
Meshless Methods and Partition of Unity

Finite Elements

N. Sukumar1 — J. Dolbow2 — A. Devan2 — J. Yvonnet3 — F. Chinesta3

D. Ryckelynck3 — P. Lorong3 — I. Alfaro4 — M. A. Martínez4

E. Cueto4 — M. Doblaré4

1 Department of Civil and Environmental Engineering, University of California,

One Shields Avenue, Davis, CA 95616. U.S.A.

nsukumar@ucdavis.edu

2 Department of Civil and Environmental Engineering, Duke University

Box 90287, Durham, NC 27708-0287. U.S.A.

jdolbow@duke.edu

3 LMSP (Laboratoire de Mécanique des Systèmes et des Procédés)

UMR 8106 CNRS-ENSAM-ESEM

151 boulevard de l’Hôpital, F-75013 Paris, France

julien.yvonnet@paris.ensam.fr

4 Aragón Institute of Engineering Research. University of Zaragoza.

Edificio Betancourt. María de Luna, 5, E-50018. Zaragoza, Spain

ecueto@unizar.es

ABSTRACT. This paper encompasses the main conclusions obtained in the mini-symposium New

and Advanced Numerical Strategies in Forming Processes Simulation, held during the 6th In-

ternational ESAFORM Conference on Material Forming (Salerno 2003), particularly those as-

pects dealing with meshless and partition of unity methods applied to the simulation of forming

processes.
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1. Introduction

With an aim towards alleviating the need for mesh re-generation in moving bound-

ary (such as crack growth) and large deformation problems, there has been significant

interest in the development and application of meshless (or meshfree) methods. The

impetus in this direction emanated from the work by Nayroles and co-workers who

proposed the diffuse element method (DEM) (Nayroles et al., 1992) in 1992, and

since then there have been many new developments to this class of Galerkin meth-

ods. A detailed discussion and comparison of different meshless and particle methods

can be found in references (Belytschko et al., 1998); (Li and Liu, 2002). The mesh-

less paradigm has provided new insights into the finite element method (Babuška and

Melenk, 1996); (Duarte and Oden, 1996), and also brought out the intimate link be-

tween scattered data approximation, computational geometry, and the numerical so-

lution of PDEs. In particular, the partition of unity framework (Babuška and Melenk,

1996) is a powerful technique to model discontinuities and singularities through lo-

cal enrichment within a finite element setting. Level set and fast marching methods

(FMM) (Sethian, 1999) are well-known interface-capturing techniques in which the

interface is represented as the zero level contour of a function (level set) of one higher-

dimension. The coupling of partition of unity techniques to level set methods is an

appealing means to carry out geometric computations, evaluate enrichment functions

(especially in 3-d), and to evolve interfaces on a fixed finite element mesh.

The next sections deal with the description and analysis of some of the most popu-

lar meshless and partition of unity methods. In section 2 we review the methods based

on moving leasts squares approximation. On section 3 we discuss methods based on

natural neighbour interpolation, the so-called natural neighbour Galerkin or natural

element methods (Sukumar et al., 1998) (Cueto et al., 2000) (Cueto et al., 2003b).

Different approaches to enforce essential boundary conditions in these methods ex-

ist. In section 3.1 we describe the approach followed by (Cueto et al., 2000) (Cueto

et al., 2002), based on the use of α-shapes. In section 3.2 we review the use of the

visibility criteria, as in (Yvonnet et al., 2004). Finally, in section 4, we analyse some

applications of the Partition of Unity paradigm to add discontinuities to the essential

(usually the displacement) field. This is the basis of the so-called extended finite el-

ement methods (X-FEM) (Moës et al., 1999) (Dolbow, 1999) (Sukumar et al., 2001)

or partition-of-unity finite element methods (PUFEM) (Melenk and Babuška, 1996).

