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Abstract: The propagation of nonlinear water waves under complex wave conditions is the key
issue of hydrodynamics both in coastal and ocean engineering, which is significant in the prediction
of strongly nonlinear phenomena regarding wave–structure interactions. In the present study, the
meshless generalized finite difference method (GFDM) together with the second-order Runge–Kutta
method (RKM2) is employed to construct a fully three-dimensional (3D) meshless numerical wave
flume (NWF). Three numerical examples, i.e., the propagation of freak waves, irregular waves and
focused waves, are implemented to verify the accuracy and stability of the developed 3D GFDM
model. The results show that the present numerical model possesses good performance in the
simulation of nonlinear water waves and suggest that the 3D “RKM2-GFDM” meshless scheme
can be adopted to further simulate more complex nonlinear problems regarding wave–structure
interactions in ocean engineering.

Keywords: meshless method; generalized finite difference method; nonlinear water waves; numerical
wave flume; transient extreme waves; irregular waves; focused waves

MSC: 76M10

1. Introduction

Over the past several decades, extensive extreme wave events have been observed both
in coastal and ocean zones [1,2]. Extreme wave events, characterized by their randomness
and unpredictability, are often the cause of destruction of ocean vehicles and floating
platforms. Because such phenomena frequently threaten the safety of maritime staff and
ocean engineering structures, their generating mechanisms deserve attention from both the
scientific and industrial communities [3,4]. At present, physical experiments and numerical
techniques have been widely employed to reproduce extreme wave events. However, it is
well known that experiments are usually expensive and the reproducing of some extreme
sea conditions in laboratories could be rather difficult. Therefore, numerical techniques,
also known as computational fluid dynamics (CFD), can be a more feasible tool to tackle
such problems.

In recent years, meshless methods for solving partial differential equations (PDEs),
such as radial basis function (see, for example, [5]), smoothed particle hydrodynam-
ics (see, for example, [6–12]), and the generalized finite difference method (see, for
example, [13–18]) were developed significantly to deal with the disadvantages of tra-
ditional Eulerian mesh-based methods. Regarding the disadvantages, for example, in
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mesh-based methods, accurately capturing a water surface (or multiphase interfaces) is not
trivial because of their mass non-conservation property. However, in meshless methods, the
evolution of a free surface can be naturally fulfilled due to their inherent Lagrangian nature.
Among various meshless methods, the generalized finite difference method (GFDM), a
truly mesh-free and domain-type numerical method, was proposed by Benito et al. in
2001 [13].

In recent years, the GFDM has attracted more and more attention in practical applica-
tions for hydrodynamic problems. Zhang et al. [15] simulated the two-dimensional (2D)
sloshing behaviors using the GFDM in combination with the explicit Euler method (EEM)
and the semi-Lagrangian approach (SLA) under external horizontal and vertical excitations.
It was found that although the “EEM-GFDM” model can greatly simulate the sloshing
phenomena, some other time integration schemes can be considered in future studies. The
main reason is that in the EEM, the time step size is required to be rather small to ensure
numerical stability [15]. Given this reason, the EEM is unsuitable for solving complex
engineering problems, where the computational costs can be a critical point for engineers.
In order to tackle this issue, the second-order Runge–Kutta method (RKM2) was employed
to investigate the propagation of nonlinear water waves in a 2D GFDM-based numerical
wave flume (NWF) by Zhang et al. [14]. It was demonstrated that the “RKM2-GFDM”
scheme holds better accuracy and stability for solving free-surface problems. These are
the first two practical applications of the GFDM in ocean engineering, which suggests
that the “RKM2-GFDM” scheme is a feasible tool for simulating ocean engineering prob-
lems. After that, the “RKM2-GFDM” scheme was successfully employed to investigate
more complicated hydrodynamic issues, such as 2D shallow water problems [19], wave–
current interactions [20], Boussinesq-type equations [21], and hydrodynamics loads acting
on an offshore structure [16]. The GFDM was also modified by Fu et al. [18] into an
advanced format by employing two truncated treatments, i.e., the so-called absorbing
boundary conditions (ABC) and perfectly matched layer (PML). It was demonstrated that
the new scheme can accurately simulate the wave–structure phenomenon of single- and
four-cylinder array bodies.

More recently, the GFDM [14] was further improved from 2D to fully 3D formalism for
simulating nonlinear water waves in ocean engineering, such as first-order waves, second-
order Stokes waves and wave–structure interactions [17]. It was distinctly demonstrated
that the 3D version is better than the 2D one for simulating the evolution of nonlinear water
waves. Nevertheless, in the previous studies, such as those of Zhang et al. [14] and Huang
et al. [17], some critical types of nonlinear water waves, such as freak waves, irregular waves
and focused waves, were not involved. In fact, such water waves were already successfully
simulated via other mesh-free schemes, such as smoothed particle hydrodynamics (SPH)
(see, for example, [22,23]), whereas to the best knowledge of the authors, there has been no
work on simulating these complex water waves based on the GFDM. In the present study,
we aim at shedding light on this topic within the GFDM framework. This paper can be
treated as a further improvement of the pre-developed GFDM-based NWF [14,17,20]. The
remainder of this paper is arranged as follows. In Section 2, the governing equations as
well as boundary conditions of the 3D GFDM-based NWF are elaborated mathematically.
In Section 3, the meshless scheme dealing with the spatial variables of the deformable
computational domain is introduced in detail. In Section 4, three numerical benchmarks
involving transient extreme waves, two types of irregular waves, and focused waves are
investigated to verify the accuracy and stability of the proposed 3D GFDM model.

