
MATHEMATICS OF COMPUTATION
Volume 68, Number 228, Pages 1521–1531
S 0025-5718(99)01102-3
Article electronically published on March 4, 1999

MESHLESS GALERKIN METHODS
USING RADIAL BASIS FUNCTIONS

HOLGER WENDLAND

Abstract. We combine the theory of radial basis functions with the field
of Galerkin methods to solve partial differential equations. After a general
description of the method we show convergence and derive error estimates for
smooth problems in arbitrary dimensions.

1. Introduction

Interpolation by radial basis functions has become a powerful tool in multivariate
approximation theory, especially since compactly supported radial basis functions
are available. We shall collect the necessary results in the third section, but refer
the reader to the survey articles [6, 8, 10, 11] for details.

In this paper we describe how radial basis functions can be used to solve elliptic
partial differential equations numerically. We choose the same Galerkin approach
as in classical finite element methods. The results presented here are comparable
to those of classical FEM.

Since, in contrast to FEM, the effort for the construction of the finite dimensional
subspace using radial basis functions is independent of the current space dimension,
it is in principle possible to solve high dimensional problems as they occur in quan-
tum mechanics (cf. [9]). For example, the n-body problem of n interacting particles
leads in the stationary case to a time-independent Schrödinger equation on R3n.
Under certain additional conditions on the potential it is possible to approximate
the solution of this global problem by a solution of a boundary value problem on a
finite domain.

But even in two or three space dimensions it could be reasonable to use our
method: Classical finite element methods spend a lot of time on technical details
concerning the mesh, especially for time-dependent problems with moving bound-
aries. The mesh has to be generated, adapted to singularities of the solution, and
adapted to the changes of the domain. Meshless methods don’t need to handle such
problems because they only use unrelated centers for the discretisation. See [2] for
an overview of general meshless methods and applications in engineering. Finally,
very smooth solutions can be constructed as simply as less smooth solutions.

In the next section we describe in more detail the partial differential equation we
are interested in. We restrict ourselves to second order partial differential equations,
but a generalization to higher order equations can be done in an obvious way. As a
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1522 HOLGER WENDLAND

reference for finite element methods or elliptic partial differential equations we give
[3].

In the third section we give a short summary of the theory of radial basis func-
tion interpolation. In the fourth section we show how this theory can be used for
Galerkin or Rayleigh-Ritz approximation, and derive results concerning a special
kind of basis function, which generates Sobolev space as its native space. In this
situation our results are comparable to those of classical finite element methods.

In the last section we generalize these results to more general basis functions,
which allows us to give approximation orders even if the exact smoothness of the
solution is unknown.

2. PDE and Galerkin methods

For a bounded domain Ω with C1-boundary ∂Ω we consider problems of the
form

−
d∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
(x) + c(x)u(x) = f(x), x ∈ Ω,(2.1)

d∑
i,j=1

aij(x)
∂u(x)
∂xj

νi(x) + h(x)u(x) = g(x), x ∈ ∂Ω,(2.2)

where aij , c ∈ L∞(Ω), i, j = 1 . . . , n, f ∈ L2(Ω), aij , h ∈ L∞(∂Ω), g ∈ L2(∂Ω) and
ν denotes the unit normal vector to the boundary ∂Ω. The matrix A(x) = (aij(x))
is assumed to be uniformly elliptic on Ω, i.e. there is a constant γ such that for all
x ∈ Ω and all α ∈ Rd

γ

d∑
j=1

α2
j ≤

d∑
i,j=1

aij(x)αiαj .

We further require that c ≥ 0 and h ≥ 0, and that at least one of them is uniformly
bounded away from zero on a subset of nonzero measure of Ω or ∂Ω, respectively.

