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Abstract

Surprising properties of doped Mott insulators are at the heart of many quantum ma-

terials, including transition metal oxides and organic materials. The key to unraveling

complex phenomena observed in these systems lies in understanding the interplay of

spin and charge degrees of freedom. One of the most debated questions concerns the

nature of charge carriers in a background of fluctuating spins. To shed new light on this

problem, we suggest a simplified model with mixed dimensionality, where holes move

through a Mott insulator unidirectionally while spin exchange interactions are two di-

mensional. By studying individual holes in this system, we find direct evidence for the

formation of mesonic bound states of holons and spinons, connected by a string of dis-

placed spins – a precursor of the spin-charge separation obtained in the 1D limit of the

model. Our predictions can be tested using ultracold atoms in a quantum gas micro-

scope, allowing to directly image spinons and holons, and reveal the short-range hidden

string order which we predict in this model.
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1 Introduction

The Fermi-Hubbard model represents one of the most fundamental and paradigmatic models

of strongly correlated matter. It features an an intricate interplay of spin and charge degrees of

freedom, expected to be relevant to high-temperature superconductivity observed in cuprate

compounds [1–5]. However many basic features of of the Hubbard model remain poorly

understood, which makes it challenging to identify the origin of such ubiquitous experimental

phenomena as the non-Fermi liquid behavior [6], charge modulation [7], or the pseudogap [3,

8].

To approach this problem, here we propose to study a simplified model system which can

be experimentally realized with, e.g., ultracold atoms. Instead of the two-dimensional (2D)

t − J model, which is commonly used to capture the interplay of spin and charge degrees of

freedom in the low energy sector of the Hubbard model [3], we suggest to realize a system

with mixed dimensionality: While the spin system is fully 2D, the holes doped into the system

can only move along one direction, see Fig. 1 (a). On the one hand, this model shares many

features with the 2D t − J model, in particular the emergence of true long-range order in the

ground state at zero doping. On the other hand, tuning the spatial anisotropy of the Heisenberg

couplings allows us to study the transition to decoupled 1D chains, where spin and charge

degrees of freedom separate. Moreover, being mappable to a problem of hard-core bosons,

the model is sign-problem free, thus enabling efficient quantum Monte Carlo simulations for

arbitrary doping values.

In this article we approach the mixed dimensional (mixD) t−J model from the low-doping

side and study the interplay of spin and charge degrees of freedom on the most fundamental

level. To this end we consider individual holes doped into an antiferromagnet (AFM). In 2D,

the single hole propagating through an AFM is commonly described by a magnetic polaron

– a quasiparticle with a strongly renormalized dispersion due to the dressing with magnetic

excitations [9–17]. While this description provides a powerful theoretical toolbox, it provides

limited physical insight to the microscopic interplay of spin and charge excitations. More

intuitive physical understanding can be gained by the parton construction put forward by

Béran et al. [18]. These authors suggested that the single hole can be understood as a bound

state of two partons: a neutral spinon and a spin-less holon. This closely resembles mesons

formed by quark-antiquark pairs in high-energy physics. Recently it has been shown for the

simplified t − Jz model with reduced quantum fluctuations [19] that this phenomenology is

Figure 1: Mixed-dimensional t − J model. We consider ultracold spin-1/2

fermions in an optical lattice at strong couplings. (a) By introducing a strong poten-

tial gradient along y-direction, the tunneling of holes with rate t can be restricted

to the x-axis, whereas SU(2) invariant super-exchange interactions with tunable

strengths Jx and Jy persist in both directions. We study the resulting mixD t − J

model in the low-doping regime and demonstrate that holes form mesonic bound

states of spinons and holons (b), which can be directly observed using quantum gas

microscopes. Mesons formed by pairs of holons have a higher energy, indicating the

absence of strong pairing in mixD.
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closely related to the string picture of magnetic polarons [20–25] and it can be justified on a

microscopic level, enabling accurate quantitative predictions [26].

In 2D, direct observations of the strings and partons constituting magnetic polarons are

challenging due to strong quantum fluctuations. Here, instead, we study holes in the mixD

t − J model. In this case we show that spinons and holons are connected by straight strings

of displaced spins, making it easier to observe and characterize them. Even in the presence

of quantum fluctuations of the surrounding spins, we demonstrate that the individual partons

can be directly detected using experimatal tools available in systems of ultracold atoms in

quantum gas microscopes [27–31].