2. Methods based on moving least squares approximation

Given a set of scattered nodes in R
d (d =1–3) with prescribed nodal data, a surface

approximation can be constructed without the need for any (finite element) a priori

connectedness information between the nodes. This viewpoint is adopted in mesh-

less Galerkin methods, where well-known methods from data approximation theory

(Lancaster and Salkauskas, 1981) (Sibson, 1980) are used to construct the trial and test

spaces. We first touch upon moving least squares (MLS) approximants (Lancaster and

Salkauskas, 1981) that are used in the Element-Free Galerkin (EFG) method as well
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as in many of the other meshless methods (Li and Liu, 2002), and then discuss natural

neighbor-based interpolant schemes. In the MLS approximation, the trial function uh

for a scalar-valued function u is written as (Belytschko et al., 1998)

uh(x) =

m
∑

j=1

pj(x)aj(x) ≡ pT (x)a(x) , [1]

where m is the number of terms in the basis function vector p, and aj are coefficients

which are found by minimizing the quadratic functional J :

J(x) =

n
∑

I=1

wI (x)[pT (xI)a(x) − uI ]
2 , [2]

where wI(x) ≡ w(x−xI) ≥ 0 is a weight function with compact support. On taking

the extremum of J and after some simplification, we obtain

uh(x) =

n
∑

I=1

φI(x)uI , [3]

where uI are nodal parameters and the EFG shape functions are given by

φI(x) =
m

∑

j=1

pj(x)[A−1(x)B(x)]jI . [4]

Since φI(xJ ) 6= δIJ , the shape functions do not interpolate nodal data. Moreover,

shape functions on the interior of the domain do not necessarily vanish on the bound-

ary, complicating the imposition of essential boundary condition in a Galerkin method

(Wagner and Liu, 2001). In the above equation, the matrices A (moment matrix) and

B are given by

A(x) =
n

∑

I=1

wI(x)p(xI)p
T (xI) ,

B(x) = [w1(x)p(x1), . . . , wn(x)p(xn) ] . [5]

For smooth basis functions, the shape functions inherit the continuity of the weight

function. This property provides a simple means to construct Ck (k ≥ 0) trial and test

approximations.

In the EFG method, each node is associated with a domain of influence, which is

the support of the weight function wI , with wI(x) > 0 in its interior and wI(x) = 0
outside it. Typically, domains of influence are circular or rectangular in 2-d, and Gaus-

sian or polynomial (spline) weight functions are used (Belytschko et al., 1998). The

approximant used in the reproducing kernel particle method also bears close affinity

to the MLS-scheme (Li and Liu, 2002).
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3. Natural neighbour Galerkin methods

The notion of natural neighbours introduced by Sibson (Sibson, 1981) is an at-

tractive alternative to MLS approximants. The Sibson (Sibson, 1981) and the Laplace

(Christ et al., 1982) interpolants are both based on natural neighbors. The definition of

natural neighbors relies on the Voronoi diagram of a nodal set. For ease of exposition,

we restrict our attention to two-dimensions. The Voronoi diagram partitions a set of

nodes into regions such that any point within the (first-order) Voronoi cell V(nI ) is

closer to node nI than to any other node. In Figure 1, the Voronoi diagram for a set of

seven nodes is shown. A point p is introduced into the domain Ω. Now, the Voronoi

diagram for p along with the seven nodes is constructed. If p and node nI have a

common Voronoi facet, then node nI is said to be a natural neighbor of the point p
(Sibson, 1981). In Figure 1, the point p has five natural neighbors (filled circles).

The Sibson shape function of p with respect to a natural neighbor I is defined as

the ratio of the area of the second-order Voronoi cell (AI ) to the total area A of the

Voronoi cell of p:

φI(x) =
AI(x)

A(x)
, A(x) =

n
∑

J=1

AJ(x), [6]

where n = 5 and A is the polygonal (dotted line) area associated with p (Figure 1).

Let sI be the length of the Voronoi facet, and hI = d(x,xI) the distance between p
and node I . The Laplace shape function for node I is defined as (Christ et al., 1982):

φI(x) =
αI(x)

n
∑

J=1

αJ(x)
, αJ(x) =

sJ(x)

hJ(x)
. [7]

The Sibson and Laplace shape functions are non-negative (φI ≥ 0), interpolate

nodal data, and can exactly reproduce a linear field (linearly complete) (Sukumar,