2. Governing Equations and Boundary Conditions of the 3D GFDM Scheme

In the present study, a rectangular NWF is developed based on the 3D GFDM model
for predicting the evolution of nonlinear water waves under complex wave conditions. As
is shown in Figure 1a, the origin of a Cartesian coordinate system Oxyz is considered at the
bottom corner of the NWF. The undisturbed water depth, length and width of the NWF are
respectively denoted by h, b, and w. All boundary conditions of the developed NWF are
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divided into five parts, including the upstream, downstream, bottom, side, and free-surface
boundaries, which are also denoted by Γ1, Γ2, Γ3, Γ4 and Γ5, respectively.

(a)

Nodes outside 

the star

Nodes inside 

the star

Deformable 

computational domain

(b)

Figure 1. Schematic diagram of the developed 3D GFDM-based NWF. (a) Boundary conditions of the
3D GFDM-based NWF. (b) Nodes and the star in the GFDM.

2.1. Governing Equations

It is assumed that the flow field in the NWF is inviscid, incompressible, and irrotational,
which means that the potential flow theory can be employed to describe the fluid behaviors
in the present study. Consequently, the 3D Laplace’s equation for the velocity potential
Φ
(

x, y, z; t
)

is given as

∇2Φ =
∂2Φ
∂x2 +

∂2Φ
∂y2 +

∂2Φ
∂z2 = 0 ,

(
x, y, z

)
∈ Ω , (1)

where Φ
(

x, y, z; t
)

is the velocity potential, and Ω denotes the whole flow field.

2.2. Free-Surface Boundary Condition

The kinematic and dynamic boundary conditions are implemented to describe the
dynamic evolution of free-surface elevation, which yield

∂η

∂t

∣∣∣∣
z=η+h

=
∂Φ
∂z
− ∂Φ

∂x
∂η

∂x
− ∂Φ

∂y
∂η

∂y
, (2)

∂Φ
∂t

∣∣∣∣
z=η+h

= −1
2

V2 − gη , (3)

where η
(

x, y; t
)

denotes the water surface elevation and is vertically evaluated above the
undisturbed water level η = 0, g is the acceleration of gravity, and 1

2 V2 is the kinetic energy
of fluid particles given as

1
2

V2 =
1
2

(∂Φ
∂x

)2
+

(
∂Φ
∂y

)2

+

(
∂Φ
∂z

)2
 . (4)

The kinematic boundary condition Equation (2) states the fact that no fluid particles
can penetrate the free surface. Furthermore, the dynamic boundary condition Equation (3)
denotes the fact that the pressure on the free surface is uniformly distributed along with
the z-axis direction and should be equal to zero (i.e., atmospheric pressure).
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2.3. Bottom and Side Boundary Conditions

The impermeable bottom Γ3 and side Γ4 boundaries of the computational domain
should satisfy the no-flux condition, which means that the fluid particles cannot penetrate
these surfaces and thus yield

∂Φ
∂n

∣∣∣∣
Γ3, Γ4

=
∂Φ
∂x

nx +
∂Φ
∂y

ny +
∂Φ
∂z

nz = 0 , (5)

where n
(

nx, ny, nz

)
is the unit normal vector along with the wall boundary (outward).

2.4. Upstream Boundary Condition

In the following calculations, all incident water waves are generated using a piston-
type wavemaker to reproduce the desired complex ocean environments, which means that
the wave-making boundary Γ1 can be realized by enforcing a horizontal velocity such that

∂Φ
∂x

∣∣∣∣
x=0

= U
(
y, z; t

)
, (6)

where U
(
y, z; t

)
is the velocity function, which can be derived under different physical

conditions (see Section 4). According to our previous investigation [14], the incident water
waves should be produced via a ramping function Rm(t) to ensure the robustness of the
numerical simulations. In the present study, Rm(t) is considered as

Rm(t) =


1
2

[
1− cos

(
πt
Tm

)]
t ≤ Tm

1 t > Tm

, (7)

where Tm is the modulation time depending on the mathematical form of velocity function.
As a result, the wave-making boundary condition should be recast as

∂Φ
∂x

∣∣∣∣
x=0

= Rm(t)U
(
y, z; t

)
. (8)

2.5. Downstream Boundary Condition

At the end of the NWF, a numerical beach must be employed to absorb the wave
energy. In the present study, the Sommerfeld–Orlanski radiation boundary condition in
combination with a sponge layer [14] is carried out to avoid numerical instability due to the
phenomenon of the wave reflection, which means that the downstream boundary condition
can be expressed as

∂Φ
∂x

∣∣∣∣
x=b

= 0 , (9)

Since a numerical beach is deployed to tackle the wave reflection at the downstream
boundary, the kinematic and dynamic conditions of the water surface are rewritten as

∂η

∂t

∣∣∣∣
z=η+h

=
∂Φ
∂z
− ∂Φ

∂x
∂η

∂x
− ∂Φ

∂y
∂η

∂y
− ν(x)η , (10)

∂Φ
∂t

∣∣∣∣
z=η+h

= −1
2

V2 − gη − ν(x)Φ , (11)

in which

ν(x) =


αsω

[
x−

(
b− βλ

)
βλ

]
x ≥ b− βλ

0 x < b− βλ

, (12)
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where ν(x) is the damping coefficient for the sponge layer, ω is the angular wave frequency,
β is the length factor, and αs is the tuning factor of the sponge layer.

After the detailed illustrations of the mathematical formulations of the developed
3D GFDM-based NWF, it can be summarized that the governing equation for the whole
flow field is Laplace’s equation, Equation (1); the time-dependent free-surface boundary
satisfies the kinematic and dynamic conditions, Equations (2) and (3); and the bottom,
side, upstream and downstream boundaries are governed by the Neumann boundary
conditions, Equations (5), (8) and (9), respectively. It is obvious that the introduced gov-
erning equation and boundary conditions yield an initial-boundary value problem, which
is discretized numerically by the 3D “RKM2-GFDM” meshless scheme elaborated in the
following section.

