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Figure 1: The presented technique is stable under all circumstances and allows to simulate hundreds of deformable objects in real-time.

Abstract

We present a new approach for simulating deformable objects. The
underlying model is geometrically motivated. It handles point-
based objects and does not need connectivity information. The ap-
proach does not require any pre-processing, is simple to compute,
and provides unconditionally stable dynamic simulations.

The main idea of our deformable model is to replace energies by
geometric constraints and forces by distances of current positions
to goal positions. These goal positions are determined via a gener-
alized shape matching of an undeformed rest state with the current
deformed state of the point cloud. Since points are always drawn to-
wards well-defined locations, the overshooting problem of explicit
integration schemes is eliminated. The versatility of the approach
in terms of object representations that can be handled, the efficiency
in terms of memory and computational complexity, and the uncon-
ditional stability of the dynamic simulation make the approach par-
ticularly interesting for games.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically Based Modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual Reality

Keywords: deformable modeling, geometric deformation, shape
matching, real-time simulation

1 Introduction

Since Terzopoulos’ pioneering work on simulating deformable ob-
jects in the context of computer graphics [Terzopoulos et al. 1987],

many deformable models have been proposed. In general, these
approaches focus on an accurate material representation, on stabil-
ity aspects of the dynamic simulation and on versatility in terms of
advanced object characteristics that can be handled, e. g. plastic
deformation or fracturing.

Despite the long history of deformable modeling in computer
graphics, research results have rarely been applied in computer
games. Nowadays, deformable cloth models with simple geome-
tries can be found in a few games, but in general, games are
dominated by rigid bodies. Although rigid bodies can be linked
with joints to represent articulated structures, there exist no practi-
cal solution which allows to simulate elastically deformable three-
dimensional objects in a stable and efficient way. There are several
reasons that prevent current deformable models from being used in
interactive applications.

Efficiency. Existing deformable models based on complex mater-
ial laws in conjunction with stable, implicit integration schemes are
computationally expensive. Such approaches do not allow for in-
teractive simulations of objects with a reasonable geometrical com-
plexity. Further, these approaches might require a specific object
representation and the algorithms can be hard to implement and de-
bug. In contrast, interactive applications such as games constitute
hard constraints on the computational efficiency of a deformable
modeling approach. The approach is only allowed to use a small
fraction of the available computing resources. Further, specific vol-
umetric representations of deformable objects are often not avail-
able since the geometries are typically represented by surfaces only.

Stability. In interactive applications, the simulation of deformable
objects needs to remain stable under all circumstances. While so-
phisticated approaches allow for stable numerical integration of ve-
locities and positions, additional error sources such as degenerated
geometries, physically incorrect states, or problematic situations
with large object interpenetrations are not addressed by many ap-
proaches. A first contribution to this research area has been pre-
sented in [Irving et al. 2004], where large deformations and the
inversion of elements in FE approaches can be handled in a robust
way. However, this approach is not intended to be used in interac-
tive applications.



Controllability. Physically-based deformable models are intended
to simulate the dynamic object behavior as realistically as possi-
ble. However, in games or entertainment technologies, the sim-
ulation, i. e. the magnitude and shape of a deformation need to
be controllable by the developer, tolerating a degradation of real-
ism as long as the result looks realistic. An early discussion of
physically-plausible simulations compared to accurate approaches
can be found in [Barzel et al. 1996] and [Barzel 1997].

Many available techniques for simulating deformable objects fail
with respect to one or more of these aspects. To overcome the
existing restrictions we propose a technique which addresses the
aforementioned problems and contributes towards stable, interac-
tive, and versatile deformable modeling. In particular, the contribu-
tions of our deformable modeling approach are:

• Elasticity is modeled by pulling a deformed geometry towards
a well-defined goal configuration which is determined by an
extended shape matching technique.

• The degree of representable deformation details can be varied
using linear and quadratic deformation modes. Subdivisions
into clusters introduce further degrees of freedom.

• A large variety of objects can be handled. Geometric defor-
mations are just computed for points and connectivity infor-
mation or specific representations are not required.