Under these asumptions the variational approach leads to the strictly coercive
and continuous bilinear form

a(u, v) =
∫

Ω

 d∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
+ cuv

 dx +
∫

∂Ω

huvdS(2.3)

on V × V with V = W 1
2 (Ω), and to the continuous linear form

F (v) =
∫

Ω

fvdx +
∫

∂Ω

gvdS.

on V = W 1
2 (Ω). The corresponding variational problem

find u ∈ W 1
2 (Ω) such that a(u, v) = F (v) for all v ∈ W 1

2 (Ω)(2.4)

has a unique solution by the Lax-Milgram theory.
This approach allows us to work with the whole Sobolev space W 1

2 (Ω) and does

not restrict us to the subspace
◦

W 1
2(Ω) consisting of functions with zero boundary

values that often occurs with problems with pure Dirichlet boundary values. The
boundary conditions themselves are incorporated into the bilinear form a and the
linear form F .
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To solve (2.4) numerically, the Galerkin method starts with a finite dimensional
subspace VN of V and computes the solution of the discretization

find uN ∈ VN such that a(uN , v) = F (v) for all v ∈ VN .(2.5)

The error between the solution u of (2.4) and the numerical solution uN can be
bounded via Cea’s lemma, which is in this context given by

‖u− uN‖W 1
2 (Ω) ≤ C inf

v∈VN

‖u− v‖W 1
2 (Ω).(2.6)

Here and in what follows, C will denote a generic constant.
We shall require u to be more regular than u ∈ W 1

2 (Ω). More precisely, we need
u ∈ W k

2 (Ω) with k > d
2 if d is the current space dimension. This is, for instance,

satisfied if the boundary of Ω and the given functions are sufficiently smooth.

3. Radial basis functions

In this paper we want to use finite dimensional subspaces VN of V = W 1
2 (Ω) of

the form

VN := span{Φ(· − x1), . . . , Φ(· − xN )}+ Pd
m,(3.1)

where Φ : Rd → R is at least a C1-function, Pd
m denotes the space of polynomials of

degree less than m and X = {x1, . . . , xN} ⊆ Ω is a set of pairwise distinct centers.
The most interesting case is when Φ is compactly supported and m = 0, i.e. no
polynomials are added. In this case the stiffness matrix

a(Φ(· − xj), Φ(· − xk))

is sparse. Moreover, for a radially symmetric L and a radial Φ, i.e. Φ(x) = φ(‖x‖2),
x ∈ Rd, with a univariate function φ : R≥0 → R, most of the entries of the stiffness
matrix can be easily computed (cf [13]).

We are now considering the approximation error determined by (2.6). Therefore
we invoke the theory of radial basis functions.

Definition 3.1. A function Φ : Rd → R is said to be conditionally positive definite
of order m iff for all sets X = {x1, . . . , xN} ⊆ Rd consisting of pairwise distinct
centers xj and all α ∈ RN \ {0} satisfying

∑N
j=1 αjx

p
j = 0, |p| < m, p ∈ Nd

0, the
inequality

N∑
j,k=1

αjαkΦ(xj − xk) > 0

is valid. A conditionally positive definite function of order 0 is called a positive
definite function.

The (radial) basis function interpolant su to a function u ∈ C(Rd) on a set of
centers X is given by

su(x) =
N∑

j=1

αjΦ(x− xj) + p(x),

where p is a polynomial of degree less than m. By interpolation, su has to satisfy
su(xj) = u(xj), 1 ≤ j ≤ N . The additional degrees of freedom are bounded by the
conditions

∑N
j=1 αjp(xj) = 0, where p runs through a basis of Pd

m. It can be shown
that there always exists an su satisfying the required conditions (cf. [7]).
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1524 HOLGER WENDLAND

Table 1. Radial basis functions

Name Φ(x) = φ(r), r = ‖x‖2 m F (h)

Thin plate splines (−1)1+µ/2rµ log r, µ ∈ 2N µ/2 + 1 hµ/2

(−1)dµ/2erµ, µ ∈ R>0 \ 2N, dµ/2e
Sobolev splines Kµ−d/2(r)rµ−d/2, µ > d

2 0 hµ−d/2

K MacDonald’s function

Compactly supported (1 − r)µ
+p(r), p polynomial 0 h`+1/2

functions, C2` ∂p = `, µ = bd/2c+ 2` + 1

Knowing that interpolation is always possible, we turn to the error analysis.
Therefore we assume that the function Φ possesses a (generalized) Fourier trans-
form Φ̂ which is positive almost everywhere. This is satisfied for all common ba-
sis functions. We now introduce the native space FΦ consisting of all functions
f : Rd → R which can be recovered via

f(x) = (2π)−d

∫
Rd

f̂(ω)eixT ωdω,

where f̂ is a function satisfying

f̂ /
√

Φ̂ ∈ L2(Rd).