3. Numerical Methods

In the previous section, the initial-boundary value problem for the NWF is yielded
based on the potential flow theory with a full Lagrangian description. In this section, the
RKM2 in conjunction with the SLA is employed as the time-integration scheme, while the
GFDM is adopted to discretize the spatial variables

(
x, y, z

)
.

3.1. Temporal Discretization

In order to prevent the computational nodes from escaping out of the deformable flow
field, the full Lagrangian description Equations (10) and (11) are thus modified with the
SLA [14,20]. According to the numerical procedures of the SLA, the freedom of the fluid
particles at the free surface (z = η + h) is frozen except for the z-axis direction, which yields

u = 0i + 0j +
Dη

Dt
k , (13)

where u is the vertical velocity at the free surface, and D/ Dt is the material derivative. Sub-
stituting η(x, y; t) and Φ(x, y, z; t) into the material derivative operator yields the following
expressions:

Dη

Dt
=

∂η

∂t
, (14)

DΦ
Dt

=
∂Φ
∂t

+
∂Φ
∂z

Dη

Dt
. (15)

According to Equations (14) and (15), the semi-Lagrangian description of Equations (10)
and (11) can be re-written as

Dη

Dt

∣∣∣∣
z=η+h

=
∂Φ
∂z
− ∂η

∂x
∂Φ
∂x
− ∂η

∂y
∂Φ
∂y
− ν(x)η , (16)

DΦ
Dt

∣∣∣∣
z=η+h

= −1
2

V2 − gη +
∂η

∂t
∂Φ
∂z
− ν(x)Φ . (17)

Considering the better numerical stability, the RKM2 scheme is employed to discretize
Equations (16) and (17). At the beginning of a simulation, the derivatives F1 = Dη

Dt

∣∣∣
z=η+h

and F2 = DΦ
Dt

∣∣∣
z=η+h

can be evaluated via the free-surface boundary conditions, and the

marching scheme regarding the time integration of η and Φ can be expressed as

η∗ = ηn + Fn
1 ∆t , (18)

Φ∗ = Φn + Fn
2 ∆t , (19)

where the superscripts n and ∗ refer to the field quantities at tn and the temporary time
step, respectively. After the temporary field quantities are derived, the time derivative at tn
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can be evaluated after reconstructing the particles along every vertical line. The numerical
process can be marched into the next time layer in the same manner, and the field quantities
at tn+1 can be given as

ηn+1 =
1
2

[(
η∗ + F∗1 ∆t

)
+ ηn

]
, (20)

Φn+1 =
1
2

[(
Φ∗ + F∗2 ∆t

)
+ Φn

]
. (21)

3.2. Spatial Discretization

On the basis of the GFDM, the so-called moving-least-squares method is adopted
to approximate the spatial derivatives for every node at each time step by solving a
linear–combined sparse system. In order to briefly introduce the meshless scheme, as is
shown in Figure 1b, a point cloud can be found within a certain region in the deformable
computational domain. Assuming that the i-th node is an arbitrary node within the selected
region, ns nearest nodes in the proximity of the i-th node can be defined to form a support
domain. The shapes of the support domain can be given in different choices [13,24]. In the
present study, a circular support domain is adopted for the sake of simplicity. Once the
support domain for the i-th node is defined, the Taylor series truncated by the second-order
derivative is then employed to re-formulate the governing equation inside the support
domain. Therefore, it is possible to define the B

(
Φi

j

)
function according to the moving-

least-squares method, which yields

B
(

Φi
j

)
=

ns

∑
i=1


Φi −Φi

j + xij
∂Φ
∂x

∣∣∣∣
i
+ yij

∂Φ
∂y

∣∣∣∣∣
i

+ zij
∂Φ
∂z

∣∣∣∣
i
+

x2
ij

2
∂2Φ
∂x2

∣∣∣∣∣
i

+
y2

ij

2
∂2Φ
∂y2

∣∣∣∣∣
i

+
z2

ij

2
∂2Φ
∂z2

∣∣∣∣∣
i

+ xijyij
∂2Φ
∂x∂y

∣∣∣∣∣
i

+ xijzij
∂2Φ
∂x∂z

∣∣∣∣∣
i

+yijzij
∂2Φ
∂y∂z

∣∣∣∣∣
i

w
(

xij, yij, zij

)
2

,

(22)

where Φi and Φi
j are field quantities at the i-th node and other ns nearest nodes; xij = xi

j− xi,

yij = yi
j − yi, and zij = zi

j − zi are the distances between the i-th node and the j-th node
in the support domain along with the x-, y-, z axes. w(xij, yij, zij) represents the so-called
weighting function and is considered the quadratic spline [13] in the present study such that

w
(

xij, yij, zij

)
=1−6

(
dij

di
max

)2
+8
(

dij

di
max

)3
−3
(

dij

di
max

)4
dij ≤ di

max,

0 dij > di
max,

(23)

where dij =
√

x2
ij + y2

ij + z2
ij is the distance between the i-th node and the j-th node of

the support domain, di
max is the distance between the i-th node and the farthest node

within the star. Because Equation (22) represents the weighted residual of the Taylor series
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approximation within the support domain, it is natural to expect that the norm B
(

Φi
j

)
can

be minimized regarding a partial derivative vector Du such that

∂B
(

Φi
j

)
∂Du

= 0 , (24)

where

{Du}9×1 ={
∂Φ
∂x

∣∣∣
i

∂Φ
∂y

∣∣∣
i

∂Φ
∂z

∣∣∣
i

∂2Φ
∂x2

∣∣∣
i

∂2Φ
∂y2

∣∣∣
i

∂2Φ
∂z2

∣∣∣
i

∂2Φ
∂x∂y

∣∣∣
i

∂2Φ
∂x∂z

∣∣∣
i

∂2Φ
∂y∂z

∣∣∣
i

}T
.