• Our technique does not require any pre-processing or large
accompanying data structures. The configuration of parame-
ters is simple and intuitive. Thus, the technique is as simple
as ”plug and simulate” in terms of object handling.

• The dynamic simulation is stable under all circumstances and
for all deformed geometry configurations. The approach is not
exposed to problems such as ill-shaped or inverted elements.
Even non-manifold meshes with arbitrarily shaped triangles
can be handled.

• All components of the approach are simple to implement and
very efficient in terms of memory requirements and run-time
performance.

2 Related Work

Many methods and models have been proposed in computer graph-
ics to simulate deformable objects ranging from finite difference
approaches [Terzopoulos et al. 1987], mass-spring systems [Baraff
and Witkin 1998], [Desbrun et al. 1999], the Boundary Element
Method (BEM) [James and Pai 1999], the Finite Element Method
(FEM) [Debunne et al. 2001], [Müller et al. 2002], [Müller and
Gross 2004], the Finite Volume Method (FVM) [Teran et al. 2003]
to implicit surfaces [Desbrun and Cani 1995] and mesh-free par-
ticle systems [Desbrun and Cani 1996], [Tonnesen 1998], [Müller
et al. 2004].

In addition to approaches which mainly focus on the accurate simu-
lation of elasto-mechanical properties, there exist several accelera-
tion strategies. Robust integration schemes for large time steps have
been investigated [Baraff and Witkin 1998] and multi-resolution
models have been proposed [Debunne et al. 2001], [Capell et al.
2002], [Grinspun et al. 2002]. To further improve the performance,
modal analysis approaches have been employed which can trade
accuracy for efficiency [Pentland and Williams 1989], [Shen et al.
2002], [James and Pai 2002]. Further, data-driven methods have
been presented where the pre-computed state space dynamics and
pre-computed impulse response functions are incorporated to im-
prove the run-time performance [James and Pai 1999]. In [Metaxas

and Terzopoulos 1992], dynamic models have been derived from
global geometric deformations of solid primitives such as spheres,
cylinders, cones, or superquadrics.

Our approach uses deformation modes which are related to modal
analysis approaches [Pentland and Williams 1989], [Hauser et al.
2003], [James and Pai 2004]. However, we do not approximate
the deformation modes from elasto-mechanical object properties
which commonly requires the incorporation of additional auxiliary
object representations, such as tetrahedral meshes [James and Pai
2002]. Instead, our deformation modes are geometrically motivated
which significantly simplifies the pre-processing stage. Although
the model is not physically motivated, we show that the approach
has similar capabilities in representing deformations compared to
existing modal analysis models. In contrast to existing models,
no additional data structures for computing the deformation modes,
no expensive modal decompositions, and no explicit representation
and storage of modal vectors are required in our technique. Thus,
our approach is efficient in terms of computational complexity and
memory.

Our approach draws from previous work in the field of shape
matching [Shoemake and Duff 1992], [Alexa et al. 2000], [Kent
et al. 1992]. While standard shape matching approaches are pri-
marily concerned with establishing the correct correspondences
between two shape representations [Faugeras and Hebert 1983],
[Horn 1987], [Besl and McKay 1992], [Kazhdan et al. 2004], all
correspondences are a priori known in our case. The remaining
problem is that of finding least squares optimal rigid transforma-
tions in 3D between the two point clouds with a priori known corre-
spondences [Kanatani 1994], [Umeyama 1991] and [Lorusso et al.
1995]. In contrast to finding optimal rigid transformations, we ex-
tend these methods to compute optimal linear and quadratic trans-
formations.

3 Meshless Animation

Newton’s second law of motion is the common basis for many
physically-based simulation techniques including rigid body simu-
lation, deformable modeling, and fluid simulation. Deviations from
an equilibrium cause forces which accelerate the material back to an
equilibrium configuration. In order to compute object locations, the
accelerations and velocities are numerically integrated over time.