By tuning the ratio of spin-exchange interactions along different lattice directions, our

results in mixD can be related to the physics of 1D t − J models. In a genuine 1D system, hole

excitations decay into pairs of deconfined spinons and holons [32–34]. This fractionalization

of the hole introduces quasi-long range non-local string order in the 1D system [35], which

has recently been observed using a Fermi gas microscope [36]. These same measurements

can be performed in the mixD t − J model. In this case, we show that spinons and holons

are confined and form bound states, see Fig. 1 (b). Hence, non-local string order emerges on

a tunable length scale and should be readily observable experimentally. We also discuss the

possibilities of stripe formation and pairing of holes in the mixD model.

2 Results

Model. We consider the mixD t− J model of S = 1/2 fermions ĉi,σ, on lattice sites i with spin

σ =↑,↓, defined by the following Hamiltonian (~= 1),

Ĥ =
∑

〈i, j〉x

�

−t
∑

σ

P̂GW

�

ĉ
†
i,σ

ĉ j ,σ + h.c.
�

P̂GW + Jx

�

Ŝi · Ŝ j −
n̂i n̂ j

4

�

�

+ Jy

∑

〈i, j〉y

�

Ŝi · Ŝ j −
n̂i n̂ j

4

�

. (1)

Here 〈i, j〉x ,y denotes a pair of nearest neighbor (NN) sites in x and y directions, respectively,

in a 2D square lattice, and every bond is counted once. The operator P̂GW denotes a Gutzwiller

projection onto states with zero or one fermion per lattice site, and n̂ j and Ŝ j are the fermion

number and spin operators on site j .

Up to a next-nearest neighbor hole hopping term correlated with the surrounding spins [37],

which is not expected to change physical properties significantly, Eq. (1) provides an accurate

representation of the 2D Fermi-Hubbard model with a strong potential gradient V ( j) = − jy ∆

in y-direction at strong couplings. In this way our model can be implemented using ultracold

fermions in optical lattices [29–31]. When U is the on-site interaction energy and t the tunnel

coupling between neighboring lattice sites, the super-exchange energies in x and y directions

are

Jx =
4t2

U
, Jy =

2t2

U +∆
+

2t2

U −∆
, (2)

assuming that |U |, |U ±∆| ≫ t.

Geometric strings, squeezed space and mesons. In the following we restrict our dis-

cussion to a single hole, localized on the central chain where jy = 0, in a system with net

magnetization Sz = 1/2. We focus on the strong coupling limit t ≫ Jx ,y , where we argue that

mesons form on intermediate length scales.

Our starting point is the ground state |Ψ0〉 of the 2D Heisenberg model without a hole and

with total spin Sz = 0. To construct a set of relevant basis states including the hole, we remove a
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spin-down particle at site ( jsx , 0) and obtain the state ĉ jsx ,0,↓|Ψ0〉 ≡ |ψ0〉| j
s
x〉, where |ψ0〉 denotes

a pure state of spins on the lattice sites j̃ 6= ( jsx , 0). Because the hopping t is the largest energy

scale, we start by constructing all allowed states that can be reached by applying the hopping

part Ĥt of the Hamiltonian, defined by terms proportional to t in Eq. (1). Because the hole can

only move on the central chain, these states can be labeled by the distance Σ = jx − jsx of the

hole at site jx from the original site jsx , and we denote these orthonormal states by |ψ0〉| j
s
x ,Σ〉.

The difficulty of the t − J model stems from the fact that the hole motion distorts the sur-

rounding spin state. In the approximate set of basis states constructed so far this corresponds

to a displacement of all spins along Σ, referred to as the geometric string, connecting jx and

jsx . More generally, we can label the spins by their original positions j̃ in the lattice before the

hole was created. In analogy with 1D, see Refs. [35,38], we call the space defined by the spins

on these lattice sites j̃ 6= ( jsx , 0) squeezed space. The key advantage of the new labeling is that

the hole motion has no effect on the configuration of spins in squeezed space. Instead, the

geometry of the couplings between spins in squeezed space is modified along the geometric

string Σ (see Methods for details).