(25)

A linear system of algebraic equations is thus yielded,

ADu = b , (26)

where

{A}9×9 =



ns
∑

j=1
w2

ijx
2
ij · · ·

ns
∑

j=1
w2

ijxijyijzij

. . .
...

SYM
ns
∑

j=1
w2

ijy
2
ijz

2
ij


, (27)

{b}9×1 =



−Φi
ns
∑

j=1
w2

ijxij +
ns
∑

j=1
Φi

jw
2
ijxij

−Φi
ns
∑

j=1
w2

ijyij +
ns
∑

j=1
Φi

jw
2
ijyij

−Φi
ns
∑

j=1
w2

ijzij +
ns
∑

j=1
Φi

jw
2
ijzij

−Φi
ns
∑

j=1

w2
ijx

2
ij

2
+

ns
∑

j=1
Φi

j

w2
ijx

2
ij

2

−Φi
ns
∑

j=1

w2
ijy

2
ij

2
+

ns
∑

j=1
Φi

j

w2
ijy

2
ij

2

−Φi
ns
∑

j=1

w2
ijz

2
ij

2
+

ns
∑

j=1
Φi

j

w2
ijz

2
ij

2

−Φi
ns
∑

j=1
w2

ijxijyij +
ns
∑

j=1
Φi

jw
2
ijxijyij

−Φi
ns
∑

j=1
w2

ijxijzij +
ns
∑

j=1
Φi

jw
2
ijxijzij

−Φi
ns
∑

j=1
w2

ijyijzij +
ns
∑

j=1
Φi

jw
2
ijyijzij



. (28)

It is obvious that matrix A is symmetric. Matrix b can be recast as

b = BQ , (29)

where Q = {Φi, Φi
1, · · ·, Φi

ns} is the field quantities at the i-th nodes and other ns nearest
nodes within the support domain. b represents a coefficient matrix. The specific value of
the matrix depends on the spatial coordinate and weighting function of the ns + 1 node
within the support domain of the i-th node. As a result, Du can be re-written as
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Du =



∂Φ
∂x

∣∣∣∣
i

∂Φ
∂y

∣∣∣∣∣
i

∂Φ
∂z

∣∣∣∣
i

∂2Φ
∂x2

∣∣∣∣∣
i

∂2Φ
∂y2

∣∣∣∣∣
i

∂2Φ
∂z2

∣∣∣∣∣
i

∂2Φ
∂x∂y

∣∣∣∣∣
i

∂2Φ
∂x∂z

∣∣∣∣∣
i

∂2Φ
∂y∂z

∣∣∣∣∣
i



= A−1b = A−1BQ = E



Φi

Φi
1

Φi
2

Φi
3

...

Φi
ns


(ns+1)×1

, (30)

where E is the coefficient matrix depending on the weighting function, the numbers of
nodes within the support domain and the spatial coordinates of nodes within the star. For
the sake of clarity, the above equation can be recast as

∂Φ
∂x

∣∣∣∣
i
= ei

1,0Φi +
ns

∑
j=1

ei
1,jΦ

i
j , (31)

∂Φ
∂y

∣∣∣∣∣
i

= ei
2,0Φi +

ns

∑
j=1

ei
2,jΦ

i
j , (32)

∂Φ
∂z

∣∣∣∣
i
= ei

3,0Φi +
ns

∑
j=1

ei
3,jΦ

i
j , (33)

∂2Φ
∂x2

∣∣∣∣∣
i

= ei
4,0Φi +

ns

∑
j=1

ei
4,jΦ

i
j , (34)

∂2Φ
∂y2

∣∣∣∣∣
i

= ei
5,0Φi +

ns

∑
j=1

ei
5,jΦ

i
j , (35)

∂2Φ
∂z2

∣∣∣∣∣
i

= ei
6,0Φi +

ns

∑
j=1

ei
6,jΦ

i
j , (36)

∂2Φ
∂x∂y

∣∣∣∣∣
i

= ei
7,0Φi +

ns

∑
j=1

ei
7,jΦ

i
j , (37)

∂2Φ
∂x∂z

∣∣∣∣∣
i

= ei
8,0Φi +

ns

∑
j=1

ei
8,jΦ

i
j , (38)

∂2Φ
∂y∂z

∣∣∣∣∣
i

= ei
9,0Φi +

ns

∑
j=1

ei
9,jΦ

i
j , (39)

where
{

ek,j

}ns

j=0
(k = 1, · · ·, 9) are weighting coefficients with respect to the nodes and

the support domain, which can be numerically calculated using the above developed
numerical method. Because the i-th node depicted above is arbitrarily selected in the



Mathematics 2022, 10, 1007 9 of 22

deformable computational domain without any assumptions, it is obvious that every
node both at the interior and boundary should be considered the i-th node to derive the
derivatives expression by repeating the pipeline of Equations (22)–(30). Consequently,
a linear algebraic system of ns + 1 physical values with different weighting functions is
formed by transforming the spatial derivative Du at the i-th node. It is obvious that the
GFDM is easy to code and very efficient due to the merits of the sparse matrix. For the
sake of clarity, in Figure 2, a flowchart regarding the implementation of the present GFDM
model is displayed.

It should be underlined that the size of the support domain (i.e., the number of neigh-
bors of each point) contributes to the numerical accuracy of the GFDM model. However,
it also affects the computational costs of simulations. In order to test the required CPU
time for different numbers of neighbors, a benchmark is performed, and the final result
is listed in Table 1. One can see that the required time per time step increases with the
increase in neighbors. As highlighted in the previous work [17], ns ≥ 40 can be enough
for the simulations of nonlinear water waves propagation, whereas in the present study,
ns = 85 is adopted to better capture the free-surface evolution.