Stability and efficiency are major issues in numerical integration.
Implicit integration schemes guarantee stability independent of the
chosen time step. However, they require the solution of a system of
equations which is computationally expensive and potentially in-
terferes with the constraints of interactive applications. In contrast,
explicit integration schemes are much faster to compute. Unfor-
tunately, this advantage comes with the loss of unconditional sta-
bility. A prominent example is the explicit Euler scheme which is
unconditionally unstable if applied to linear undamped mass-spring
systems [Eberly 2003].

In this section, we illustrate instability aspects of explicit integra-
tion schemes and we show how to obtain unconditional stability
using a purely geometric scheme. We point out, how the proposed
geometric scheme combines computational efficiency and uncondi-
tional stability which makes the approach especially appropriate for
interactive deformable modeling applications. Although there exist
many different explicit integration schemes, they all have the afore-
mentioned stability problem in common. Therefore, we exemplify
stability aspects using a modified Euler method from which we de-
rive our unconditionally stable geometric scheme.



3.1 Explicit Numerical Integration

We consider a linear undamped mass-spring system to illustrate the
instability of explicit methods. Fig. 2 shows a linear spring with
resting length l0 and spring constant k. The spring connects two
points. One point is fixed at the origin while the other point with
mass m is free and located at x(t). The free point is pulled towards
the equilibrium x(t) = l0 by the force f = −k(x(t)− l0).
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Figure 2: A linear spring integrated with the explicit scheme as
shown in Eq. (1). If the time step is too large, internal forces erro-
neously increase the energy of the system.

With the modified Euler integration scheme

v(t +h) = v(t)+h
−k(x(t)− l0)

m

x(t +h) = x(t)+hv(t +h), (1)

the point velocity v is integrated with an explicit Euler step while
the point position x is integrated with an implicit Euler step using
the predicted velocity. Considering the state vector [v x]T , Eq. (1)
results in the system matrix

A =

[

1 − kh
m

h 1− h2k
m

]

(2)

with eigenvalues

e0 = 1− 1

2m
(h2k−

√

−4mh2k +h4k2) (3)

and

e1 = 1− 1

2m
(h2k +

√

−4mh2k +h4k2) (4)

Since A represents a discrete system, the spectral radius of A , i. e.
the maximum magnitude of the eigenvalues e0 and e1, must not be
larger than one to ensure stability of the system. The magnitude of
eigenvalue e0 converges to 1 with |e0| < 1 for h2k → ∞. However,
it can be easily shown that the magnitude of e1 is only smaller than
one if h is smaller than 2

√

m
k . If a larger time step h is chosen the

system is unstable. Thus, the integration scheme is only condition-
ally stable.

To further exemplify the instability of the system, we perform one
integration step assuming v(t) = 0. The step moves the free point

by a distance ∆x = − h2k
m (x(t)− l0). If either the time step h or

the stiffness k are too large or the mass m is too small, the point
not only overshoots the equilibrium position at l0 but is moved to a
position where the spring deformation |x(t)− l0| is larger than in the
previous time step (see Fig. 2 bottom). The potential energy of the
system has increased. Since we started with zero kinetic energy, the

overall energy has erroneously increased. In subsequent steps the
problem gets worse because the restoring force will be even larger
than in earlier time steps.

In general, the stability problem of explicit integration schemes can
be stated as follows: Elastic forces are the negative gradients of
the elastic energy. As such, they always point towards an equilib-
rium configuration. However, explicit schemes scale these forces
blindly to compute displacements of points. Therefore, displace-
ments can overshoot the equilibrium by an amount which increases
the deformation and the energy of the system instead of preserving
or decreasing it which is required for stability.

One way to solve this problem would be to clamp the displacements
such that points do not overshoot the equilibrium or goal position.
In the simple one-dimensional spring example, the goal position
of the moving point is simply x(t) = l0. Unfortunately, in more
general cases such as solid finite elements or geometrically complex
meshes, goal positions of individual points cannot be defined easily.
Our new approach solves this problem.

3.2 The Algorithm
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Figure 3: First, the original shape x0
i is matched to the deformed

shape xi. Then, the deformed points xi are pulled towards the
matched shape gi.