To formulate the Hamiltonian (1) projected in the truncated basis, we introduce bosonic

holon operators for which ĥ
†
Σ
|0〉 = |Σ〉. The hopping part of the Hamiltonian becomes

Ĥt = −t
∑

〈Σ′,Σ〉(ĥ
†
Σ′

ĥΣ + h.c.). When t ≫ Jx ,y , quantum correlations between the strongly

fluctuating string Σ and spins in squeezed space can be neglected. In the simplest, so-called

frozen spin approximation (FSA) we can assume that the spin wavefunction |ψ0〉 in squeezed

space does not change upon doping and the single-hole wavefunction takes a product form

|Ψ〉 ≈ |ψ0〉|φΣ〉, where |φΣ〉 describes the holon. We will confirm below, in Fig. 4, that the

FSA is a reliable approximation.

Within the FSA, terms in Eq. (1) proportional to Jx ,y give rise to an effective potential

[26,39] depending on the length of the geometric string ℓΣ = |Σ|,

ĤJ =
∑

Σ

ĥ
†
Σ

ĥΣ

�

dE

dℓ
ℓΣ + g0δℓΣ,0 +µh

�

. (3)

It depends only on spin correlators in the wavefunction |Ψ0〉 without the hole:

dE/dℓ= 2Jy(C2−C
y

1 ), g0 = −Jx(C
x
3 −C x

1 ) and µh = Jx(1/2+C x
3 −3C x

1 )+Jy(1/2−2C
y

1 ), where

C
µ

1 = 〈Ψ0|Ŝ j · Ŝ j+eµ
|Ψ0〉 for µ= x , y , C2 = 〈Ψ0|Ŝ j · Ŝ j+ex+ey

|Ψ0〉 and C x
3 = 〈Ψ0|Ŝ j · Ŝ j+2ex

|Ψ0〉.

Because Eq. (3) contains a linear confining potential ∝ ℓΣ, the holon is bound to the

lattice site j s = ( jsx , 0) where it was initially created. Due to spin exchanges this lattice site j s

will develop dynamics on its own, but on a time scale 1/J larger than 1/t on which the holon

motion takes place. The string tension dE/dℓ depends only on the local correlators C x
1 , C2

but does not require long-range order. The average string length in the bound state scales as

(t/Jy)
1/3 when t ≫ dE/dℓ [20].

Physically, this bound state can be understood as a meson formed by a spin-less holon and

a charge-neutral spinon, which are connected by the geometric string Σ of displaced spins

[18, 26]. In general, the end of the string at lattice site j s corresponds to a geometric defect

in real space. Since it was initially created from |Ψ0〉 by removing a spin-down fermion, it can

be associated with a spin Sz = 1/2, thus corresponding to a spinon excitation. Because there

exist no deconfined spinons in the 2D Heisenberg AFM, the geometric defect and the spinon

are expected to form a stable bound state.

Based on our theoretical analysis so far, we can construct a variational wavefunction of

mesons in the mixD t−J model which also includes spinon dynamics. To this end we start from

a representation of the 2D Heisenberg AFM by slave fermions f̂k,σ [40] and approximate the

ground state wavefunction as |Ψ0〉 = P̂GW|ΨMF〉. Here the MF wavefunction

|ΨMF〉=
∏

k∈MBZ f̂
†
k,↑

f̂
†
k,↓
|0〉 describes a band insulator obtained by spin-1/2 fermions hopping
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on a square lattice with staggered flux Φ = ±0.4π per plaquette and a staggered magnetic

field, of strength Bst = 0.44 in units of the hopping, breaking the SU(2) symmetry [41,42].

A spinon-holon pair excitation with spin σ can be created at site j s by the operator

ĉ j s ,σ = ĥ
†
j s f̂ j s ,σ where ↑ =↓ and ↓ =↑. To take into account the holon motion, which creates

the geometric string, we propose the following trial wavefunction for the meson:

|ΨMP〉=N

∑

j s

e−ikMP· j
s
∑

Σ

φΣĜΣP̂GW f̂ j s ,σ|ΨMF〉. (4)

Here φΣ is the string wavefunction, which in practice we determine from the effective model

in Eq. (3). The operator ĜΣ acts on Fock states with one empty site – the holon position –

from where it starts to create the geometric string Σ by displacing fermions along Σ. Because

the meson wavefunction (4) includes the string, which binds spinons to holons, it is markedly

different from resonating valence bond states commonly used for approximate descriptions of

the t − J model at finite doping. Finally, kMP denotes the center of mass momentum of the

meson, which is carried by the heavy spinon.