Start

Solving weighting functions 

by Eqs. (27) and (28).

Time integration

Solving the partial derivative of velocity potential 

by Eq. (30).

Solving wave elevation and velocity potential of the 

free surface by Eqs. (10), (11), (18) and (19), then 

solving weighting functions by Eqs.(27) and 

(28).

  Solve velocity potential of the whole domain by 

governing equation Eq. (1) and boundary conditions 

Eqs. (5), (8), (9) and (11). 

Solving wave elevation and velocity potential of the 

free surface by Eqs. (10), (11), (20) and (21), then 

solving weighting functions by Eqs. (27) and 

(28).

  Solve velocity potential of the whole domain by 

governing equation Eq. (1) and boundary conditions 

Eqs. (5), (8), (9) and (11). 

Current time < duration time ? Output

No Yes

Solving the partial derivative of velocity potential 

by Eq. (30).

Figure 2. The flowchart of the present GFDM model.
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In the following section, three numerical examples with respect to the transient ex-
treme waves, two types of irregular waves, as well as the focused waves are investigated,
discussed and compared with other results to verify the accuracy and stability of the present
numerical model.

Table 1. The computational costs per time step with respect to different local-domain sizes.

ns = 25 ns = 35 ns = 45 ns = 55 ns = 65 ns = 75 ns = 85 ns = 95 ns = 105

18 s 24 s 29 s 32 s 37 s 42 s 45 s 49 s 53 s

4. Examples Implementation and Discussion
4.1. Example 1: Transient Extreme Waves

Transient extreme waves are strong nonlinear fluid behaviors characterized by their
extraordinarily large wave height, which can be the main cause of many accidents of fixed
and floating offshore structures. In practical engineering, transient extreme waves play
an important role in the hydrodynamics of marine vessels encountering green water or
wave overtopping events. In this numerical example, we reproduce the transient extreme
wave using the same method adopted by [25]. In their physical experiment, a short
transient extreme wave was chosen because the investigation of the kinematics of one wave
overtopping on deck event requires a large number of repeated runs. In our developed 3D
GFDM-based NWF, a short transient extreme wave is generated by giving the wave-making
boundary Γ1 a pre-designed piston signal [25]. As is shown in Figure 3, the piston signal
contains two cycles of a T = 1.0 s sinusoidal wave with amplitude H = 0.08 m followed
by two and a half cycles of a T = 1.5 s sinusoidal wave with larger amplitude H = 0.16 m.
The velocity function U produced via the piston-type wavemaker is written as

U(t) =
H
2

2kh + sinh(2kh)
4 sinh2(kh)

ω sin(ωt), (40)

where H is the wave height, k is the wavenumber, d is the water depth, and ω is the
angular wave frequency. Figure 4 shows the schematic diagram of Example 1. The length
b, width w and depth h of the NWF are adopted as 24.0, 0.1 and 0.65 m, respectively. The
upstream boundary Γ1 is considered the wave-making condition with imposing horizontal
velocity generated by the above-mentioned piston signal, while the downstream boundary
Γ2 is adopted as the wave-absorbing condition to tackle the wave reflection with length
factor β = 1.0 and tuning factor αs = 1.0. In order to implement a benchmark of the
studied numerical example, as shown in Figure 4, the wave elevation is measured using
15 wave gauges beginning at x = 4.5 m from the upstream boundary Γ1 and continuing
in increments of 0.5 m to x = 11.5 m. In this numerical example, the time step, numbers
of nodes for whole computational domain and within the star are set with ∆t = 0.005 s,
N = 127,807, and ns = 85, respectively. The duration time t of the simulation process is
adopted as 30 s.

As is shown in the experiment investigated by [25], the transient nature of the tests,
evidently, can be divided into three states. Initially, two large waves exist at x = 4.5 m,
which are then transformed into a single and larger wave at x = 8.0 m. Finally, the focused
wave decomposes into two large waves at x = 11.5 m. Figure 5 shows the comparison
between the numerical and experimental results at x = 4.5 m, 8.5 m, 11.5 m, respectively.
Figure 6 depicts the shape of the free surface at the moment t = 10.51 s when the maximum
wave height appears. It is illustrated that the numerical results derived from the developed
3D GFDM-based NWF are in good agreement with the physical experiment results, which
demonstrates that the newly developed numerical method can accurately capture the
focusing phenomenon of water waves.
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Figure 3. Profile of the piston signal given to the wave-making boundary Γ1 for Example 1, which
starts from t = 1.25 s and ends at t = 7.0 s.

Sponge layer
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Figure 4. Schematic diagram of the 3D GFDM-based NWF employed for Example 1.

In order to further verify the effectiveness and accuracy of the 3D GFDM-based NWF,
the monitored maximum wave height and their respective corresponding time of every
employed wave gauge are listed in Table 2 in which the experimental results and the relative
error are also included as a comparison. It can be observed that the simulated maximum
wave height at different wave gauges and their respective corresponding time are also
in good accordance with the experimental results. As for the maximum wave height,
the maximum relative error is 6.850% at the location of x = 8.50 m. The average of the
relative error with respect to the maximum wave height exceeds no 5.0%, which is accurate,
generally, for practical engineering applications. As is shown in Table 2, the corresponding
time of the occurrence of the maximum wave height is greatly captured and is almost
identical to the experimental data. The maximum relative error of the corresponding time
is 0.906%, and the average of the relative error does not exceed 0.5%. In fact, in the present
study, the viscosity and turbulence effects are neglected in total because the present GFDM
is based on the potential flow model. However, in the experiments, the viscosity and
turbulence effects can be taken into account. For this reason, one can see that the errors of
wave heights are somewhat greater than those of time. Despite this, the maximum error
is below 7%, which is acceptable in engineering applications. Of course, in the future, we
will further improve our GFDM model by solving the Navier–Stokes equation instead of
Laplace’s equation, and we believe that through this consideration, the numerical accuracy
can be further improved. On the whole, from the above discussions, it is demonstrated
that the proposed 3D meshless scheme shows satisfactory accuracy in the prediction of
transient extreme waves.
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(b) x = 8.0 m
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Figure 5. Comparison between numerical and experimental results at x = 4.5 m, 8.0 m, 11.5 m.