The basic idea behind our geometric algorithm is simple. All we
need as input is a set of particles with masses mi and an initial con-
figuration (i. e. the initial positions x0

i of the particles). No connec-
tivity information or mesh is needed. The particles are simulated as
a simple particle system without particle-particle interactions, but
including response to collisions with the environment and including
external forces such as gravity. After each time step, each particle is
pulled towards its goal position gi. To compute the individual goal
positions, we match the original configuration (or shape) defined
by the x0

i with the actual configuration defined by the actual posi-
tions of the particles xi (see Fig. 3). The next two sections describe
the shape matching process and how points are pulled towards goal
positions.

3.3 Shape Matching

In our approach, the shape matching problem with a priori known
correspondences can be stated as follows: Given two sets of points
x0

i and xi. Find the rotation matrix R and the translation vectors t
and t0 which minimize

∑
i

wi(R(x0
i − t0)+ t−xi)

2, (5)

where the wi are weights of individual points. In our case, the nat-
ural choice for the weights is wi = mi. The optimal translation vec-
tors turn out to be the center of mass of the initial shape and the
center of mass of the actual shape, i. e.

t0 = x0
cm =

∑i mix
0
i

∑i mi
, t = xcm =

∑i mixi

∑i mi
, (6)



Figure 4: The basic shape matching algorithm is well suited for nearly rigid objects (third cube). The linear and quadratic extensions (middle
and first cube) allow large deviations form the rest shape.

which is physically plausible. Finding the optimal rotation is
slightly more involved. Let us define the relative locations qi =
x0

i − x0
cm and pi = xi − xcm of points with respect to their center

of mass and let us relax the problem of finding the optimal rota-
tion matrix R to finding the optimal linear transformation A. Now,
the term to be minimized is ∑i mi(Aqi −pi)

2. Setting the deriva-
tives with respect to all coefficients of A to zero yields the optimal
transformation

A = (∑
i

mipiq
T
i )(∑

i

miqiq
T
i )−1 = ApqAqq. (7)

The second term Aqq is a symmetric matrix and, thus, contains only
scaling but no rotation. Therefore, the optimal rotation R is the
rotational part of Apq which can be found via a polar decomposi-

tion Apq = RS, where the symmetric part is S =
√

AT
pqApq and the

rotational part is R = ApqS−1. Finally, the goal positions can be
computed as

gi = R(x0
i −x0

cm)+xcm. (8)

3.4 Integration

The knowledge of the goal positions gi can now be used to construct
an integration scheme which does not overshoot:

vi(t +h) = vi(t)+α
gi(t)−xi(t)

h
+h fext(t)/mi (9)

xi(t +h) = xi(t)+hvi(t +h), (10)

where α = [0 . . .1] is a parameter which simulates stiffness. The
only difference to the modified Euler scheme in Eq. (1) is the way
the internal elastic forces are treated. For α = 1, the term (gi(t)−
xi(t))/h is added to the velocity and, thus, gi(t)−xi(t) is added to
the position in the second line moving the point directly to the goal
position, or towards the goal position for α < 1.

For the one-dimensional spring example shown in Fig. 2, this itera-
tive scheme yields the following update rule:

[

v(t +h)
x(t +h)

]

=

[

1 −α/h
h 1−α

][

v(t)
x(t)

]

+

[

α l0/h
α l0

]

(11)

The first term on the right hand side is the system matrix. Its eigen-

values are (1−α/2)± i
√

4α −α2/2. The magnitude of both eigen-
values is 1, independent of α and the time step h. This shows that
the scheme is unconditionally stable and does not introduce damp-
ing. This is also true for the general 3D case without external forces.
As long as the external forces are independent of the locations of
the points (such as gravitational forces) or applied only instanta-
neous (such as collision response forces), the system matrix does
not change and the system remains stable.

