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Abstract 

The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless 

method for solving partial differential equations using Moving Least Squares (MLS) 

interpolants. It is, however, computationally expensive for some problems. A coupled 

MLPG/Finite Element (FE) method and a coupled MLPG/Boundary Element (BE) 

method are proposed in this paper to improve the solution efficiency. A procedure is 

developed for the coupled MLPG/FE method and the coupled MLPG/BE method so 

that the continuity and compatibility are preserved on the interface of the two domains 

where the MLPG and FE or BE methods are applied. The validity and efficiency of the 

MLPG/FE and MLPG/BE methods are demonstrated through a number of examples.  
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1. Introduction 

Meshless methods have become recently attractive alternatives for problems in 

computational mechanics, as it does not require a mesh to discretize the problem 

domain, and the approximate solution is constructed entirely in terms of a set of 

scattered nodes. Some meshless methods are proposed and achieved remarkable 

progress, such as, Diffuse Element Method (DEM) (Nayroles et al. 1992), Element Free 

Galerkin (EFG) method (Belytschko et al. 1994), Reproducing Kernel Particle (RKP) 

method (Liu et al. 1995), Point Interpolation Method (PIM) (Liu and Gu 1999), Point 

Assembly Method (PAM) (Liu 1999), Boundary Node Method (BNM) (Mukherjee and 

Mukherjee 1997, Kothnur et al. 1999), Boundary Point Interpolation Method (BPIM) 

(Gu and Liu 1999a), and so on. In addition, techniques of coupling meshless methods 

with other established numerical methods have also been proposed, such as coupled 

EFG/Finite Element (FE) method (Belytschko and Organ 1995, Hegen 1996), 

EFG/Boundary Element (BE) method (Gu and Liu 1999b, Liu and Gu 2000a), and 

EFG/BPIM method (Liu and Gu 2000b).  

       In particular, the above-mentioned meshless methods are “meshless” only in terms 

of the interpolation of the field or boundary variables, as compared to the usual Finite 

Element Method(FEM) or Boundary Element Method (BEM). Most of meshless 

methods have to use background cells to integrate a weak form over the problem 

domain or boundary. The requirement of background cells for integration makes the 

method being not “truly” meshless. 

      Three truly meshless methods, called the Meshless Local Petrov-Galerkin (MLPG) 

method, the Local Boundary Integral Equation (LBIE) method, and the Local Point 

Interpolation Method (LPIM), have been developed by Atluri and Zhu (1998,2000a,b), 
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Atluri et al. (1999a,b), Zhu et al. (1998), Liu and Gu (2000b). The MLPG method is 

based on a local weak form and Moving Least Squares (MLS) approximation. In the 

MLPG, an integration method in a regular-shaped local domain (such as spheres, 

rectangular, and ellipsoids) is used. The MLPG method does not need any  “element” or 

“mesh” for both field interpolation and background integration. The MLPG method has 

been used for two-dimensional elasto-statics (Atluri and Zhu 2000b) and one-

dimensional 4th order thin beam static analysis (Atluri et al. 1999a). Very good results 

have been obtained. 

         However, there exist some inconvenience in using MLPG. First, it is difficult to 

implement essential boundary conditions in MLPG, because the shape functions, which 

constructed by MLS approximation, lack the delta function property. Second, the 

MLPG is computationally expensive due to again the use of MLS approximation. In 

addition, a local background integration cells structure has to be used for the integration, 

which can be computationally expensive for some problems, especially for problems 

with infinite or semi-infinite domains. 

Some strategies have been developed to alleviate the above problems (Atluri et al. 

1999b, Liu and Yan 2000). Alternatively, following the idea of the coupling of the EFG 

with FE and BE, these problems can also be overcome if the use of the MLPG method 

is limited to the sub-domain where their unique advantages are beneficial. In the 

remaining part of domain, FEM or BEM is employed.  

     It is often desirable and beneficial to combine two established numerical methods in 

order to exploit their advantages while evading their disadvantages. A lot of research 

work has been done in the coupled methods between two established numerical methods 

(Brebbia and Georgiou 1979, Rangogni and Reali 1982, Belytschko and Organ 1995, 
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Hegen 1996, Gu and Liu 1999b, Liu and Gu 2000a). Therefore, the idea of combining 

MLPG with other numerical techniques (FEM and BEM) is naturally of great interest in 

many practical applications.  