The space FΦ possesses the semi-norm

|f |2Φ := (2π)−d

∫
Rd

|f̂(ω)|2
Φ̂(ω)

dω

with the nullspace Pd
m. Thus | · |Φ is a norm if Φ is positive definite. In this case

FΦ is a Hilbert space. If Φ is conditionally positive definite of order m > 0, then
the space FΦ/Pd

m is a Hilbert space. For functions u ∈ FΦ it is possible to bound
the error by

|u(x)− su(x)| ≤ PX,Φ(x)|u|Φ(3.2)

with the so-called Power function PX,Φ(x) defined pointwise as the norm of the error
functional. This Power function can be bounded in terms of the local data density
given by hρ(x) := sup‖y−x‖2≤ρ min1≤j≤N ‖y − xj‖2, ρ > 0 (cf. [17]). But if we
restrict ourselves to basis functions having an algebraically decaying (generalized)
Fourier transform, the proofs given in [17] allow us to choose X ⊆ Ω and to bound
the Power function also in terms of the global data density

h = hX,Ω := sup
x∈Ω

min
1≤j≤N

‖x− xj‖2,(3.3)

as long as Ω satisfies a uniform interior cone condition. In this case the Power
function can be bounded via PX,Φ(x) ≤ CF (h). For the particular basis functions
that we investigate, the order of conditional positive definiteness and F (h) are given
in table 1. As a reference for the Sobolev splines we give [4]. The results for the
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MESHLESS GALERKIN METHODS USING RADIAL BASIS FUNCTIONS 1525

compactly supported radial basis functions and explicit formulas can be found in
[14, 15]. The degree of the polynomial is minimal under the following conditions:

1) Φ(x) = φ(‖x‖2) is a compactly supported function which consists of a uni-
variate polynomial within its support.

2) The function Φ is positive definite on Rd and the even extension of φ is in
C2`.

4. Approximation in Sobolev spaces

We now turn to the investigation of the approximation error between u as the
solution of (2.4) and the discrete Rayleigh-Ritz solution uN coming from VN ,
where VN is given by (3.1) belonging to a special positive definite function Φ.
As mentioned in the introduction, we assume u to be somewhat more regular, say
u ∈ W k

2 (Ω) with k > d
2 . Furthermore, according to the C1-smoothness of the

boundary of Ω there is a continuous extension mapping E : W k
2 (Ω) → W k

2 (Rd)
(cf. [3]), and we will denote the extended function Eu ∈ W k

2 (Rd) by u again. This
allows us to use the theory of radial basis functions and to identify W k

2 (Rd) with
the native space FΦ to a radial basis function Φ ∈ L1(Rd) with Fourier transform
Φ̂ having the property

c1(1 + ‖ω‖2)−2k ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2)−2k(4.1)

with positive constants c1, c2. This property will be abbreviated by

Φ̂(ω) ∼ (1 + ‖ω‖2)−2k.(4.2)

Following Cea’s lemma (2.6), we have to bound

inf
v∈VN

‖u− v‖W 1
2 (Ω)

in terms of h as defined in (3.3).

Theorem 4.1. Let Ω ⊆ Rd be an open and bounded domain, having a C1-boundary.
Denote by su the interpolant on X = {x1, . . . , xN} ⊆ Ω to a function u ∈ W k

2 (Ω)
with k > d/2. Then there exists a constant h0 > 0 such that for all X with h ≤ h0,
where h is defined by (3.3), the estimate

‖u− su‖W j
2 (Ω) ≤ C hk−j ‖u‖W k

2 (Ω)

is valid for 0 ≤ j ≤ k.