1998). As opposed to MLS approximants, the construction of these shape functions

is purely geometric with no user-defined (such as the weight function w or its support

size) parameters involved in its definition, and a robust approximation is realized for

non-uniform nodal discretizations in multi-dimensions. The support of shape func-

tions based on natural neighbor and MLS-schemes is shown in Figure 2. Consider

the discrete weak form for the Laplace equation:
∫

Ω
∇uh · ∇(δuh) dΩ = 0. On not-

ing the support of the meshless shape functions illustrated in Figure 2, we can infer

that accurate numerical integration of the weak form is an issue in meshless methods,

since the intersection of shape function supports do not coincide with the integration

(triangulation or quadrangulation) cells. In (Cueto et al., 2003b), an overview of nat-

ural neighbor-based Galerkin methods with applications in solid and fluid mechanics

is presented.

It has been demonstrated (see (Sukumar et al., 1998) and references therein) that

the Sibson approximation is strictly an interpolant along the boundary of the convex
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Figure 1. Sibson and Laplace shape functions
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Figure 2. Support of meshless shape functions. The MLS/EFG shape function on the

right is often scaled in size to cover many more nodes at each location

hull of the cloud of points. Thus, for non-convex domains, a suitable method to en-

force essential boundary conditions is necessary. Among different possibilities, two

main methods have emerged. The first is based on the use of α-shapes (Edelsbrunner

and Mücke, 1994), that allows both to impose linear essential boundary conditions

exactly in a straightforward manner and to build models from clouds of points only

without the need of any definition of the boundary. The second method is based on

the use of constrained Voronoi diagrams (Yvonnet et al., 2004). Both approaches are

indeed closely related. In the following sections they are reviewed.
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a=¥ a=0

Figure 3. Some members of the family of shapes for a cloud of five points

3.1. The α-shapes based Natural Element Method (α-NEM)

A cloud of points itself (without any connectivity between them, nor explicit def-

inition of the boundary) defines a finite number of shapes. For a proper definition of

the concept of shape, Edelsbrunner (Edelsbrunner et al., 1983) established the def-

inition of a complete family of shapes of a cloud of points, based on the Delaunay

triangulation (tetrahedralization in R
3), that is unique for a given cloud.

In essence, an α-shape is a polytope that is not necessarily convex nor connected.

It is triangulated by a subset of the Delaunay triangulation of the nodes, and hence the

empty circumcircle criterion holds. Let N be a finite set of points in R
3 and α a real

number, with 0 ≤ α < ∞. A k-simplex σT with 0 ≤ k ≤ 3 is defined as the convex

hull of a subset T ⊆ N of size | T |= k + 1. Let b be an α-ball, i.e., an open ball of

radius α. A k-simplex σT is said to be α-exposed if there exist an empty α-ball b with

T = ∂b
⋂

N where ∂Ω refers to the boundary of the ball. In other words, a k-simplex

is said to be α-exposed if an α-ball that passes through its defining points contains no

other point of the set N .

We can now define the family of sets Fk,α as the sets of α-exposed k-simplexes

for the given set N . This allows us to define an α-shape of the set N as the polytope

whose boundary consists of the triangles in F2,α, the edges in F1,α and the vertices or

nodes in F0,α. As remarked before, an α-shape is a polytope that can be triangulated

by a subset of the Delaunay triangulation or tetrahedralization, i.e., by an α-complex.

An example of two-dimensional family of α-shapes for a simple cloud of five points

is shown in figure 3.

This definition of the shape of a cloud of points allows us to dynamically extract

the shape of the cloud of points as it evolves during the process of deformation. If there

exists a proper relationship between the α value and the nodal distance, h, —in the

sense that α is a measure of the level of detail up to which the domain is represented,

and must be of the order of h— a proper conservation of the mass of the problem is

achieved (Cueto et al., 2003b).

In addition, it can be proved that a proper imposition of essential boundary condi-

tions is achieved if the neighbourhood between nodes is restricted to those pertaining

to the same simplex in a certain α-complex (Cueto et al., 2000) (Cueto et al., 2003a).
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As an example of the capabilities of the method, a simulation of the forging process

of a tool is presented in the next section.