 This paper focuses on the coupling of the MLPG method with the FEM and BEM. 

Techniques for the coupled MLPG/FE method and the coupled MLPG/BE method for 

continuum mechanics problems are presented. The major difficulty of the coupling is to 

enforce the displacement compatibility conditions on the interface boundary between 

the MLPG domain and the FE domain or the BE domain. The interface elements, which 

are analogues to the FE interface element used by Gu and Liu (1999b), are formulated 

and used along the interface boundary. Within the interface element, the shape functions 

are comprised of the MLPG and FE shape functions. Shape functions constructed in this 

manner satisfy both consistency and compatibility conditions. However, the derivative 

of the modified interface shape function is discontinuous across the boundary between 

purely MLPG domain and the interface domain. It will make an additional difficulty in 

obtaining an accurate numerical integration. A technique is presented for numerical 

integration to divide the local integration domain into integration sub-cells by 

boundaries of FE interface elements. 

Programs of coupled methods have been developed in FORTRAN, and a number of 

numerical examples are presented to demonstrate the convergence, validity and 

efficiency of the coupled methods. 
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2. MLPG formulation 

2.1 Moving Least Squares interpolant 

Consider a problem domain Ω. To approximate a function u(x) in Ω, a finite set of p(x) 

called basis functions is considered in the space coordinates xT=[x, y]. The basis 

functions in two-dimension is given by 

 pT(x)=[1, x, y, x2, xy, y2…] (1) 

The MLS interpolant uh(x) is defined in the domain Ω by 

 
∑

=

==
m

j
jj
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1

T )()()()()( xaxpxxx  (2) 

where m is the number of basis functions, the coefficient aj(x) in equation (2) is also 

functions of x; a(x) is obtained at any point x by minimizing a weighted discrete L2 

norm of: 
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where n is the number of points in the neighborhood of x for which the weight function 

w(x-xi)≠0, and ui is the nodal value of u at x=xi .  

The stationarity of J with respect to a(x) leads to the following linear relation 

between a(x) and ui: 

 A(x)a(x)=B(x)u (4) 

Solving a(x) from equation (4) and substituting it into equation (2), we have 
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where the MLS shape function φi(x) is defined by  
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where A(x) and B(x) are the matrices defined by 
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 B(x)=[w1(x)p(x1), w2(x)p(x2),…,wn(x)p(xn)] (8) 

    It can be found from above discussion that the MLS approximation does not pass 

through the nodal parameter values. Therefore the MLS shape functions given in 

equation (6) do not, in general, satisfy the Kronecker delta condition. Thus, 
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2.2 Discrete equations of MLPG 

We consider the following two-dimensional problem of solid mechanics in domain 

Ω bounded by Γ : 

 ∇σσσσ+b=0       in Ω (10) 

where σ is the stress tensor, which corresponds to the displacement field u={u, v} T, b is 

the body force vector, and ∇ is the divergence operator. The boundary conditions are 

given as follows: 

 tn =⋅σ             on the natural boundary Γt (11) 

 uu =               on the essential boundary Γu (12) 

in which the superposed bar denotes the prescribed boundary values and n is the unit 

outward normal to domain Ω. 

Because the MLS shape functions lack the Kronecker delta function property, the 

accurate and efficient imposition of essential boundary condition often presents 

difficulties. Strategies have been developed to overcome this problem, such as Lagrange 

multipliers method (Belytschko et al. 1994), FE method (Krongauz and Belytschko 
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1995), penalty method (Zhu and Atluri 1998, Liu and Yang 1999) and direct 

interpolation method (Liu and Yan 2000). The essential boundaries of many problems 

can be included in the FE or BE domain purposely in the coupled methods. Therefore, 

the essential boundary conditions can be satisfied using the conventional manner in the 

FEM and BEM. For some problems, which the essential boundaries are difficult to be 

included in the FE domain or the BE domain, the method of enforcement of essential 

boundary conditions using interface finite elements can be adopted (Krongauz and 

Belytschko 1995).  

     A local weak form of the differential equation (10), over a local sub-domain Ωs 

bounded by Γs, can be obtained using the weighted residual method 

 0d)( , =Ω+∫Ωs
ijiji bw σ  (13) 

where wi is the weight function.  

