of visibility 

criterion implemented in the Meshless Total Lagrangian Explicit 

Dynamics (MTLED) framework for modelling of surgical dissection 

and soft tissue rupture. The verification was conducted through 

application in simulation of dissection of a rectangular specimen of 

soft incompressible material with the brain tissue constitutive 

properties undergoing elongation of 20% of the initial length. 

Adapted from Jin et al. [23]. 
 

 

 As discussed in Chapter 10, simulation of surgical dissection 

using the finite element method is associated with a number of 

formidable challenges/difficulties. They include deterioration of the 
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solution accuracy when the elements forming the mesh become 

distorted under large deformations and the need for re-meshing to 

introduce a crack/discontinuity due to dissection/rupture and as a 

mesh distortion countermeasure. Therefore, when obtaining the 

reference solution for verification of the MTLED framework with the 

visibility criterion using the established non-linear procedures 

available in the ABAQUS finite element code [35], surgical 

dissection could not be directly modelled. Instead, the elongation was 

applied to the finite element model of a specimen of soft hyperelastic 

material (with the brain tissue properties) with a pre-defined 

dissection/cut. The edges of the elements were aligned and separated 

along the dissection (Figure 18). The analysis using the ABAQUS 

finite element code was conducted for implicit integration in time 

domain with the default parameters and linear (i.e. with linear shape 

functions) quadrilateral plain strain elements with hybrid formulation 

to prevent volumetric locking. It was confirmed through H-

refinement (mesh density increase) that the finite element 

discretisation (using 7183 nodes) used in this analysis provides a 

converged solution. The meshless model implemented using the 

MTLED framework consisted of 6151 nodes (the discretisation 

density was confirmed using convergence analysis) (Figure 19). 

 As the distribution and position of nodes in the meshless model 

implemented using the MTLED framework and finite element model 

implemented using the ABAQUS code were different, the nodal 

displacements obtained using the MTLED framework were re-

calculated (through interpolation using the MLS shape functions) for 

the nodal positions of the model implemented using the ABAQUS 

code to enable verification of the predicted deformations. 

 



16/10/18              31 

 
Figure 18 The initial configuration of the finite element model with 

a pre-defined dissection/cut implemented using ABAQUS non-linear 

finite element code. The results obtained using this model were used 

a reference when verifying the Meshless Total Lagrangian (MTLED) 

framework with visibility criterion for modelling of surgical 

dissection/soft tissue rupture. Dimensions are in millimetres (mm). 

Adapted from Jin et al. [23]. 

 

 
Figure 19 Meshless model for verification of the Meshless Total 

Lagrangian Explicit Dynamics (MTLED) framework with visibility 

criterion for modelling of surgical dissection and tissue rupture. 

Spatial discretisation was done using 6151 nodes. In this model, the 

dissection was carried out in the stretched specimen of brain tissue-

like material along the pre-defined path indicated using thick line 

segments. Dimensions are in millimetres (mm). Adapted from Jin et 

al. [23]. 
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 The verification results indicate a very good agreement between 

the internal forces and deformations predicted using the MTLED 

framework with visibility criterion and the reference finite element 

solution obtained using ABAQUS non-linear code (a static procedure 

was used) (Figure 20). The relative differences for the reaction force 

are only of 0.5%. The maximum absolute difference in the predicted 

deformations is 0.5 mm (2.56% of the imposed elongation) and the 

average difference (averaging over all model nodes) is only 0.03 mm 

(0.15% of the imposed elongation). Therefore, considering that the 

accuracy of state-of-art neurosurgery techniques is not better than 1 

mm [71], Meshless Total Lagrangian Explicit Dynamics (MTLED) 

framework with visibility criterion for surgical dissection modelling 

can be regarded as satisfying the accuracy requirements of computer-

integrated surgery. 

 

Figure 20 Results of verification of Meshless Total Lagrangian 

Explicit Dynamics (MTLED) framework with visibility criterion for 

modelling of surgical dissection and tissue rupture: deformed 

meshless model implemented using the MTLED framework with the 

dissection modelled using visibility criterion. The figure shows the 

absolute difference between the deformation magnitudes computed 

using the MTLED framework and the reference results from the 

established non-linear static solution procedures available in the 

ABAQUS finite element code. The dimensions and deformations are 

in mm. Adapted from Jin et al. [23]. 
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7. Conclusions 

The field of surgery simulation is dominated by finite element 

analysis. However, time consuming generation of patient-specific 

finite element meshes (computational grids) and deterioration of the 

solution accuracy when the elements undergo distortion induced by 

large deformations due to surgery remain a formidable challenge that 

prevents computational biomechanics to become a part of surgical 

training and planning workflow [1]. For more than 10 years, we have 

advocated meshless methods of computational mechanics, in which 

the computational grid has the form of a “cloud” of points, as one 

possible solution to overcome this challenge [1, 7, 27, 31, 32].  Based 

on our experience with both strong (Smoothed Particle 

Hydrodynamics SPH and finite difference–collocation method) [16, 

19] and weak [1, 7, 27, 31, 32] formulations of meshless methods of 

computational mechanics, for computational biomechanics of the 

brain, we recommend the weak formulation with background cells for 

spatial integration [7, 24]. We have used such integration in the 

Meshless Total Lagrangian Explicit Dynamics MTLED framework 

described in this Chapter [7]. The MTLED framework retains all the 

advantages associated with the explicit stepping in time domain as 

discussed in Chapter 10 in the context of finite element method. They 

include: no need for iterations even for non-linear problems, no need 

to solve a system of equations, very modest internal memory 

requirements, and suitability for parallel processing implementation. 

 We view meshless methods of computational mechanics not only 

as algorithms for computing the responses of soft tissues and body 

organs undergoing large deformations and fragmentation (due to 

surgical dissection and injury) but primarily as a framework that 

would enable an analyst (medical professional) who is not an expert 

in computational mechanics to create patient-specific computational 

biomechanics models of the brain and apply them in surgery 

simulation with a guarantee of numerical accuracy of the results. 

Modified Moving Least Square (MMLS) shape functions [30] and 

adaptive integration introduced [24] in the Meshless Total Lagrangian 

Explicit Dynamics framework are steps in this direction. They ensure 

accuracy and robustness of solution of the equations of continuum 

mechanics for irregular/non-homogenous nodal distributions that 
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facilitate automated discretisation of the complex geometry of the 

brain and creation of computational grids directly from neuroimages 

[33].  Defining solution tolerance is the only input they require from 

the user. 

 The visibility criterion [18, 23] discussed and recommended in 

this Chapter in the context of simulation of surgical dissection and 

injury-related tissue rupture leads to high computational cost when 

applied to three-dimensional dissection/rupture propagation [61]. 

Therefore, development of meshless algorithms that facilitate 

efficient and robust modelling of surgical dissection and injury-

related rupture of soft tissues provides the next challenge in surgery 

and injury simulation. 
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