Proof. Let us first assume 0 ≤ j ≤ k− d
2 . Since k > d

2 , this covers, in particular, the
case j = 0. The function u ∈ W k

2 (Ω) can be extended to a function EΩu ∈ W k
2 (Rd),

and the extension EΩ is continuous. Combining this with the results from [17], we
derive for all α ∈ Nd

0 with |α| < k − d
2 and for all x ∈ Rd the estimate

|Dαu(x)−Dαsu(x)| ≤ C P
(α)
X,Φ(x)‖u‖W k

2 (Rd).(4.3)

The Power function P
(α)
X,Φ(x) can be bounded from above in the following manner.

There exists an h1 such that for all X with h ≤ h1 and all x ∈ Ω the estimate

|P (α)
X,Φ(x)| ≤ Chk− d

2−|α|(4.4)

is valid. Here, C denotes a constant independent of x and X .
Now, we form uB := EB(EΩu|B) ∈ W k

2 (Rd) for a ball B ⊆ Rd. It is possi-
ble to choose the extension mapping EB in such a way that the constant C in
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1526 HOLGER WENDLAND

‖EBu‖W k
2 (Rd) ≤ C‖u‖W k

2 (B) is independent of the radius and the position of the
ball B (cf. [15]). Thus (4.3) leads to

‖Dαu−Dαsu‖L2(B) ≤ C vol(B)
1
2 ‖P (α)

X,Φ‖L∞(B) ‖uB‖W k
2 (Rd).

According to [5] there exist M , M1, h2 > 0 and for h ≤ h2 a finite subset Th ⊆ Ω
such that the balls B(t, h) and B(t, Mh) with radii h and Mh, respectively, centered
at t ∈ Th, satisfy

B(t, h) ⊆ Ω ⊆
⋃

t∈Th

B(t, Mh)

and such that
∑

t∈Th
χB(t,Mh) ≤ M1. Here χA denotes the characteristic function

of the set A. This leads to

‖Dαu−Dαsu‖2
L2(Ω) ≤

∑
t∈Th

‖Dαu−Dαsu‖2
L2(B(t,Mh))

≤ C hd ‖P (α)
X,Φ‖2

L∞(Ω∗)

∑
t∈Th

‖uB(t,Mh)‖2
W k

2 (Rd)

≤ C hd ‖P (α)
X,Φ‖2

L∞(Ω∗)‖u‖W k
2 (Rd)

for h ≤ h2, where Ω∗ :=
⋃

t∈Th
B(t, Mh). If we choose h ≤ h1 so small that also

(M + 1)h ≤ h0, we find for all x ∈ Ω∗ certain points t ∈ Th and xj ∈ X such that
we have ‖x− t‖2 ≤ Mh and ‖t−xj‖2 ≤ h, which means that ‖x−xj‖2 ≤ (M +1)h.
Thus we can use (4.4) on Ω∗ with (M +1)h instead of h. But as M does not depend
on h we get

‖Dαu−Dαsu‖L2(Ω) ≤ C hk−|α| ‖u‖W k
2 (Ω)

for |α| < k − d/2 and sufficiently small h, using the continuity of EΩ again. This
means that

‖u− su‖W j
2 (Ω) ≤ C hk−j ‖u‖W k

2 (Ω)

for 0 ≤ j < k − d
2 . For the remaining case k − d

2 ≤ j ≤ k we use the fact that su is
already an element of W k

2 (Rd). This leads to

‖u− su‖2
W k

2 (Ω) = ‖EΩu− su‖2
W k

2 (Ω)

≤ ‖EΩu− su‖2
W k

2 (Rd)

≤ C |EΩu− su|2Φ
≤ C |EΩu|2Φ
≤ C ‖EΩu‖2

W k
2 (Rd)