Figure 6. Shape of free surface at the moment t = 10.51 s when the maximum wave height appears.
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Table 2. Comparison of the maximum wave height and respective corresponding time between
numerical and experimental results.

Wave Gauges

Maximum Wave Height Corresponding Time

Simulation
(m)

Experiment
(m)

Error
(%)

Simulation
(s)

Experiment
(s)

Error
(%)

x = 4.50 m 0.113 0.107 5.904% 7.400 7.425 0.333%
x = 5.00 m 0.102 0.097 5.231% 7.670 7.641 0.382%
x = 5.50 m 0.096 0.090 6.794% 9.200 9.206 0.060%
x = 6.00 m 0.111 0.104 6.601% 9.460 9.467 0.070%
x = 6.50 m 0.121 0.123 1.800% 9.720 9.729 0.087%
x = 7.00 m 0.125 0.131 4.715% 9.990 10.053 0.627%
x = 7.50 m 0.130 0.132 0.935% 10.260 10.286 0.257%
x = 8.00 m 0.138 0.146 5.753% 10.510 10.580 0.662%
x = 8.50 m 0.130 0.139 6.850% 10.770 10.825 0.509%
x = 9.00 m 0.120 0.128 5.755% 11.020 11.121 0.906%
x = 9.50 m 0.111 0.116 4.606% 11.270 11.342 0.638%
x = 10.0 m 0.101 0.101 0.246% 11.510 11.601 0.784%
x = 10.5 m 0.092 0.091 2.098% 13.770 11.860 0.756%
x = 11.0 m 0.089 0.091 1.611% 13.500 13.559 0.436%
x = 11.5 m 0.091 0.089 1.947% 13.860 13.857 0.019%

Average 4.056% 0.435%

4.2. Example 2: Irregular Waves

In recent years, the GFDM has been successfully carried out for many practical engi-
neering problems, such as water wave propagations and wave–current interactions [14,20],
BTEs (Boussinesq-type equations) [21], and first-order water wave interactions with ocean
and offshore structures [18], in which the incident water waves are employed in a monochro-
matic type. Nevertheless, there is no work relating to the applications of irregular waves
using the GFDM. The actual sea surface consists of waves with different directions, frequen-
cies, phases and amplitudes. For an accurate description of the real ocean environment, a
large number of waves must be superimposed. In this numerical example, two types of
irregular waves are simulated based on the proposed 3D meshless scheme. One of them is
a typical form using the JONSWAP (Joint North Sea Wave Project) spectrum. Another one
is the so-called white noise irregular water waves, which is always employed in physical
experiments for the hydrodynamic performance of floating offshore structures to obtain
the response amplitude operators (RAOs) under different wave frequencies.

4.2.1. JONSWAP Spectrum

In the present study, the traditional Longuet–Higgins model [26] is employed to
describe the irregular wave elevation such that

η
(

x, y; t
)
=

Nωi

∑
i=1

Nθj

∑
j=1

Aij cos
(

kix cos θj + kiy sin θj −ωit + εij

)
, (41)

where Aij, ki, θj, ωi, and εij denote the wave amplitude, wave number, propagating
direction, angular wave frequency and random phase angle of the i-th wave component,
respectively. The random phase angles εij are homogeneously distributed between 0 and
2π and are constant with time. The wave amplitude Aij can be obtained by giving a wave
spectrum S(ω, θ) such that

Aij =

√
2S
(

ωi, θj

)
∆ωi∆θj , (42)
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where ∆ωi and ∆θj are constant differences of successive frequencies and propagating
directions, respectively. In the present study, the propagating direction of irregular waves
is considered along the positive x-axis, resulting in θ = 0◦, which means that Equations (41)
and (42) can be recast as

η(x; t) =
Nωi

∑
i=1

Ai cos(kix−ωit + εi), (43)

and
Ai =

√
2S(ωi)∆ωi , (44)

The instantaneous wave elevation η(x; t) satisfies the Gaussian distributed with zero
mean and variance σ2 equal to

∫ ∞
0 S(ω)dω, which can be re-formulated using the mathe-

matical definition of mean value and variance applied to a signal function represented by
Equation (41). Consequently, the JONSWAP spectrum recommended by the International
Towing Tank Conference [27] is adopted to express the S(ω) such that

S(ω) = 155
H2

s

T4
1 ω5

exp

(
−944
T4

1 ω4

)
3.3γ , (45)

where

γ = exp

[
− (0.191ωT1 − 1)2

2σ2

]
, (46)

and

σ =

0.07 ω ≤ 5.24/T1

0.09 ω > 5.24/T1
, (47)

where Hs is the significant wave height defined as the mean of the one-third highest waves.
T1 is the average period and can be derived by T1 = 0.834T0 = 1.073T2, with T0 and T2
being the spectral peak period and the average zero crossing period, respectively. In the
present study, we define (Hs, T2) = (1.5 m, 7.5 s) chosen from a sea-states table suggested
by the International Association of Classification Societies (IACS) [28], which is the most
frequent combination of real wave conditions. In the following simulation, the chosen
significant wave height Hs and the average zero crossing period T2 are transformed into
(Hs, T2) = (0.05 m, 1.369 s) by the Froude law with scale 1:30. Finally, the selected Hs and
T1 are thus derived as 0.03 m and 1.469 s, respectively. From the above discussions, the
velocity function U in this numerical example can be given as