      The first term on the left hand side of equation (13) can be integrated by parts to 

become 

 0d)(d , =Ω−−Γ ∫∫ ΩΓ ss
iiijjijiji bwwnw σσ  (14) 

The support sub-domain Ωs of a node xi is a domain in which wi(x)≠0. A arbitrary shape 

support domain can be used. A circle or rectangular support domain is used in this paper 

for convenience. From Figure 1, it can be found that the boundary Γs for the support 

domain is usually composed by three parts: the internal boundary Γsi, the boundaries Γsu 

and Γst, over which the essential and natural boundary conditions are specified. 
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Imposing the natural boundary condition and noticing that ijij t
n

u
n ≡

∂
∂=σ in equation 

(14), we obtain: 

 0d)(ddd , =Ω−−Γ+Γ+Γ ∫∫∫∫ ΩΓΓΓ sstsusi
iiijjiiiiiii bwwtwtwtw σ  (15) 

For a support domain located entirely within the global domain, there is no intersection 

between Γs and the global boundary Γ,  Γsi=Γs , and the integrals over Γsu and Γst vanish.  

     With equation (15) for any node xi, instead of dealing with a global boundary value 

problem, the problem becomes to deal with a localized boundary value problem over a 

support domain. 

     The problem domain Ω is represented by properly scattered nodes. The point 

interpolation approximation (5) is used to approximate the value of a point xQ. 

Substituting equation (5) into the local weak form (15) for all nodes leads to the 

following discrete system equations 

 (MLPG)(MLPG) fuK =e  (16) 

where the “stiffness” matrix K(MLPG) and nodal “load” f(MLPG) vector are defined by 

 ∫∫∫
ΓΓΩ

Γ−Γ−Ω=
susis

jijijiij dddT
(MLPG) NDBwNDBwDBvK  (17a) 

 ∫∫
ΩΓ

Ω+Γ=
sst

iiiii dd)MLPG( bwtwf  (17b) 

with w being the value of the weight function matrix, corresponding to node i, evaluated 

at the point x, and 
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      As the MLPG is regarded as a weighted residual method, the weight function plays 

an important role in the performance of the method. Theoretically, as long as the 

condition of continuity is satisfied, any weight function is acceptable. However, the 

local weak form is based on the local sub-domains centered by nodes. It can be found 

that the weight function with the local property, which should decrease in magnitude as 

the distance from a point xQ to the node xi increases, yields better results. Therefore, we 

will consider weight functions, which only depend on the distance between two points, 

such as the spline weight functions. It can be easily seen that the system stiffness matrix 

K(MLPG) in the present method is banded but usually asymmetric. However, similarly as 

Galerkin FE methods, the weight function, w, can be take as the same formulation as 

equation (5). In this case K(MLPG) becomes symmetrical (Atluri et al. 1999b). This 

symmetrical stiffness matrix can be an added advantage in applying the MLPG method.  

 

 

for plane stress 
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3. FE formulation 

The weak formulation of FEM for equation (10) is posed as follows 

 ∫ ∫ ∫
Ω Ω Γ

=Γ⋅−Ω⋅−Ω⋅∇
t

TTT
s 0ddd)( tubuu δδσδ  (18) 

The interpolation form of FEM can be written as 
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)(       ne=3,4,5,….. 
(19) 

where ne is the number of nodes in a FE element, and the N is the FE shape function. 

Substituting the expression of u and v given in equation (19) into the weak form (18) 

yields 

 K(FE)ue=f(FE) (20) 

where 

 Ω= ∫
Ω

dT
)FE( jiij DBBK  (21a) 

 ∫∫
ΩΓ

Ω+Γ= dd
t

)FE( btf iii NN  (21b) 
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4. BE formulation 

    From equations (10)~(12), the principle of virtual displacements for linear elastic 

materials can be written as (Brabbia 1978): 