3.5 Discussion

The described algorithm can be implemented efficiently. Both, the
center of mass of the initial configuration x0

cm as well as all qi can be

pre-computed. At each time step, the 3×3 matrix Apq = ∑i mipiq
T
i

has to be assembled. To evaluate (
√

AT
pqApq)

−1, we diagonalize

the symmetric matrix AT
pqApq using 5-10 Jacobi rotations, the com-

plexity of which is constant, i. e. independent of the number of
points. In contrast to most methods for simulating deformable ob-
jects, the approach described so far is well-suited for stiff or almost
rigid objects. In this basic form, it is less suited for objects under-
going large deformations, a limitation that is eliminated in Sections
4.2 and 4.3.

The fact that the shapes are matched using their centers of mass
ensures that all impulses applied in Eq. (9) sum up to zero and con-
serve linear momentum. By using the mi as the weights in shape
matching and the computation of Apq conservation or angular mo-
mentum is enforced as well.

A problem with the velocity update in Eq. (9) is that the behavior of
the system depends on the time step, i. e. the velocity update is the
same for varying time steps. This problem can be solved by setting
α = h/τ , where τ ≤ h is a time constant.

4 Extensions

4.1 Rigid Body Dynamics

The method can be used to imitate a rigid body simulator by setting
α = 1. In this case, the points are moved to the goal positions gi

exactly at each time step. These positions represent a rotated and
translated version of the initial shape. Given an arbitrary surface
mesh, only a small subset of the vertices need to be animated as
particles. The remaining vertices can be transformed at each time
step using the computed transformation given by R and t. The same
holds for the methods described in the subsequent sections.

4.2 Linear Deformations

As mentioned before, the method described so far can only sim-
ulate small deviations from the rigid shape. To extend the range
of motion, we use the linear transformation matrix A computed in
Eq. (7). This matrix describes the best linear transformation of the
initial shape to match the actual shape in the least squares sense.
Instead of using R in Eq. (8) to compute the gi, we use the combi-
nation βA+(1−β )R, where β is an additional control parameter.
This way, the goal shape is allowed to undergo a linear transfor-
mation. The presence of R in the sum ensures that there is still a



Figure 5: Visualization of all 3×9 modes defined by the coefficients of Ã = [A Q M] defined in Eq. (12).

tendency towards the undeformed shape. To make sure that volume

is conserved, we divide A by 3
√

det(A) ensuring that det(A) = 1.
For the standard approach we only need to compute Apq. Here, we

also need the matrix Aqq = (∑i miqiq
T
i )−1. Fortunately, this sym-

metric 3×3 matrix can be pre-computed.

4.3 Quadratic Deformations

Linear transformations can only represent shear and stretch. To
extend the range of motion by twist and bending modes, we move
from linear to quadratic transformations (see Fig. 4). We define a
quadratic transformation as follows:

gi = [A Q M]q̃i, (12)

where gi ∈ R
3, q̃ = [qx,qy,qz, q2

x ,q
2
y ,q

2
z , qxqy,qyqz,qzqx]

T ∈ R
9,

A ∈ R
3×3 contains the coefficients for the linear terms, Q ∈ R

3×3

the coefficients for the purely quadratic terms and M∈R
3×3 the co-

efficients for the mixed terms. With Ã = [A Q M] ∈ R
3×9 we now

have to minimize ∑i mi(Ãq̃i−pi)
2. The optimal quadratic transfor-

mation turns out to be

Ã = (∑
i

mipiq̃
T
i )(∑

i

miq̃iq̃
T
i )−1 = ÃpqÃqq. (13)

Again, the symmetric Ãqq ∈ R
9×9 as well as the q̃i can be pre-

computed. Analogous to the linear case, we use β Ã+(1−β )R̃ to

compute the goal shape, where R̃ ∈R
3×9 = [R 0 0]. The algorithm

based on quadratic deformations is a computationally cheap imita-
tion of methods using modal analysis. The linear shear and stretch
modes and the additional bend and twist modes are shown in Fig. 5.