Example: Forging of a workpiece

In this example we consider the forging process of a workpiece, simulated assum-

ing plane strain. The governing equations are:

1) Equilibrium equations (balance of linear momentum in the absence of inertial

and body forces):

∇ · σ = 0. [8]

2) Material incompressibility:

∇ · v = 0. [9]

The material behaviour is supposed to be governed by a Norton-Hoff-like law, i.e.,

σ = −pI + 2µ(D)D, [10]

where the viscosity is a function of the second invariant of the strain rate tensor, D,

namely

µ(D) = µ0

(√
2D : D

)n−1

[11]

where µ0 the so-called consistency coefficient and n the pseudo-plasticity coefficient.

In the numerical example we have considered µ0 = 1.0 and n = 0.3.

If we write the incremental variational equations about time t we arrive to:

∫

Ω(t+∆t)

(

− (pt + ∆p)I + 2µ(Dt + ∆D)
)

: D∗dΩ = 0 [12]

Due to the non-linear character of the constitutive equations, an iterative approach has

been employed, using the Newton-Raphson scheme, thus leading to

∫

Ω(t+∆t)

(

− ∆∆pI + 2µ
(∂µ(Dt+∆t

k )

∂D
: ∆∆D

)

Dt+∆t
k +

+2µ(Dt+∆t
k )∆∆D

)

: D∗dΩ =

= −
∫

Ω(t+∆t)

(−pt+∆t
k I + 2µ(Dt+∆t

k )Dt+∆t
k ) : D∗dΩ [13]

The incremental form of the incompressibility condition results

∫

Ω(t+∆t)

∇ · (∆∆v) p∗dΩ = −
∫

Ω(t+∆t)

∇ · (vt+∆t
k )p∗dΩ [14]
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(a) (b)

Figure 4. The piece to be forged (a) and the geometry of the simulated cross-section

(b)

We took a mixed C0 − C−1 natural neighbour approximation in velocities–pressures,

as in (Cueto et al., 2003b), which does not exhibit spurious modes, although it does

not satisfy the LBB condition.

The geometry of the piece is shown in Figure 4(a). The simulation deals with the

forging of the central region of the piece, justifying the assumption of plane strain (see

Figure 4(b)).

The equivalent plastic strain at time steps 1, 100, 150 and 173 are shown in Fig-

ure 5. Very accurate results were obtained in spite of the large strains and displace-

ments involved in the simulation.

3.2. The Constrained Natural Element Method (C-NEM)

The fundamental basis of the C-NEM is the introduction of a visibility criterion

to restrict influent nodes (natural neighbours). This criterion is necessary to avoid

the parasitic influences between nodes over non convex boundaries. It must interact

with a description of the boundary in a CAD sense. Such a criterion has been used in

other meshless methods where similar problems are found (Organ et al., 1996). In this

approach, a point x is in the domain of influence of a node ni if x lies within the re-

gion where the shape function is non-zero and it is visible from node ni when domain

boundaries are assumed opaque (Organ et al., 1996). Remarkably, it has been shown

in (Yvonnet et al., 2004) that the application of the visibility criterion in the context

of NEM doesn’t suffer from spurious discontinuities encountered in EFG method or

RKPM (Organ et al., 1996). This property is due to the variable shape of the sup-

port with respect to the surrounding nodes (natural neighbours). Hence no additional

criteria are necessary (diffraction, transparency) (Organ et al., 1996). Then its main
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Figure 5. Equivalent plastic strain at different time steps of the process

advantages are: no additional computational efforts, and less difficulties to extend the

method for 3D analysis.

We introduce a modified, coined as ’constrained’ Voronoi diagram for non convex

domains. We can view the constrained Voronoi diagram (CVD) or bounded Voronoi

diagram as a strict dual to the constrained Delaunay tessellation. The CVD is defined

as follows: the intersection of the CVD with the domain closure is composed with

cells TC
i , one for each node ni, such that any given point x in T C

i is closer to ni than

any other node nj visible from point x.

TC
i = {x ∈ R

n : d(x,ni) < d(x,nj),∀j 6= i,nj visible from ni} [15]

The CVD is deduced from the constrained Delaunay tessellation. We introduced

the CVD for the two following reasons: (a) once such diagram is constructed, classical



418 International Journal of Forming Processes. Volume 8 - n◦ 4/2005

algorithms for the computation of the shape functions (Braun and Sambridge, 1995)

can be applied directly because connections between natural neighbours are removed

by the visibility criterion over any non convex domain, and (b) the constrained Voronoi

cells match precisely integration domains that are used in our integration scheme.