 ∫ ∫ ∫
Ω Γ Γ

Γ−−Γ⋅−=Ω⋅+∇
u t

d)(d)(d)( *** upppuuubσ  (22) 

where p is the surface traction, u* is the virtual displacement and p* is the virtual 

surface traction corresponding to u*. The first term on the left-hand-side of equation 
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(22) is integrated by parts and used the fundamental solution (Brebbia et al 1984) to 

become 

 ∫ ∫∫
Γ ΩΓ

Ω+Γ=Γ+ d*d*d* bupuupii uc  (23) 

where c is the constant depended on the shape of boundary. Consider the case that the 

boundary values of u and p are given by interpolation functions and the values at the 

nodes 

 u =ΦΦΦΦTue (24a) 

 p =ΨΨΨΨTpe (24b) 

where ΦΦΦΦT and ΨΨΨΨT are interpolation functions, ue and pe are the values of u and p of 

boundary nodes. The resulting boundary integral equation (23) can be written in matrix 

form as 

 Hue=Gpe+d (25) 

where  

 ∫
Γ

Γ+= dT*
ΦpcH i  (26a) 

 ∫
Γ

Γ= dT*
ΨuG  (26b) 

 ∫
Ω

Γ= d*bud  (26b) 

In order to combine the BEM region with MLPG region together, the BE formulation 

is converted to equivalent MLPG formulation. Let us transform equation (25) by 

inverting G and multiply the result by the distribution matrix M (Brebbia et al 1984) 

 (MG−1H)ue-(MG−1d)=Mpe (27) 

where distribution matrix M is defined as 

 ∫
Γ

ΓΦΨ= dTM  (28) 
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we can now define: 

 K(BE)
'=MG−−−−1H (29a) 

 f(BE)=Mpe+ MG−−−−1d (29b) 

 Hence equation (34) has the following equivalent BEM form: 

 K(BE)' ue = f(BE) (30) 

The equivalent BE stiffness matrix K(BE)' is generally asymmetric. The asymmetry 

arises from the approximations involved in the discretization process and the choice of 

the assumed solution. If the symmetric MLPG formulation is used, the symmetrization 

must be done for K(BE)'. One simple method is by minimizing the squares of the errors 

in the asymmetric off-diagonal terms of K(BE)' (Brebbia et al 1984). Hence a new 

symmetric equivalent BE stiffness matrix K(BE) can be obtained 

 K(BE)ij=1/2(k(BE)
'
ij+k(BE)

'
ji) (31) 

The equation (30) can be rewritten as: 

 K(BE) ue = f(BE) (32) 

5. Coupling of MLPG and FE or BE 

5.1 Continuity conditions at coupled interfaces 

Consider a problem domain consisting of two sub-domains Ω1 and Ω2, joined by an 

interface boundary ΓI. The MLPG formulation is used in Ω1 and the FE or BE 

formulation is used in Ω2 as shown in Figure 1. Compatibility and equilibrium 

conditions on ΓI must be satisfied. Thus, 

 uI
(1)=uI

(2) (33) 

 FI
(1)+FI

(2)=0 (34) 

where uI
(1) and uI

(2) are the displacement on ΓI for Ω1and Ω2, FI
(1) and FI

(2) are the forces 

on ΓI for Ω1and Ω2,respectively. 

Because the shape functions of the MLPG method are derived using MLS, uh in 

equation (5) differs with the nodal displacement value u at point x. It is impossible to 



Computational Mechanics, 26(2000) 166-173, Springer-Verlag 

 13

couple MLPG and FE or BE domains directly along ΓI.  One simple method is to 

introduce interface elements in MLPG domain near the interface boundary ΓI (see 

Figure 1). In these interface elements, a hybrid displacement approximation is defined 

so that the shape functions of MLPG domain along ΓI possess the delta function 

property.  

5.2 Modified shape functions of interface elements 

     The detailed characteristics of FE interface elements can be referred to Krongauz and 

Belytschko (1996). Because the nodal arrangement may be irregular in MLPG domain, 

4~6 nodes isoparametric interface FE elements are used in this paper. 

     A detailed figure of interface domain is shown in Figure 1. ΩI is a layer of sub-

domain along the interface boundary ΓI within the MLPG domain Ω1. The new 

displacement approximation in MLPG domain Ω1 can be rewritten as: 
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where the hybrid shape functions of the interface element are defined as 
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The derivatives of the interface shape functions are: 
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Hence, the modified displacement approximation in domain Ω1
 becomes 
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where u1
h is the displacement of a point in Ω1, u(MLPG) is MLPG displacement given by 

equation(5), u(FE) is FE displacement, the ramp function R is equal to the sum of the FE 
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shape functions of a interface element associated with interface element nodes that are 

located on the interface boundary ΓI, i.e. 
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where φi is the MLPG shape function given by equation(6), Ni(x) is the FE shape 

function(see eg. Reddy 1993), ne is the number of nodes in an FE interface element, and 

k is the number of nodes located on the interface boundary ΓI for a interface element. 