4.4 Cluster Based Deformation

To extend the range of motion even further, the set of particles
can be divided into overlapping clusters. One way of doing this
would be to use a volumetric mesh and interpret the vertices as par-
ticles and groups of vertices that are adjacent to the same element
(e. g. tetrahedron) as a cluster. To generate the results in this paper,
we used an alternative method. We regularly subdivide the space
around a given surface mesh into overlapping cubical regions. For
each region, we generate one cluster with all the vertices contained
in this region.

At each integration step, the original shape of each cluster is
matched with its actual shape. Then each cluster adds the term

∆vi = α
gc

i (t)−xi(t)

h
(14)

to all the particle it contains, where gc
i (t) is the goal position of

particle i with respect to cluster c.

4.5 Plasticity

Figure 6: A cube defined by 8 clusters undergoes plastic deforma-
tions.

The algorithm for linear deformations described in Section 4.2 can
easily be extended to simulate plasticity. In Section 3.3, we ex-
tracted the rotational part R of the linear transformation A using po-
lar decomposition. Therefore, A = RS, where the matrix S = RTA
represents pure deformation. Because S is post-multiplied with R,
it represents a deformation in the initial, unrotated reference frame.
Each cluster stores a plastic deformation state matrix Sp. This state
matrix is initialized with the identity matrix I. At each time step, if
the actual deformation ||S− I||2 exceeds a threshold cyield, the state
matrix is updated as

Sp ← [I+hccreep(S− I)]Sp, (15)

where h is the time step and cyield and ccreep are parameters to con-
trol the plasticity [O’Brien et al. 2002]. The plasticity can be bound
by testing whether ||Sp−I||2 exceeds a threshold cmax. If this is the
case, the plastic deformation is set to I + cmax(S

p − I)/||Sp − I||2.
To make sure that volume is conserved by plasticity, we divide Sp

by 3
√

det(Sp) after it has been updated. Finally, the plastic state

Sp is incorporated by replacing the definition of qi = x0
i − x0

cm in
Eq. (7) with

qi = Sp(x0
i −x0

cm), (16)

thereby deforming the original shape. Note that each time Sp is
updated, Aqq respectively Ãqq have to be updated too. Fig. 6 shows
two different rest states after plastic deformation. To increase the
level of detail, the cube is subdivided into 8 clusters.



5 Results

We have integrated our method into a game-like simulation envi-
ronment for deformable objects and various experiments have been
carried out to analyze the characteristics and the performance of the
proposed method. All test scenarios presented in this section have
been performed on a PC Pentium 4, 3.2 GHz.

Figure 7: The flexibility of the object is influenced by the number
of clusters. In this example, one, two, and five clusters are used
from left to right, respectively.

Cluster based deformation. In Fig. 7, three quadratically de-
forming sticks with 60 points, but different numbers of clusters are
shown. From left to right, the sticks are subdivided into one, two,
and five clusters. In each figure, a spring forces is applied to the
same surface point and originating from the same location in space.
The experiment shows, that with an increasing number of clusters,
the deformation gets more detailed and the physical plausibility is
improved. In general, the number of clusters is user defined. For
simple, sphere-like objects, one cluster might me sufficient while
for more complex geometries a subdivision might be necessary.
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Figure 8: Time complexity of the presented methods in millisec-
onds per frame versus the number of points being simulated.

Performance. The performance of our approach depends on the
number of points that are used for the shape matching and on the
number of clusters. In order to illustrate the scaling of the per-
formance with respect to these two criterions, we have performed
the following experiment. A number of points are placed at arbi-
trary positions and corresponding arbitrarily placed goal positions
are defined, resulting in a random initial displacement for each
point. Based on this scenario, measurements have been performed
with varying numbers of points and clusters employing linear and
quadratic deformation models. Note, that the computational com-
plexity of the rigid body case is equal to the linear deformation
model. Fig. 8 illustrates the results. It can be seen, that the perfor-
mance scales linearly with the number of points. Further, a larger

number of clusters requires more polar decompositions which re-
duces the performance. Also, the computation of the quadratic de-
formation model is more involved compared to the linear model.
Still, 100 objects each containing 100 simulated points subdivided
into 8 clusters can be animated with the quadratic approach at 50
frames per second.