U(t) =
Nωi

∑
i=1

Hi
2

2kih + sinh(2kih)
4 sinh2(kih)

ωi cos(ωit) . (48)

In this numerical example, the schematic diagram is the same as Figure 4. The depth
h of the NWF is 0.60 m, while other geometry parameters of the NWF are consistent with
Example 1. The time step and numbers of nodes for the whole computational domain
and within the star are adopted with ∆t = 0.005 s, N = 118,197, and ns = 85, respectively.
It is worth noting that the duration time t must be long enough to reflect the statistical
characteristics of irregular waves. Consequently, the duration time t is considered with
100 s, which is approximately equivalent to 73 times the average zero-crossing wave period
and is acceptable for the following spectrum analysis.

Figure 7 depicts the simulation results of the JONSWAP case. It can be observed from
Figure 7a that the wave elevation shows random and irregular characteristics over time
and are in good agreement with the theoretical solution. In order to further benchmark the
accuracy of the numerical results, the fast Fourier transform (FFT) technique is carried out to
implement a spectrum analysis of the time history curve. Figure 7b shows the comparison
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between the target spectrum and the simulated spectrum for the time slice. It can be seen
that the simulated spectrum is basically in accordance with the target spectrum except for
the location of the peak. As is shown in Figure 7b, the peak value of the simulated spectrum
is slightly shifted to the lower frequency band compared with the target spectrum, which
may be caused by the so-called spectrum leakage effect due to the rectangular window
function. In general, the developed 3D meshless scheme shows good performance in
such problems.
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0 . 0 0 5  T a r g e t

 S i m u l a t e d
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Figure 7. Simulation results of the JONSWAP case (color figure available online). (a) Profile of the
wave elevation monitored by the wave gauge at x = 6.0 m. (b) Comparison between the target
spectrum and the simulated spectrum.

4.2.2. White Noise Spectrum

The above-mentioned JONSWAP spectrum is a typical narrow-band spectrum, which
means that the energy of the JONSWAP spectrum is mainly concentrated near the peak
frequency and rapidly attenuates to both sides with the peak frequency as the center.
However, for a white noise spectrum, the most important feature is that the energy S(ω)
is a horizontal straight line in the desired frequency range. In this numerical case, the
desired truncated low- and high-wave frequencies are chosen as ωL = 0.432 rad/s and
ωH = 6.740 rad/s, respectively. The schematic diagram of the NWF and the numerical
parameters ∆t, N, ns and t are the same as the JONSWAP case.

Figure 8 shows the simulation results of the white noise spectrum case. Similar to the
previous case, it can be observed from Figure 8a that the time history curve also reflects
the characteristics of irregular waves. The FFT technique is adopted again to derive the
simulated spectrum, and the results are illustrated in Figure 8b. It can be observed that the
amplitude of the simulated spectrum fluctuates slightly near the horizontal straight line in
the target band. In the theoretical aspect, the white noise spectrum is an ideal mathematical
model. However, there is unexpected noise existing in the physical experiments, aroused
by the environmental complexity, and in computer simulations caused by some numerical
noise, such as artificial dissipation, unreasonable time step or nodes resolution. In other
words, it is almost impossible to obtain a perfect white noise spectrum neither in physical
experiments nor in numerical simulations. Overall, the deviation shown in Figure 8b is
acceptable and basically meets the needs of practical engineering applications. From the
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above discussions, it is demonstrated that the proposed 3D meshless scheme shows good
performance for capturing the irregularity of water waves by giving a target spectrum.
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Figure 8. Simulation results of the white noise spectrum case. (a) Profile of the wave elevation
monitored by the wave gauge at x = 6.0 m. (b) Comparison between the target spectrum and
simulated spectrum.

4.3. Example 3: Focused Waves

In Section 4.1, the focusing phenomenon of several components of water waves is
observed by giving two cycles of a T = 1.0 s sinusoidal wave followed by two and a half
cycles of a T = 1.5 s sinusoidal wave at the wave-making boundary Γ1. In real wave
conditions, however, the wave elevation is more complicated and difficult to be predicted,
especially for freak waves or rough waves. It is imperative to introduce a more effective
model for describing the complexity of the actual ocean environments. The previous
example demonstrates that the newly developed meshless scheme has good performance
in the prediction of irregular waves. In this numerical example, the developed 3D GFDM-
based NWF in Section 4.2 is employed again to simulate the focusing behavior of a series
of monochromatic waves using the JONSWAP spectrum by controlling the phase angle εi
for every wave component. Accordingly, the governing equations Equation (43) regarding
the instantaneous wave elevation should be modified as

η(x; t) =
Nωi

∑
i=1

Ai cos
[

ki

(
x− x f

)
− 2π fi

(
t− t f

)]
, (49)

where x f and t f represent the focusing location and time, respectively. At the instant of
t = t f , the crest of all wave components focuses at the location of x = x f , resulting in
a focused wave characterized by its considerable wave crest. Consequently, the velocity
function U is thus expressed as

U(t) =
Nωi

∑
i=1

Hi
2

2kih + sinh(2kih)
4 sinh2(kih)