We now define the constrained natural neighbours (C-n-n) like they are first se-

lected by the classical natural neighbours criteria (Braun and Sambridge, 1995) (Sukumar

et al., 1998) (lying on an empty sphere, sharing one Voronoi cell), and are then re-

stricted by the visibility criterion. The trial and test functions result :

uh(x) =

V
∑

i=1

φC
i (x)ui [16]

where ui are the nodal unknowns, V the number of neighbours nodes visible from

point x and φC
i the constrained natural neighbours shape functions. The C-n-n shape

functions are similar to NEM shape functions but the support can be different (Yvonnet

et al., 2004) and its computation is done on the basis of the CVD.

In Figure 6 we can see that for a point x introduced in the constrained Voronoi

diagram, only nodal values from n1, n2 and n3 will contribute to the interpolation,

because n4 does not share a constrained Voronoi cell with x. We can conclude that:

(a) influences from nodes lying over non convex domains vanish near non convex

boundaries because the constrained voronoi diagram removes connexions between

non mutually visible natural neighbours, and (b) linear interpolation (Sukumar et al.,

1998) is satisfied on any boundary (convex or not) by the same considerations.

 

  
Γ 

Ω 

Figure 6. Computation of natural neighbor shape functions over non convex domain

by mean of the constrained Voronoi diagram

With this technique, it is trivial to introduce holes, inclusions or discontinuities by

simply adding boundary edges (in 2D) or facets (in 3D) in the boundary description.

In (Yvonnet et al., 2004), we have shown that the properties of partition of unity and

linear consistency were met in the crack-tip field neighbourhood with the C-NEM

technique.
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Example: Crack analysis

In order to demonstrate the potential of the C-NEM approach for crack analysis, a

numerical example is provided. We examine the case of a centrally located inclined

crack of length 2a = 0.2 units and an inclination γ in a finite two dimensional square

plate of size 2W × 2W = 2 units, as shown in Figure 7. Plane stress conditions were

assumed with elastic modulus E = 1 MPa and Poisson’s ratio ν = 0.3. A constant

load of σ∞
22 on both lower and upper sides of the square is applied. We first consider

the case where γ = 0.

γ

2a

y

x

x1θ

σ22

σ22

Figure 7. Modelisation of the plate with an interior inclined crack

This problem has an analytical solution, called Muskelishvili’s solution. This so-

lution involves an infinite plate that can not be represented by meshless discretisation.

Nevertheless, if the dimension of the crack is small compared with the size of the do-

main, the assumption is reasonable. In this example, we took W = 10a. For γ = 0,

θ = 0, the exact solution is given by :

σ22(θ = 0, γ = 0) = σ∞
22

a+r√
r(2a+r) [17]

σ11(θ = 0, γ = 0) = σ∞
22 − σ22 [18]

No symmetry is considered in the nodal distribution. Numerical results are de-

picted in Figure 8. Now, we consider the case of an inclined crack. The stress intensity

factor (SIF) KI is computed using the interaction integral method, and compared in

Figure 9 with the analytical solution (Lemaitre and Chaboche, 1990):

KI = σ∞
22

√
πacos2γ [19]
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Distance between the nodes near the crack tip is about 0.1a. It can be noticed from

Figs. 8 and 9 that despite of this coarse nodal discretisation, C-NEM solution is in rea-

sonable agreement with the analytical solution. Accuracy can be improved by adding

nodes in the tip neighbourhood or by enriching shape functions in the framework of

the partition of unity method (Babuška and Melenk, 1996).

4. An Enriched Assumed Strain Method

Recently, much attention has been focused on a class of finite element methods that

allow for the representation of strong intra-element discontinuities. Among the more

notable are the enhanced assumed strain approaches (Armero and Garikipati, 1996)
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(Steinmann et al., 1997), wherein the discontinuous mode is introduced through an en-

hanced deformation gradient approximation. In what follows, we provide a summary

of a new formulation presented in (Dolbow and Devan, 2003) that incorporates the

intra-element discontinuities directly at the approximation level using an enrichment

strategy based upon the partition-of-unity framework (Melenk and Babuška, 1996).