≤ C ‖u‖2
W k

2 (Ω),

if we use the fact that su = sEΩu is the best approximation to EΩu from VN with
respect to (·, ·)Φ. Thus we have proven the case j = k. As we already know the
estimate for j = 0, we can invoke an interpolation theorem [1]

|u|W j
2 (Ω) ≤ C

{
ε−j‖u‖L2(Ω) + εk−j |u|W k

2 (Ω)

}
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with the Sobolev semi-norm |u|2
W j

2 (Ω)
:=

∑
|α|=j ‖Dαu‖2

L2(Ω) to get

|u− su|W j
2 (Ω) ≤ C

{
ε−jhk‖u‖W k

2 (Ω) + εk−j‖u‖W k
2 (Ω)

}
≤ C hk−j‖u‖W k

2 (Ω)

with ε = h. Summing up the semi-norms, we get the stated estimate.

Corollary 4.2. If u ∈ W k
2 (Ω), k > d/2, is the solution to the variational problem

(2.4) and uN ∈ VN is the solution of (2.5), where VN belongs to an X satisfying
h ≤ h0, then the error can be bounded by

‖u− uN‖W 1
2 (Ω) ≤ Chk−1‖u‖W k

2 (Ω).

Proof. We use Cea’s lemma in the form (2.6) to get

‖u− uN‖W 1
2 (Ω) ≤ C inf

v∈VN

‖u− v‖W 1
2 (Ω)

≤ C‖u− su‖W 1
2 (Ω)

≤ Chk−1‖u‖W k
2 (Ω)

So far the radial basis function interpolant has to be formed with a specific Φ
satisfying (4.1). In the next section we will pay attention to more general basis
functions. These basis functions have to possess a (generalized) Fourier transform
with a faster decay than given in (4.1).

5. Approximation using general basis functions

A disadvantage in the application of the results of the last section is that the basis
function Φ and the spaces VN have to be chosen as functions of the smoothness of the
unknown solution u. But since this smoothness is unknown in general, we have to
look for convergence results where Φ can be chosen independent of the smoothness
of the solution. Therefore we still assume u to be an element of W k

2 (Ω), and thus
by extension of W k

2 (Rd), but take uN from a VN formed with a basis function that
generates not the whole W k

2 (Rd) as its native space, but a smaller space. This
means that we put more regularity into Φ than we assume for u. It will turn out
that in this setting the same convergence results can be achieved as in the last
section.

From now on let us denote the basis function Φ appearing in (4.1) by Φ0. This
function generates the space FΦ0 = W k

2 (Rd) as before. It will turn out that we
now have to assume at least k > d

2 +1 to bound the W 1
2 (Ω)-error. The function Φ1

which generates the subspaces VN is supposed to be “smoother” than Φ0 or, to be
more precise, to satisfy FΦ1 ⊆ FΦ0 . Thus we have to investigate the approximation
property of VN in FΦ0 = W k

2 (Rd). This was done for the L∞-error in [12] and we
are going to carry this over to our purpose. We start our investigation by chopping
off the Fourier transform.

Lemma 5.1. Let Φ0 be given, such that Φ̂0 satisfies (4.1) with k > m + d/2. For
u ∈ FΦ0 we define the function uM by its Fourier transform ûM := ûχM , where
χM denotes the characteristic function of the ball centered at zero with radius M .
Then for all α ∈ Nd

0 with |α| ≤ m and all x ∈ Rd we have

|Dαu(x)−DαuM (x)| ≤ |u|Φ0c0,|α|(M)
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1528 HOLGER WENDLAND

with

c2
0,|α|(M) = (2π)−d

∫
‖ω‖2≥M

‖ω‖2|α|
2 Φ̂0(ω)dω.

Proof. The assumptions on Φ0 give FΦ0 = W k
2 (Rd) ⊆ Cm(Rd), and allow us to use

the inverse Fourier transform for u ∈ FΦ0 to get

Dαu(x) = (2π)−d

∫
Rd

(iω)αeixT ωû(ω)dω,

which leads to

|Dα(u− uM )(x)| ≤ (2π)−d

∫
‖ω‖2≥M

‖ω‖2|α|
2 û(ω)dω

≤ (2π)−d

 ∫
‖ω‖2≥M

|û(ω)|2
Φ̂0(ω)

dω


1/2  ∫

‖ω‖2≥M

‖ω‖2|α|
2 Φ̂0(ω)dω


1/2

≤ |u|Φ0c0,|α|(M).