ωi cos
[

kix f + ωi

(
t− t f

)]
. (50)
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For the sake of verifying the accuracy of the proposed 3D meshless scheme, a physical
experiment [29] is reproduced by a numerical simulation based on the developed 3D
GFDM-based NWF. In this numerical case, the focused waves are generated under the
same experimental conditions using a constant wave amplitude (CWA) spectrum. The
focusing location x f and focusing time t f are considered as x f = 6.65 m and t f = 13.34 s,
respectively. Furthermore, the wave frequency band and the number of wave components
are adopted as 5.236–7.854 rad/s and Nwi = 29 with the focusing wave amplitude A f
being 0.022 m. In this numerical case, the geometry parameters of the NWF is employed
the same as the physical wave flume [29], and the time step, numbers of nodes for the
whole computational domain and within the star are set with ∆t = 0.005 s, N = 66,477,
and ns = 85, respectively. The duration time t of the simulation process is adopted as
25 s. Figure 9 displays the comparison of free-surface elevation at the focusing location
between the numerical results and experimental data. It is demonstrated that the numerical
results of the focusing time and focusing locations are both in good agreement with the
experimental data. In general, the 3D GFDM-based NWF shows satisfactory accuracy in
the prediction of focused waves.
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Figure 9. Comparison of free-surface elevation at the focusing location between numerical results
and experimental data.

In order to investigate the effects of the spectrum type for simulating focused waves
using the 3D meshless scheme, three spectra (see Figure 10), including the JONSWAP spec-
trum, the CWA spectrum, and the constant wave steep (CWS) spectrum, are employed to
generate three focused waves with identical numerical parameters, except for the spectrum
type. The focusing location, focusing time, and focusing wave amplitude are adopted as
x f = 10.0 m, t f = 15.0 s and A f = 0.061 m, respectively. Figure 11a–c depicts the simulation
results of three focused waves using the above-mentioned spectra. The shapes of the free
surface at the focusing time t f = 15 s for three spectra are also displayed in Figure 12. It
can be observed that either the focusing time or the focusing location is in good accordance
with the desired values for the three spectra. A comparison of three profiles for the wave
elevation at the focusing location x = 10 m is shown in Figure 11d. In the initial stage of the
numerical simulations, the free surface is very gentle, while it begins to fluctuate gradually
as the calculation time continues to increase. After t = 13.0 s, the fluctuation of the free
surface obviously becomes severe. Finally, at t = 15.0 s, the phenomenon of the wave
focusing can be observed from the highest wave crest. Table 3 shows the comparison of the
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focusing location and the focusing time between the numerical results and designed values.
It can be seen from the table that the focusing wave amplitude for the JONSWAP case is
slightly over-predicted, with the error being 6.672%, while the cases of CWA and CWS
seem to be more accurate compared with the JONSWAP case. It is striking that the focusing
time of three cases, as is shown in Table 3, are in great agreement with the designed values.
From the above discussions of Tables 2 and 3, it is demonstrated that the proposed 3D
meshless scheme shows the great capability of capturing the focusing phenomenon of
various monochromatic wave components.
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Figure 10. JONSWAP, CWA and CWS spectrum given for the comparison study (color figure
available online).
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Figure 11. Cont.
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Figure 11. Simulation results of the focused waves using JONSWAP, CWA and CWS spectra (color
figure available online).(a) Time–history curves for the JONSWAP spectrum. (b) Time–history curves
for the CWA spectrum. (c) Time–history curves for the CWS spectrum. (d) Time–history curves for
the CWS spectrum.
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Figure 12. Cont.
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(c)

Figure 12. The comparison of free surface between three spectra at the focusing time. (a) JONSWAP
spectrum. (b) CWA spectrum. (c) CWS spectrum.

Table 3. Comparison of the focusing wave amplitude and the focusing time between numerical
results and designed values.

Spectrum Types

Focusing Wave Amplitude A f Focusing Time t f

Simulated
(m)

Designed
(m)

Error
(%)

Simulated
(s)

Designed
(s)

Error
(%)

JONSWAP 0.0651 0.0610 6.672% 14.95 15.00 0.333%
CWA 0.0636 0.0610 4.279% 14.99 15.00 0.067%
CWS 0.0631 0.0610 3.410% 14.96 15.00 0.267%

Average 4.787% 0.222%

5. Conclusions

In the present study, we propose a 3D truly meshless scheme to investigate the dynamic
behaviors of nonlinear water waves under complex wave conditions. Based on the potential
flow hypothesis, the RKM2 in conjunction with the SLA is adopted to discretize the
temporal variable of the 3D Laplace’s equation. At every time step, the spatial variables
of the governing equation with mixed boundary conditions are solved, using the GFDM.
The physical values at every computational node are transformed into a linear-combined
algebraic system with different weighting coefficients and can be obtained efficiently due
to the mathematical merits of the sparse matrix.

Three numerical examples are employed to verify the accuracy and stability of the
present 3D GFDM model. In the first numerical benchmark, the transient extreme waves
are reproduced by giving the wave-making boundary a piston signal with several sinu-
soidal wave components, and the phenomenon of transient extreme waves is successfully
observed at a certain location. As for the second numerical example, two types of irregular
waves are simulated using the JONSWAP spectrum and the white noise spectrum. The
irregularity of the temporal evolution of the free surface is accurately calculated, and the
simulated spectra are also in good agreement with the target spectra. Finally, the sim-
ulation of focused waves is carried out to predict the focusing phenomenon of various
monochromatic wave components. Three spectra, including the JONSWAP, CWA and CWS
spectra, are adopted to generate different irregular waves designed with the same focusing
time and focusing location. The results show that the proposed 3D meshless scheme has
the capability of capturing the phenomenon of waves focusing. In general, the newly
developed 3D “RKM2-GFDM” meshless scheme shows great performance to predict the
dynamic behaviors of nonlinear water waves under complex wave conditions. We under-
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line that in the present study, the simulations are only considered in 2D formalism; the 3D
effects will be further investigated. In the future, the hydrodynamic problem regarding the
wave–structure interactions between freak waves and floating offshore structures will be
numerically investigated based on the developed 3D GFDM-based NWF.
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