The new method retains the enhancement to the assumed strain field, as it provides

for coarse-mesh accuracy as well as a means to address volumetric incompressibility

constraints. We propose a modification to the enhanced strain basis that allows it to

be orthogonal to a piecewise-constant stress field in “cut” elements. The goal is to

obtain a robust method for high-speed machining, for example, where large deforma-

tions and the isochoric nature of plastic flow place severe demands on the simulation

technology.

We consider the body identified with a bounded region R of three-dimensional

Euclidean point space ℜ3 that it occupies in a fixed reference configuration. We

label particles in this reference configuration by X ∈ R with coordinates X =
(X1, . . . ,Xndim

). The deformation ϕ is assumed to satisfy Dirichlet boundary con-

ditions ϕ = ϕ̂ on ∂uR ⊂ ∂R. Since we neglect inertial forces, the deformational

force system consists of the bulk stress P , and imposed tractions T̄ on ∂tR ⊂ ∂R.

We allow bulk fields to be discontinuous across the smooth material surface S. In the

present study, we will assume the surface S to be traction-free.

The variational formulation we employ follows from a three-field Hu-Washizu

functional in {ϕ,P , F̃ }. Here, F̃ denotes an additional enhanced field to the defor-

mation gradient. Precisely, the deformation gradient takes the assumed form

F = GRAD ϕ + F̃ , [20]

where GRAD is the gradient operator in the reference configuration.

We let V denote the space of sufficiently regular motions, L the space of suffi-

ciently regular stresses and enhanced deformation gradients. The variational boundary

value problem is then : Find (ϕ,P , F̃ ) ∈ V × L× L such that

∫

R

2F
∂Ŵ (C)

∂C
· GRAD δϕ dV =

∫

∂tR

T̄ · δϕ dV,

∫

R

(

2F
∂Ŵ (C)

∂C
− P

)

· δF̃ dV = 0, [21]

∫

R

F̃ · δP dV = 0,

for all arbitrary variations (δϕ, δP , δF̃ ) ∈ V × L × L. In the above equations, Ŵ
is the bulk strain-energy density function and C is the right Cauchy-Green tensor,

C = F T F .
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For the sake of concreteness, we consider a standard finite element mesh of four-

node quadrilateral elements with nodal shape functions φi. The approximation to the

deformation field is written as

ϕh(X) =
∑

i∈I

aiφi(X) +
∑

j∈J

bjφj(X)Hd(X), [22]

where I denotes the set of all nodes in the mesh and J the subset that are enriched with

the Heaviside function Hd. The vectors ai and bj are constant degrees of freedom.

Considering a closed subset Ω ⊂ R that is partitioned into complementary subregions

ω+ and ω− by the discontinuity S, the Heaviside function is given by

Hd(X) =

{

1 forX ∈ ω+

0 forX ∈ ω− [23]

The set J of nodes enriched with this function is determined from the “interaction”

between the set of overlapping subdomains {ωi} defining the support of each nodal

shape function and the geometry S (Moës et al., 1999) (Dolbow et al., 2000). Since we

do not incorporate asymptotic near-tip functions into the approximation, the present

work is slightly restricted by the need for the discontinuity to terminate on an element

boundary.

On each element Re, we consider approximations for F h of the form

F h(ξ) = GRAD ϕh
∣

∣

∣

Re

+
∑

i∈E

αi ⊗ Gi(ξ), [24]

where E denotes the set of enhancement functions on the element. In the above, Gi

denotes the vector-valued local enhancement functions written in terms of the parent

coordinates ξ, with αi the corresponding degrees of freedom.