Figure 2: Signatures of meson formation. We calculate spin-hole-spin correla-

tions for t = 3J . (a) The three-point function Cz
SHS(d, dh), calculated using ED in a

6 × 3 system periodic along x , changes sign at d = 3. This indicates the presence

of a geometric string with an average length around one. (b) The same behavior is

predicted in a 16× 8 periodic system by the trial wavefunction in Eq. (4) which we

evaluated at kMP = (π/2,π/2), Φ = ±0.4π, Bst = 0.44 using VMC methods. (c) The

structure of Cz
SHS(d, dh) observed in (a) and (b) can be understood from the string

picture by comparing the distances dh, d−dh and dh−d to the typical string length ℓ

and distinguishing the two cases dh < d and dh > d. Purple wavy lines are schematic

representations of the strings. Spin correlations change sign when crossing either

end of the string. Blue spins are part of the geometric string and have changed the

sublattice, introducing negative signs in Cz
SHS(d, dh). One has to average over the

opposite orientations of the string relative to the hole, Σ = ±ℓ, to estimate the value

of the correlator.
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Signatures for meson formation. The trial wavefunctions we discussed so far factorize in

squeezed space. Nevertheless they describe strongly correlated states in the mixD t−J model,

since physical observables in real space depend explicitly on the instantaneous string configu-

ration. Now we present numerical simulations which support the meson picture and confirm

the accuracy of the trial wavefunction (4).

Signatures of meson formation can be obtained directly from spin-charge correlations.

We start by considering the three-point function which has been measured in the 1D Fermi-

Hubbard model in Ref. [36],

Cz
SHS(d, dh) = (−1)d〈Ŝz

j0
n̂h

j0+dh
Ŝz

j0+d
〉/〈n̂h

j0+dh
〉. (5)

Here n̂h
j

denotes the hole density, we assume that the y-indices of all operators are jy = 0, and

j0 is an arbitrary reference site, see Fig. 2.

When the distance of the spin at j0 to the hole is smaller than the distance to the second

spin, dh < d, the spin-correlator is taken across the hole. If, in addition, d − dh ≤ ℓ and

dh ≤ ℓ where ℓ is the string length, one of the two spins is always part of the geometric string,

while the other is not. Since the spins on the string have switched sublattice, we expect that

the correlator Cz
SHS < 0 has a non-trivial sign in this case. Otherwise the correlations are

suppressed, Cz
SHS ≈ 0, or Cz

SHS > 0 shows AFM correlations, see Fig. 2 (c).

These expectations obtained from the FSA are confirmed by numerical ED simulations in

Fig. 2 (a). In particular we find that Cz
SHS changes sign at d = 3 for dh = 1, consistent with

the expected average string length 〈φΣ|ℓ̂|φΣ〉 = 0.74 at the considered value of t/J = 3,

where J = Jx = Jy . The ED results are also in excellent agreement with predictions by the

trial wavefunction from Eq. (4), which we evaluated using variational Monte Carlo (VMC)

techniques [43], see Fig. 2 (b). Our results can be tested using ultracold fermions by repeating

previous measurements performed in 1D [36] in the mixD setting. Finite temperatures lead

to a decreased magnitude |Cz
SHS(d, dh)|, but we expect that the sign change of Cz

SHS is robust

at moderate temperatures T ® J .

In systems with long-range AFM order [44], i.e. 〈Ŝz
j
〉 = Ω j (−1) jx+ jy where Ω j is the AFM

order parameter, indications that holons bind to spinons can also be found in the two-point

spin-hole correlator

Cz
SH(dh) = (−1)dh+ j0

�

〈Ŝz
j0+dh

n̂h
j0
〉 − 〈Ŝz

j0+1+dh
n̂h

j0+1〉
�

. (6)

As in Eq. (5) we assume that all spin operators are evaluated on the central chain, i.e. jy = 0,

and j0 denotes a reference site. Note that Cz
SH is defined as a sum of two terms, which con-

tribute with opposite signs and correspond to holes on different sublattices. This cancels weak

residual oscillations of the individual terms with dh, originating from imbalanced hole popu-

lations in the two sublattices related to the spin quantum number of the spinon. The latter is

fixed to Sz = 1/2 in our case because we restrict our numerical analysis to systems with net

magnetization Sz = 1/2. Experimentally, the three-point function in Eq. (5) is advantageous,

because in contrast to Cz
SH(dh) it does not depend sensitively on the net magnetization, which

varies from shot to shot [36].