According the property of FE shape functions, R will be unity along ΓI and vanish out 

of interface domain: 
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The approximants (38) satisfy consistency and interpolate a linear field exactly, 

which is proved by Krongauz and Belytschko (1996). The regular MLPG and modified 

shape functions in 1-D are shown in Figure 2. In this figure, a two nodes linear interface 

element is used. It can be seen that the displacement approximation is continuous from 

purely MLPG domain (Ω1-ΩI) passing to the interface domain ΩI. The derivative of it 

is, however, discontinuous across the boundary. These discontinuities do not adversely 

affect the overall results since they only affect a small number of nodes (Krongauz and 

Belytschko 1996). 

Using above approximants, the shape functions of MLPG domain along ΓI possess 

the Kronecker delta function property given in equation (9). The MLPG domain and FE 

or BE domain can be coupled directly. 
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5.3 Numerical integration in MLPG domain for coupled methods 

A local numerical integration is needed to evaluate the integration in equation (17) in 

the MLPG domain. The Gauss quadrature is used. For a node xi, a local regular-shaped 

integration cell (for example circle and rectangular) is needed to employ Gauss 

quadrature. For each Gauss quadrature point xQ, the MLS interpolation is performed to 

obtain the integrand. Therefore, for a node xi, there exist three local domains: local 

integration domain ΩQ (same as Ωs, size rq), weight function domain Ωw  for wi≠0 (size 

rw), and interpolation domain Ωi for xQ (size r i). These three local domains are 

independent as long as the condition rq≤rw is satisfied. It should be noted that if the 

weight function w is taken zero along the boundary of integration domain, the equation 

(17b) can be simplified because the integration along the internal boundary Γsi vanishes.  

       There exit difficulties to obtain the exact numerical integration in meshless methods 

(Atluri et al. 1999b, Dolbow and Belytschko 1999). Insufficiently accurate numerical 

integration may cause a deterioration and a rank-deficiency in the numerical solution. 

The numerical integration errors are results from the complexities of the integrand. In 

order to guarantee the accuracy of the numerical integration, the ΩQ should be divided 

into some regular small partitions. In each small partition, more Gauss quadrature points 

should be used.  

     Additional difficulty will be caused in the numerical integration when the local 

integration domain ΩQ is inside or intersects with the interface domain ΩI. From the 

property of the interface shape function, it can be found that the derivative of the 

modified shape function is discontinuous across the boundary between purely MLPG 



Computational Mechanics, 26(2000) 166-173, Springer-Verlag 

 16

domain (Ω1-ΩI) and the interface domain ΩI. In addition, the derivative of the shape 

functions may be discontinuous across the boundary between two FE interface elements 

in term of the property of the FE shape function. The Gauss quadrature can fail to give 

the exact result for such discontinuous integrand regardless how many Gauss points are 

used. The difficulty can be overcome that the domain is divided into integration sub-

domains by the boundaries of the interface elements (shown in the Figure 1 b). Then, 

the accurate integration can be obtained using Gauss quadrature. 

6. Numerical result 

Programs are developed to combine 3 ~6 nodes isoparametric FE(see eg. Reddy 1993) 

with MLPG, and constant, linear and quadratic BE with MLPG. Cases are run in order 

to examine the MLPG/FE and MLPG/BE in two-dimensional elastostatics. In the 

MLPG part, rectangle local domains are used for establishing weight function and 

obtaining numerical integration. The size of the local domain, rq, for node i and the size 

of the influence domain, r i, for a point xQ are defined  

 rq=α de (41a) 

 r i=β de (41b) 

where, α and β are coefficients chosen as 0.5~3.0 in this paper. The de is the shortest 

distance between the node and neighbor nodes. Four nodes isoparametric FE interface 

elements are used in this paper.  

6.1 Cantilever beam 

Consider a beam of length L=48, height D=12, E=3.0×107, ν=0.3, subjected to a 

parabolic traction at the free end with P=1000 as shown in Figure 3. The beam has a 
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unit thickness and a plane stress problem is considered. The analytical solution is 

available and can be found in a textbook by Timoshenko and Goodier (1970).  