In the spirit of earlier efforts (Simo and Armero, 1992), we construct functions

Gi that are orthogonal to a subset of the fields spanned by the gradient of [22]. In

particular, for those elements intersected by S, we seek to construct vector-valued

functions Gi that satisfy

∫

¤+

Gi(ξ) d¤ = 0,

∫

¤−

Gi(ξ) d¤ = 0. [25]

where ¤
+ and ¤

− denote the complementary subsets of the parent domain formed

by the intersection of ¤ and the image of S. These functions are then mapped to the

reference domain with a constant Jacobian matrix (Simo and Armero, 1992). As such,

the functions Gi are orthogonal to piecewise-constant stress fields in “cut” elements,

enabling the formulation to satisfy a discontinuous version of the patch test (Dolbow

and Devan, 2003). This is in marked contrast to the work of (Armero and Garikipati,

1996), where the discontinuous mode was constructed to be orthogonal to a constant

stress field only.
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We begin with functions Gi that are shifted and linear in ξ. For example, in ¤
+,

we use

G1(ξ) =

[

ξ1 − ξ̄1
+

0

]

, G2(ξ) =

[

0

ξ2 − ξ̄2
+

]

,G3(ξ) = G4(ξ) = 0. [26]

The shift points, ξ̄
+

in ¤
+ and ξ̄

−
in ¤

−, are determined such that [25] is satisfied

during numerical integration. An analogous construction is employed on ¤
−, with

G3 and G4 non-zero. For elements not intersected by S, only the first two functions

above are employed and the formulation reverts to that proposed in (Simo and Armero,

1992).

Substituting the approximations for the deformation and the enhanced gradient

into the Galerkin form of [21] gives rise to a nonlinear system of algebraic equa-

tions. This system is resolved using Newton-Raphson iteration to obtain the degrees

of freedom ai, bj , and αi. The process is identical to that described in (Simo and

Armero, 1992), with the exception of the modified integration schemes employed in

the enriched elements.

A fractured Cook’s membrane problem

We consider finite deformation elastic problems wherein the response is governed

by a nearly incompressible neo-Hookean material model. In particular, we employ a

stored energy function of the form

Ŵ =
µ

2
[J−2/3 tr[C] − 3] +

κ

2
(J − 1)

2
, [27]

with shear modulus µ and bulk modulus κ. In order to examine the nearly incom-

pressible limit, we select κ/µ ≈ 104.

We consider a tapered, fractured panel clamped on one end and subjected to a

shearing load on the other as shown in Figure 10. Without the discontinuity, this

problem is often referred to as ‘Cook’s membrane problem’.

To evaluate the accuracy of the modified enriched/enhanced formulation for the

problem with a discontinuity, we compare our results to those obtained when the crack

is explicitly meshed. The enriched and explicitly meshed discretizations are shown in

Figures 2a and 2b, respectively. When the crack is meshed, no modification to the

standard assumed strain functions are necessary as the discontinuity is represented by

the doubled nodes along S.

We perform calculations using 30 load steps with increments of ∆F = 1.0N. In all

calculations, we observe an asymptotic quadratic rate of convergence in the Euclidean

norm of the residual. The deformed meshes are compared in Figure 10c, and we note

the large deformation and close match of the results. Both approximations satisfy

the volumetric constraint reasonably well, with the maximum in |detF − 1| typically

occurring near the crack tip, but less than 5%. We conclude that the modified assumed

strain method does not exhibit volumetric locking, and furthermore provides a means
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Figure 10. Meshes employed for the (a) enriched and (b) standard approxima-

tions.The heavy solid line denotes the crack location. (c) Overlay of the final deformed

meshes without magnification. All results shown are for the nearly incompressible

case, using κ/µ = 104

to represent an evolving discontinuity without any remeshing. Finally, we note that

the assumed strain framework also lends this method coarse-mesh accuracy.

5. Conclusions

We reviewed MLS- and natural neighbor-based meshless methods. The positive

attributes in the latter were the ease of imposing essential boundary conditions, and

the construction of robust approximations at a relatively low cost. It is simpler to con-

struct Ck trial spaces using MLS approximants. Errors due to numerical integration

in meshless methods demand attention. Rigorous mathematical analysis of meshless

methods is required to develop a better understanding of these methods, and to realize

their full potential. Partition of unity methods are clearly superior when discontinu-

ous phenomena, singularities, or small-scale features need to be captured on a coarse

mesh. The partition of unity framework is particularly advantageous for 2-d and 3-d
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crack growth simulations; meshless methods such as EFG have had limited success in

3-d crack modeling (Sukumar et al., 1997).
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