In Fig. 3 (a) we show results for Cz
SH(dh) calculated using DMRG in a three-leg ladder with a

hole on the central leg. To mimic the effect of long-range AFM order expected in 2D, we added

a staggered magnetic field (−1) jx+ jy BŜz
j

on the outermost sites, see Fig. 3 (b), pinning the AFM

order. We find a pronounced suppression of Cz
SH(dh) at small dh. This can be understood from

the string picture by considering separately the cases (i) when dh > ℓ exceeds the string length

ℓ, and (ii) when dh ≤ ℓ, as illustrated in Fig. 3 (c).

In case (i), the spin at site jh + dh is not part of the geometric string Σ and we expect

that Cz
SH(dh) ≈ Ω0 is related to the AFM order parameter Ω0 in the undoped system. In case

6
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Figure 3: Distortion of the Néel state by mesons. We calculate spin-hole cor-

relations for t = 3J . (a) The two-point function Cz
SH(dh), calculated using DMRG in

a 40× 3 system with open boundary conditions for j0 = Lx/2, shows a pronounced

dip at small dh. This is an indicator for meson formation, as can be understood by

considering a hole moving in a classical Néel state (mixD t−Jz model): (c) When the

string length ℓ = |Σ| ≥ dh, configurations with positive and negative strings, Σ < 0

and Σ > 0, cancel each other. When ℓ < dh both configurations contribute with the

same sign. The DMRG data in (a) includes a staggered magnetic field B at the edges,

as shown in (b), which pins the AFM order in the three-leg system. (d) The charac-

teristic length ξ of the dip in Cz
SH(dh) at short distances changes only weakly when

the staggered field is varied.

(ii), we distinguish between two additional configurations: when Σ < 0 (Σ > 0) the holon

is located at the left (right) end of the string and the spin at site jh + dh is (is not) part of

the geometric string. By averaging the contributions ±Ω0 from these two string orientations,

which are equally likely due to inversion symmetry, we expect a reduction of Cz
SH(dh) when

dh ≤ ℓ.

The width of the dip in Cz
SH(dh) around dh = 0 characterizes the typical string length, i.e.

the size of the meson. To extract it, we fit Cz
SH(dh) by a function A1 + A2e−dh/ξ in the regime

dh = 1, ..., 8 as indicated by a solid line in Fig. 3 (a). The fitted values ξ(B) are shown in

Fig. 3 (d) as a function of the pinning field B. As expected from the FSA, ξ(B) shows only

weak dependence on B and is on the order of one lattice site. Notably, this remains true for

B = 0, where the undoped three-leg ladder has no long-range order and belongs to the same

universality class as a 1D spin-1/2 chain [45].

Direct imaging of geometric strings. The indicators of meson formation discussed so far

are based on expectation values of two- and three-point operators. The single-site resolution

achieved by quantum gas microscopes allows to determine these quantities by averaging over

multiple measurements in the z-basis of the spins. Even more information can be extracted

by analyzing the individual experimental snapshots. For example, it has been demonstrated

that this allows to measure string order [36,46], or the full counting statistics of the staggered

7
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Figure 4: Signatures of geometric strings. We calculate the full counting statistics

of the string length which can be measured in a quantum gas microscope. (a) The

correlators Cσ( jx) and C±
Σ
( jx) defined in Eqs. (7), (8) can be used to extract the

configuration of the geometric string at site ( jx , 0) for individual measurements in the

z-basis. (b) From the extracted string configurations, we determine the full counting

statistics of the string length ℓ. We used ED in a 6 × 3 system with Jx = Jy = J at

t = 0 and t = 3J . Our results are compared to predictions from the FSA in squeezed

space (dotted line), as explained in the main text. (c) We compare the string length

distribution derived from FSA (pFSA(ℓ) defined in the main text, bar plots) to the

distribution extracted from snapshots of the ground state wavefunction (determined

from ED, line plots). The ED results are obtained as in (b), but here we post-selected

states with more than 50% of the maximum staggered magnetization.

magnetization [44]. Now we show that hidden string order related to meson formation is also

observable in the mixD t − J model.