    The beam is divided into two parts. BE and FE are used, respectively, in the part on 

the left part where the essential boundary is included. MLPG is used in the part on the 

right. The nodal arrangement is shown in Figure 4. Four nodes isoparametric rectangle 

finite elements are used in the FE part, and linear boundary elements are used in the BE 

part. Sixty three nodes are used in the MLPG part. The results for α=1.5 and β=3.0 are 

obtained. 

     The function of interface element is investigated. In the absence of the interface 

elements, i.e. MLPG region are combined with FE or BE region directly along the 

interface boundary ΓI, the vertical displacement results of right end of the beam are 

listed in the Table 1. It can be found that the absence of interface elements causes 

errors. It is apparent that interface elements are imperative in the combination MLPG 

with FE or BE.  

     It is found that for displacement, results obtained are identical. As the stress is most 

critical, detail results of shear stress are presented here. Figure 5 illustrates the 

comparison between the shear stress calculated analytically and by the coupled methods 

at the section of x=L/2. The plot shows an excellent agreement between the analytical 

and numerical results.  

    For quantitative error analysis, we define the following norm using shear stresses as 

an error indicator, as the accuracy in shear strain or shear stress is much more critical 

for the beam problem. 
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where N is the number of nodes investigated, τ is the shear stress obtained by numerical 

method, and τ is the analytical shear stress. 

    The convergences for the coupled MLPG/FE method and the coupled MLPG/BE 

method with mesh refinement are shown in Figure 6, where h is equivalent to the 

maximum element size in the finite element method in this case. It is observed that the 

convergences of the coupled methods are very good. The convergence of using the 

MLPG for whole domain is also shown in the same figure. It can be observed from this 

figure that the accuracy of the MLPG is the best in these three methods. The accuracy of  

 MLPG/BE is higher than that of  MLPG/FE because of the higher accuracy of BE than 

FE in obtaining stresses. However, the convergence rate of these two coupled methods 

is nearly same.  

6.2 Hole in an infinite plate 

 A plate with a circular hole subjected to a unidirectional tensile load of 1.0 in the x 

direction is considered. Due to symmetry, only the upper right quadrant (size 5×5) of 

the plate is modeled as shown in Figure 7. When the condition b/a≥5 is satisfied, the 

solution of finite plate is very closed to that of the infinite plate (Roark and Young, 

1975). Plane strain condition is assumed, and E=1.0×103, ν=0.3. Symmetry conditions 

are imposed on the left and bottom edges, and the inner boundary of the hole is traction 

free. The tensile load in the x direction is imposed on the right edge. The exact solution 

for the stresses of infinite plate is available and can be found in a textbook by 

Timoshenko and Goodier (1970).  
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     The plate is divided into two parts, where MLPG is used in one part, FE and BE are 

applied in the other part, respectively. The nodal arrangements of coupled methods are 

shown in Figure 7. α=1.0 and β=2.0 are used in the MLPG part. Four nodes finite 

elements and linear boundary elements are used, respectively, in the FE or BE part. 

    As the stress is most critical, detailed results on stress are presented here. The stress 

σx at x=0 obtained by the coupled methods are plotted in Figure 8. The result obtained 

by MLPG is shown in the same figure. It can be observed from Figure 8 that the 

coupled methods yield satisfactory results for the problem considered.  

6.3 Internal pressurized hollow cylinder 

A hollow cylinder under internal pressure is shown in Figure 9. The parameters are 

taken as p=100, G=8000, and ν=0.25. The analytical solution for this problem is 

available. Due to the symmetry of the problem, only one quarter of the cylinder needs to 

be modeled. The cylinder is divided into two parts, where MLPG and FE (4 nodes 

elements) or BE (linear elements) are applied, respectively. As shown in Figure 10, 96 

nodes and 78 nodes are used to discretize the domain and boundary in MLPG/FE and 

MLPG/BE. The result of α=1.0 and β=2.0 are obtained. 

     The MLPG/FE and MLPG/BE results are compared to the MLPG, and analytical 

solution. The radial displacements of boundary nodes are presented in Table 2. It can be 

found that The MLPG/FE and MLPG/BE results are in very good agreement with the 

analytical solution. 