It is difficult to compare our approach to the Finite Element Method
or mass-spring models in terms of performance. As Fig. 8 shows,
our technique depends on the deformation modes and the number
of clusters chosen with no analogy in FEM or mass-spring systems.

Complex simulation scenarios. Fig. 9 depicts a scene of 384 ob-
jects, 2,448 clusters and 55,200 points. The quadratic shape match-
ing in this case takes between 0.008 and 0.096 milliseconds per
frame and object depending on object complexity. In the teaser se-
quence Fig. 1 145 objects, 1,728 clusters and 24,618 points are
animated. The quadratic shape matching takes 0.12 milliseconds
per frame and object.

Interactivity. Fig. 10 illustrates objects whose geometrical com-
plexity can be considered typical for games: a head consisting of 8
clusters and 66 points, and some spheres consisting of 1 cluster and
13 points. To improve the visual impression, the objects are com-
bined with surface meshes, consisting of 6,460 and 2,000 faces,
respectively. This environment can be handled at interactive frame
rates including user interaction with draggers, collision handling,
and visualization.

Stability. Fig. 11 demonstrates the fact that our approach can han-
dle degenerated geometries. In combination with the unconditional
stability of the numerical integration scheme, this allows for stable
animations independent of any user interaction.

6 Conclusions and Future Work

We have presented a new approach to geometric deformations.
The underlying model is related to modal analysis approaches, but
shows various differences. Our model does not require any pre-
processing or auxiliary data structures, it is efficient to compute,
and provides unconditionally stable simulations. However, in con-
trast to modal analysis approaches our model is not physically mo-
tivated. While the accuracy of modal analysis methods can be ar-
bitrarily improved by just considering a larger number of deforma-
tion modes, our approach gets more involved if additional higher-
order deformation modes would be considered. Further, higher-
order modes do not necessarily improve the modeling accuracy in
our approach, since they are not related to physical vibration modes.

Our approach can handle a reasonable number of deformable ob-
jects in real-time. However, adequate collision handling is required.
In order to illustrate our results, we have used an existing penalty-
based collision handling technique [Teschner et al. 2003], [Heidel-
berger et al. 2004], but found it to be a performance bottleneck.
Alternatively, the Bounded Deformation Tree [James and Pai 2004]
could be considered. Although the existing work is very promising,
further research in deformable collision handling is necessary to
match the advances in deformable modeling [Teschner et al. 2005].

The ”plug and simulate” handling of a large variety of objects, the
efficiency in terms of memory and computational complexity, and
the unconditional stability of the dynamic simulation make the ap-
proach particularly interesting for games. While we have investi-
gated plasticity as one of the first model extensions, ongoing work
focuses on further extensions such as fracture animation. Fractur-
ing is particularly interesting since changing connectivity requires
only minor updates of data structures.



Figure 9: In this massive scene consisting of 384 objects, the computation of the dynamics is possible in real-time while collision detection
and collision response computations are not.

Figure 10: A head model simulated with 8 clusters reacts to user interaction or to collisions with other deformable objects.

Figure 11: Squeezing a duck model demonstrates the stability of the approach and the ability to recover from highly deformed or inverted
configurations.
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ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In Proceedings of
Vision, Modeling, Visualization VMV’03, 47–54.

TESCHNER, M., KIMMERLE, S., HEIDELBERGER, B., ZACH-
MANN, G., RAGHUPATHI, L., FUHRMANN, A., CANI, M.-
P., FAURE, F., MAGNENAT-THALMANN, N., STRASSER, W.,
AND VOLINO, P. 2005. Collision detection for deformable ob-
jects. Computer Graphics Forum 24, 1 (March), 61–81.

TONNESEN, D. 1998. Dynamically Coupled Particle Systems for
Geometric Modeling, Reconstruction, and Animation. PhD the-
sis, University of Toronto.

UMEYAMA, S. 1991. Least squares estimation of transformation
parameters between two point patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 13, 4 (Apr.), 376–80.