In order to determine the string configuration from a given snapshot, we consider the

following operators,

Ĉσ( jx) =
∑

i=NN of ( jx ,0)

Ŝz
jx ,0Ŝz

i
, (7)

Ĉ±
Σ
( jx) =
∑

δ j=−1,+1

Ŝz
jx ,0(Ŝ

z
jx+δ j,0

+ Ŝz
jx±1,δ j

). (8)

As shown in Fig. 4 (a), Ĉσ( jx) measures NN correlators C1 in real space if jx is not part of

the geometric string. Similarly, the correlator Ĉ±
Σ
( jx) measures NN correlators C1 in squeezed

space if jx is part of a geometric string with the holon located at its right (+) or left (−) end,

respectively. Therefore we expect that a geometric string is present at site jx if the measured

value of Ĉσ( jx) in the snapshot is larger than the measured values of Ĉ±
Σ
( jx).

By comparing the values of the three correlators defined in Eqs. (7), (8) we can extract a

likely configuration of the geometric string in every individual shot of the measurement (see

Methods for more details). We emphasize that due to quantum fluctuations it is impossible

to reconstruct the exact string configuration, but for our purposes it will be sufficient that we

found a reasonable proxy for the latter.

From the extracted configuration we can easily determine the string length ℓ in every

individual shot. In Fig. 4 (b) we plot the full counting statistics of the string lengths ℓ. To this

end, we generated snapshots by exact diagonalization (ED) of a 6 × 3 system with periodic
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boundary conditions along x and Sz = 1/2. When the hole is pinned, t = 0, we only find a

few short strings caused by quantum fluctuations of the spins.

When we increase the tunneling to t = 3J , we observe a clear increase of the number of

strings with lengths ℓ = 1, 2,3. To compare this result with our expectations from the FSA in

squeezed space, we start from the snapshots at t = 0 and construct a new set of configurations

{|α′〉} by including the hole motion by hand (i.e. we apply the operator ĜΣ from Eq. (4)).

Here the string length ℓ = |Σ| is chosen randomly from the distribution given by the string

wavefunction |φΣ|
2 which we calculate using the FSA. By extracting the string configurations

from the new shots {|α′〉} as before, we obtain the string length distribution shown by a dotted

line in Fig. 4 (b). This result, constructed from FSA, agrees remarkably well with the exact

distribution function obtained directly from ED at t = 3J and supports the meson theory of

holes in the mixD t − J model.

To test the accuracy of the FSA further, we calculate the distribution function of the ex-

tracted string lengths for different t/J in Fig. 4 (c). To reduce the effects of quantum fluctua-

tions, we considered only shots with a total staggered magnetization above 50% of its maxi-

mum value. We have checked that the squeezed space construction, starting from snapshots at

t = 0, still yields excellent agreement in this case. In Fig. 4 (c) we provide a direct comparison

of the obtained string length distribution with the FSA result

pFSA(ℓ) = δℓ,0|φΣ=0|
2 + 2(1− δℓ,0)|φΣ=ℓ|

2 (bar plot in Fig. 4 (c)). Although complete quan-

titative agreement is still not expected due to residual quantum fluctuations, we observe that

the string lengths extracted from our ED simulations show the same qualitative features as

predicted by the FSA: For small values of t/J we obtain a pronounced maximum at ℓ = 0,

which becomes a plateau at ℓ= 0, 1 for t/J = 3 and develops into a dip at ℓ= 0 when t ≫ J .

Dimensional crossover. Our numerical analysis so far was restricted to spatially isotropic

couplings, Jx = Jy . Now we study the dimensional crossover by tuning Jy/Jx . In the 1D limit,

Jy = 0, the string tension dE/dℓ = 0 vanishes and it is well-known that spinons and holons

are deconfined [32]. This leads to geometric strings extending over the entire length of the

system [35, 38], which have been observed experimentally in Ref. [36]. Because the string

tension is finite when Jy > 0, we expect that the average string length 〈ℓ̂〉 diverges at Jy = 0.

In Fig. 5 (a) we plot the string length ξ extracted from fits of the spin-hole correlators for

various Jy/Jx . We used DMRG to obtain the two-point function Cz
SH(dh) in a 40×3 system as in

Fig. 2 and calculated the three-point function Cz
SHS(d, dh) at d = 1 from the trial wavefunction

in Eq. (4) using VMC methods. Both approaches show an increase of the string length when

Jy approaches zero, and the DMRG data points in the range 0.2 ≤ Jy ≤ 1 are well described

by a power law ξ(Jy)≈ 1.3× (Jy/Jx)
−0.9.