6.4 A structure on a semi-infinite foundation 

In this example the coupled methods are used in an semi-infinite problem, which 

has been solved using coupled FE/BE method (Brebbia and Georgiou 1979) and the 
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coupled EFG/BE method (Gu and Liu 1999a). A structure stands on a semi-infinite 

foundation is shown in Figure 11. Loads are imposed on the structure. The infinite 

foundation can be treated in practice in either of the following three ways: by truncating 

the semi-infinite plane at a finite distance (approximate method), using a fundamental 

solution appropriate to the semi-space problem rather than a free-space Green’s function 

in BEM, and using infinite element in FEM. The first approximate method is used 

because it is convenient to compare the coupled method solutions with the FE and 

FE/BE solutions. 

As shown in Figure 11, Region 2 represents the semi-infinite foundation and is 

given a semi-circular shape of very large diameter in relation to Region 1 that represents 

the structure. Boundary conditions to restrain rigid body movements are applied. The 

MLPG is used in Region 1, and the FE and BE are used, respectively, in Region 2. The 

nodal arrangements of the coupled MLPG/BE method and the coupled MLPG/FE 

method are shown in Figures 11 and 12. The problem is also analyzed using FEM, 

MLPG and FE/BE methods. Two loading cases shown in Figure 13 are analyzed: Case 

1 considers five concentrated vertical loads along the top and case 2 considers an 

additional horizontal load acting at the right corner. 

The displacement results of top of the structure are given in Table 3. The results 

obtained using FEM, MLPG and FE/BE methods are included in the same table. The 

results obtained using the present MLPG/FE and MLPG/BE methods are in very good 

agreement with those obtained using FE, MLPG and FE/BE methods. However, it is 

interesting to note that the foundation is adequately represented using only 30 BE nodes 

in the coupling MLPG/BE case as compared to 120 for the MLPG cases. The saving is 

considerable.  
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7  Discussion and conclusions 

The coupled MLPG/FE and MLPG/BE methods have been considered in this 

paper. In these coupled methods, the problem domain is divided into two (or several) 

parts. The MLPG is used in one part where MLPG method needed, and the FE or BE is 

used in other parts. Because the MLPG shape functions constructed using MLS 

approximation, the shape functions of MLPG along the combination boundary lack the 

Kronecker delta function property. In order to overcome this difficulty, the interface 

elements are defined with shape functions composed of the FE and MLPG shape 

functions along the combination boundary. The shape functions are constructed so that 

linear consistency is met exactly. Numerical examples have demonstrated the 

effectiveness of the present coupled MLPG/FE and MLPG/BE methods for 2-D 

elastostatics. 

      The present coupled methods can give full play of the advantages of both MLPG, 

FE and BE methods. First, the computation cost is much lower because the MLS 

approximation is only used in one part. Second, imposition of essential boundary 

conditions becomes easier in coupled methods than in the MLPG method. Third, the 

coupled methods are of great interest in many practical problems, such as using 

MLPG/BE to solve fluid-structure interaction problems with infinite or semi-infinite 

domains, and so on. 

     With above mentioned advantages, the coupled MLPG/FE and MLPG/BE methods 

offers a potential numerical alternative simple and efficient procedure for handling 

problems of industrial applications. 
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Table 1 Vertical displacement of the right end of the beam(××××10-2) 

MLPG/FE MLPG/BE  Analytical 
solution  

uy 
uy Error(%) uy Error(%) 

With interface 
elements 

0.89 0.8605 -2.81 0.8712 -2.11 

Without 
interface 
elements 

0.89 0.7285 -18.15 0.7232 -18.74 

 

Table 2 Radial displacement for hollow cylinder(××××10-2) 

Nodes Exact. MLPG/FE  MLPG/BE MLPG 

1 0.4464 0.4461 0.4468 0.4463 

2 0.4464 0.4462 0.4473 0.4466 

3 0.4464 0.4478 0.4488 0.4470 

4 0.8036 0.8021 0.8120 0.8026 

5 0.8036 0.8062 0.8116 0.8068 

6 0.8036 0.8101 0.8112 0.8091 

Liu and Gu : Tables 1&2 
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Table 3  Vertical displacements along top of structure 

 

      

      