Now we make use of the fact that uM is an element of FΦ1 for u ∈ FΦ0 if the
conditions of the following theorem are satisfied. The domain Ω is still supposed
to have a C1-boundary.

Theorem 5.2. Let VN be given by (3.1) using the basis function Φ1. Let Φ0 satisfy
(4.1) with k > m + d/2, and let Φ̂0/Φ̂1 be bounded in every ball centered at zero.
Then for every u ∈ W k

2 (Ω) there exists a function s ∈ VN such that for every x ∈ Ω
and every α ∈ Nd

0 with |α| ≤ m

|Dαu(x)−Dαs(x)| ≤
(
c0,|α|(M) + C01(M)P (α)

X,Φ1
(x)

)
|u|Φ0

≤ C
(
c0,|α|(M) + C01(M)P (α)

X,Φ1
(x)

)
‖u‖W k

2 (Ω)

with

C2
01(M) := sup

‖ω‖2≤M

Φ̂0(ω)

Φ̂1(ω)
.

The function s does not depend on α.

Proof. We choose s = suM and get

|Dα(u− s)(x)| ≤ |Dα(u− uM )(x)| + |Dα(uM − suM )(x)|
≤ c0,|α|(M)|u|Φ0 + P

(α)
Φ1,X(x)|uM |Φ1 .

But by

|uM |2Φ1
= (2π)−d

∫
‖ω‖2≤M

|û(ω)|2
Φ̂0(ω)

Φ̂0(ω)

Φ̂1(ω)
dω ≤ |u|2Φ0

C2
01(M)

we derive

|Dα(u − s)(x)| ≤
(
c0,|α|(M) + C01(M)P (α)

Φ1,X(x)
)
|u|Φ0 .

Finally, |u|Φ0 ≤ C‖u‖W k
2 (Ω) leads to the last inequality.
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The approximation order will now be achieved by bounding the term on the right
side

(
c0,|α|(M) + C01(M)P (α)

Φ1,X(x)
)

by powers of h. This is done in two steps:

• Choose M such that C01(M)P (α)
Φ1,X(x) ≤ c0,|α|(M). This leads to the error

bound |Dα(u− s)(x)| ≤ 2Cc0,|α|‖u‖W k
2 (Ω).

• Give an upper bound for c0,|α|(M).
Of course, this has to depend upon the basis functions Φ0 and Φ1. While Φ0 is
determined by (4.1), Φ1 is the basis function in question. As c0,|α|(M) only depends
on Φ0, we can compute it:

c2
0,|α|(M) ≤ C

∫
‖ω‖2≥M

‖ω‖2|α|
2 (1 + ‖ω‖2)−2kdω

= C

∫ ∞

M

r2|α|+d−1(1 + r)−2kdr

= CM2|α|+d−2k

(5.1)

for |α| ≤ m. The last constant C can be chosen independently of α and M .
As every basis function we have in mind has an algebraically decaying Fourier

transform, we use functions Φ1 which generate smoother and more general Sobolev
spaces, i.e. we assume that

Φ̂1(ω) ∼ (1 + ‖ω‖2)−2β .(5.2)

In contrast to (4.1), β need not be in N. To ensure FΦ1 ⊆ FΦ0 we have to require
β ≥ k. This leads to

C2
01(M) = sup

‖ω‖2≤M

(1 + ‖ω‖2)2β−2k = CM2(β−k).(5.3)

Theorem 5.3. Assume u ∈ W k
2 (Ω) and Φ1 satisfies (5.2) with β ≥ k > d

2 + m.
Let VN be given by (3.1) using Φ1. Then there exists a function s ∈ VN such that
for x ∈ Ω and |α| ≤ m

|Dαu(x)−Dαs(x)| ≤ C hk−|α| ‖u‖W k
2 (Ω)

if h is sufficiently small. In particular, the estimate

‖u− s‖W m
2 (Ω) ≤ C hk−m ‖u‖W k

2 (Ω)

is valid for h ≤ h0.