From the meson wavefunction (4) we obtain shorter string lengths than predicted by

DMRG. We expect that this is due to an inaccuracy of the FSA string potential Eq. (3), which

contains a weak local spinon-holon attraction g0. The latter results from the oversimplified

description of the spinon in FSA as a missing spin, which is inaccurate in 1D, and leads to a

spinon-holon bound state with a large but finite binding length for Jy = 0.

To check the accuracy of the trial wavefunction (4), we calculate its variational energy

〈ΨMP|Ĥ|ΨMP〉 in Fig. 5 (b) and compare it to our DMRG results. Qualitatively we obtain sim-

ilar behavior as a function of Jy , although the variational energy is larger than the DMRG

result by an amount of order Jy . We expect that the dominant factors contributing to this

discrepancy are (i) the use of only straight strings along x in |ΨMP〉 and (ii) our neglect of

spin-hole correlations in squeezed space. Both effects should lead to corrections of order Jy .

More details of our analysis of the crossover are provided in the Methods.

Precursors of stripe formation. In Fig. 6 (a), (b) we use DMRG simulations to study spin and
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Figure 5: Dimensional crossover. We change from a 1D to a mixD situation by

tuning Jy/Jx at t = 3Jx . (a) The string length ξ, extracted by fits of spin-hole cor-

relators Cz
SH, sharply increases when Jy → 0. This indicates a deconfinement of the

spinon-holon pair in this limit. (b) We compare the ground state energy E0 of a single

hole from DMRG in a 40×3 system to the variational energy of the trial wavefunction

in Eq. (4) in a 16× 8 system, evaluated at kMP = (π/2,π/2), Φ = 0.5π using VMC

methods, see Methods for more details.

charge orders in finite-size mixD systems with open boundaries and total spin Sz = 1/2. We

observe a pronounced maximum of the hole density nh
jx

in the center, which is accompanied by

a sign change of the surrounding Néel order Ω j = (−1) jx+ jy 〈Ŝz
j
〉. Such behavior also occurs in

the stripe phase of cuprates [47], where the Néel order changes sign across a line of enhanced

hole density.

Here we interpret these features as precursors of stripe formation in finite n-leg ladders. In

larger systems with the same hole doping in every n-th chain we expect, similarly, to observe

robust stripes. We note that the stripe features are absent in our simulations when periodic

boundary conditions and even numbers of lattice sites are used along x , e.g. in Fig. 2 (a).

In the limit of a single hole in an infinite system we also expect these features to disappear,

because it is energetically unfavorable to sustain a 1D line defect where Ω j changes sign.

Explaining the formation of stripe-like structures in finite-size systems requires a modifi-

cation of the meson theory. In Fig. 6 (c) we provide some intuition by considering spins in a

classical Néel background. We note that the Néel order can only change sign across the hole, if

a domain wall of two aligned spins is present in chains without a hole. Therefore the stripe-like

ground state we found in the three-leg ladder can be understood as a baryonic bound state of

two spinons and one holon, see Fig. 6 (d). We expect that the motion of the holon still leads

to the formation of geometric strings, connecting it to the two spinons.

Similarly, we expect that the ground state of the finite-size five-leg system, see Fig. 6 (b),

corresponds to a "petaquark" state formed by one holon bound to four spinons, see Fig. 6 (d).

A detailed investigation of the dimensional cross-over from 3-to-5-to...-2n + 1 leg setting to

the infinite mixD system will be subject of future work.

3 Discussion

In this article we propose a simplified model to study some of the exotic phenomena expected

to play a fundamental role in the ground state of the 2D Fermi-Hubbard model, and high-Tc

cuprate superconductors. As a key simplification we consider holes which can only move along

one direction, described by the mixD t−J model. Our model Hamiltonian can be implemented

at arbitrary doping levels using ultracold atoms in optical lattices.