Nodes FE  MLPG FE/BE MLPG/FE MLPG/BE 

1 1.41 1.43 1.40 1.42 1.43 

2 1.34 1.34 1.33 1.34 1.35 

3 1.32 1.32 1.32 1.32 1.32 

4 1.34 1.34 1.33 1.34 1.35 

5 1.41 .143 1.40 1.42 1.43 
      

1 -3.39 -3.58 -3.55 -3.53 -3.62 

2 -0.97 -1.12 -1.05 -1.00 -1.07 

3 1.35 1.36 1.35 1.35 1.34 

4 3.61 3.72 3.70 3.59 3.69 

5 6.00 6.15 6.17 6.14 6.14 
 

 

 Displacements  (×10-4) 
Load case 1 

Load case 2 

Liu and Gu : Table 3 
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Tables and Figures Captions: 
 
Table 1 Vertical displacement of the right end of the beam(×10-2) 

Table 2 Radial displacement for hollow cylinder(×10-2) 

Table 3  Vertical displacements along top of structure 

Figure 1  Domain division into MLPG and FE or BE regions 

(a)The interface elements; the weight function domain Ωw and integration domain 

ΩQ for node i; the interpolation domain Ωi for Gauss integration point xQ 

(b) Detailed integration sub-domain QΩ′  of ΩQ for node i 

Figure 2  Comparison of original and modified shape functions of  MLPG region  in 1-D 

Figure 3 Cantilever beam 

Figure 4 Nodal arrangement of the cantilever beam  

Figure 5  Shear stress τxy at the section x=L/2 of the beam 

Figure 6  Convergence in et norm of error 

Figure 7  Nodes in a plate with a central hole subjected to a unidirectional tensile load in 

the x direction   (a) MLPG/FE (b)MLPG/BE 

Figure 8  Stress distribution obtained using MLPG/FE and MLPG/BE methods (σx, at x=0) 

Figure 9  Hollow cylinder subjected to internal pressure 

Figure 10  Arrangement of nodes for the hollow cylinder (a) MLPG/FE (b)MLPG/BE 

Figure 11 Nodal arrangement of the coupled MLPG/BE method for the problem of a 

structure standing on a semi-infinite foundation 

Figure 12  Nodal arrangement of the coupled MLPG/FE method 

Figure 13  MLPG/FE detailed nodal arrangement of the structure and load cases  
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(a)  The interface elements; the weight function domain Ωw and integration 
domain ΩQ for node i; the interpolation domain Ωi for Gauss integration point xQ  

Node i 

(b) Detailed integration sub-domain QΩ′  of ΩQ for node i 
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Figure 1  Domain division into MLPG and FE or BE regions 
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Liu and Gu : Figure 1 
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Liu and Gu : Figure 2 
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Figure 3 Cantilever beam 

Liu and Gu : Figure 3 
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Figure 4 Nodal arrangement of the cantilever beam 

(b) 

(a) 

Liu and Gu : Figure 4 
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Figure 5  Shear stress τxy at the section x=L/2 of the beam  
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Liu and Gu : Figure 5 
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Figure 6  Convergence in et norm of error 
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Liu and Gu : Figure 6 
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Liu and Gu : Figure 7(a) 
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Figure 7  Nodes in a plate with a central hole subjected 
to a unidirectional tensile load in the x direction 

 

(b) MLPG/BE 

Liu and Gu : Figure 7(b) 
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Figure 8  Stress distribution obtained using MLPG/FE 
and MLPG/BE methods (σx, at x=0) 
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Liu and Gu : Figure 8 
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Figure 9  Hollow cylinder subjected to internal pressure 

Liu and Gu : Figure 9 
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Liu and Gu : Figure 10(a) 



Computational Mechanics, 26(2000) 166-173, Springer-Verlag 

 39

 

1 

2 
3 

4 

5 

6 

Figure 10  Arrangement of nodes for the hollow cylinder 
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Liu and Gu : Figure 10(b) 
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Figure 11 Nodal arrangement of the coupled MLPG/BE method for 
the problem of a structure standing on a semi-infinite foundation 

Region 2 (BEM) 

Region 1 (MLPG) 

 

d=185 m 

h=12 m 

Liu and Gu : Figure 11 
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Figure 12  Nodal arrangement of the coupled MLPG/FE method 

Liu and Gu : Figure 12 



Computational Mechanics, 26(2000) 166-173, Springer-Verlag 

 42

 
 

 

Figure 13  MLPG/FE detailed nodal arrangement of the 

structure and load cases  
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Liu and Gu : Figure 13 