Proof. We extend u to a function u ∈ W k
2 (Rd) = FΦ0 . According to Theorem 5.2

and (4.4) we have for x ∈ Ω and |α| ≤ m

|Dα(u− suM )(x)| ≤ |u|Φ0

(
c0,|α|(M) + C01(M)P (α)

Φ1,X(x)
)

≤ |u|Φ0

(
c0,|α|(M) + C01(M)Chβ− d

2−|α|
)

with arbitrary M > 0. Now we have to choose M such that C01(M)Chβ− d
2−|α| ≤

c0,|α|(M) for |α| ≤ m. Replacing c0,|α|(M) and C01(M) by (5.1) and (5.3) respec-
tively, we see that this is satisfied if M ≤ C/h. Substituting this M , we get

|Dα(u− suM )(x)| ≤ 2c0,|α|(M)|u|Φ0

≤ Chk− d
2−|α| |u|Φ0

≤ C hk− d
2−|α| ‖u‖W k

2 (Ω).
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Following the lines of the first part of the proof of theorem 4.1, we gain an additional
factor hd/2 and derive the stated inequality.

Using Cea’s Lemma, we get

Corollary 5.4. Under the assumptions of u ∈ W k
2 (Ω) and Φ1 satisfying (5.2) with

β ≥ k > d
2 + 1, the discretization error for uN ∈ VN with VN from (3.1) formed

with Φ1 can be bounded by

‖u− uN‖W 1
2 (Ω) ≤ C hk−1‖u‖W k

2 (Ω)

for sufficiently small h.

As W k
2 (Ω) is dense in W 1

2 (Ω), standard arguments yield

Corollary 5.5. Let Φ1 satisfy the conditions of the last corollary. Let VN belong
to a set of centers XN satisfying h = hXN ,Ω → 0 for N → ∞. Then the solutions
uN converge to u:

‖u− uN‖W 1
2 (Ω) → 0.

Finally, we have to check the condition on β for the basis functions mentioned
previously. The parameters refer to table 1.

Corollary 5.6. Under the assumptions of theorem 5.3 and corollary 5.4,

‖u− uN‖W 1
2 (Ω) ≤ Chk−1‖u‖W k

2 (Ω)

for the choice of Φ1 as
• thin plate spline with µ ≥ 2k − d,
• Sobolev spline with µ ≥ k,
• compactly supported functions with ` ≥ k − d+1

2 .

Proof. The (generalized) Fourier transform Φ̂1 for thin plate splines, Sobolev splines,
and compactly supported functions satisfies

Φ̂1(ω) = C‖ω‖−d−µ
2 , Φ̂1(ω) = (1 + ‖ω‖2

2)
−µ

and

Φ̂1(ω) ∼ (1 + ‖ω‖2)−d−2`−1,

respectively. This is well known for thin plate splines, and Sobolev splines, and
can be found in [16] for the compactly supported function of minimal degree. Thus
β equals (d + µ)/2, µ, ` + (d + 1)/2, respectively. The condition β ≥ k gives the
conditions on the parameters.

6. Conclusion

We have shown that our approach using radial basis functions leads to the same
error bounds in the energy norm as the classical finite elements:

‖u− uh‖W 1
2 (Ω) ≤ C hk−1‖u‖W k

2 (Ω)

for u ∈ W k
2 (Ω), k > d

2 , if we use basis functions that generate W k
2 (Rd) as their

native space. We also derive this approximation property for k > d
2 + 1 if we use

smoother elements than necessary. Furthermore, our approach works in arbitrary
space dimension. Using the technique of Nitsche, we can get approximation or-
ders for estimates in the L2–norm, which are again the same as for classical finite
elements.
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