We study this model at low doping, and provide evidence that holes form mesonic bound
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Figure 6: Precoursors of stripe formation. We consider a single hole moving on

the central chain of an n-leg ladder, described by the mixD t−J model with with open

boundary conditions. We performed DMRG simulations for (a) an n = 3-leg system

with Lx = 40 sites in x-direction and (b) n = 5 and Lx = 10. The hole density

〈n̂h
j
〉 forms a standing wave pattern with a pronounced maximum in the center of the

middle chain (gray). The AFM order parameter Ω j = (−1) jx+ jy 〈Ŝz
j
〉 changes sign in

the center around jx = Lx/2. To understand this pattern from a parton perspective,

one needs to consider multi-parton bound states. (c) In a three-leg ladder, the holon

is bound to two spinons (domain walls) in the upper and lower chains. The possible

spinon configurations (top and bottom) are coupled via a third state (center) with a

spin-1 magnon excitation in the central chain. (d) The multi-parton state in the three-

leg ladder is a generalization of a meson and can be understood as the analogue of

a baryon. Similarly, the bound state in a five-leg ladder corresponds to a petaquark

state.

states of spin-less holons and charge-neutral spinons. To model the structure of the mesons,

we introduce a restricted set of basis states describing geometric strings of displaced spins

which connect spinons and holons. We show that non-local spin-charge correlations provide

evidence for meson formation, and demonstrate that geometric strings can be directly imaged

in individual experimental snapshots. Our predictions can be tested in current experiments

with ultracold atoms [29–31,48,49].

To check if two holes from the same leg can pair at zero temperature, we calculate the

binding energy Ebdg = E2h − 2E1h + E0h using DMRG. Finite-size scaling for a mixD three-leg

ladder with two holes in the central chain at t = 3J , up to lengths Lx = 80, extrapolates

to |Ebdg| ≈ 10−3J when 1/Lx → 0, indicating the absence of strong pairing. In a forthcom-

ing work we study meta-stable holon-holon mesons at higher energies, as illustrated in Fig. 1

(b). Because |Ebdg| ≪ J we expect that they can decay into spinon-holon mesons by sponta-

neously creating spinon-antispinon pairs as in the Schwinger mechanism. Such dynamics can

be studied experimentally using quantum gas microscopes.

While our calculations indicate that pairing is suppressed in mixD, we find precursors for

the formation of stripe phases already for a single hole in a finite-size system. Simulations at

higher doping values will be devoted to future work, but we expect that the mixD t − J model

can provide new insights into the interplay of superconductivity and stripe phases. Note that
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the mixD Hamiltonian has many independent sectors of individually tunable doping levels per

chain, which need to be studied separately. At finite doping we also expect that the relation of

our meson approach with the fractionalized Fermi liquid theory of the pseudogap phase [50]

or the phase string effect [51–53] can be explored. Finally, the goal is to extend our work and

search for string patterns also in the 2D t − J model [44,54,55]. An interesting starting point

for the study of the mixD-to-2D crossover is the fate of the Nagaoka effect: While the ground

state of the 2D t − J model at J = 0 has ferromagnetic order [56,57], it is highly degenerate

in mixD.

4 Methods

Mesons and squeezed space in mixD. In the main text we describe spinon-holon mesons

by the truncated string basis. It is obtained by first creating a hole at site ( jsx , 0) in the ground

state |Ψ0〉 of the undoped Heisenberg model, leading to the state ĉ jsx ,0,↓|Ψ0〉 ≡ |ψ0〉| j
s
x〉. Next

one applies the hopping part Ĥt of the Hamiltonian (1) multiple times to generate a set of

geometric string basis states, |ψ0〉| j
s
x ,Σ〉. These states describe a meson with a spinon localized

at site ( jsx , 0). The displacement of the surrounding spins along the geometric string is taken

into account, but otherwise their configuration is fixed by |ψ0〉, determined from the undoped

ground state.

Now we explain how these limitations of the truncated basis can be overcome and how

changes in the spin wavefunction affect the physical picture. We distinguish between two

types of processes: (i) The first type involves the lattice site j s associated with the spinon;

It introduces spinon dynamics. (ii) The second type involves other fluctuations in the spin

background; It leads to additional polaronic dressing of the meson.

To describe (i) we start by noting that the restricted string basis can be constructed for

arbitrary initial positions of the hole, j s and j s + δ jxex . The resulting basis states, which

correspond to different spinon positions, are no longer orthogonal in general. However, it can

be expected that they are approximately orthogonal as long as the undoped ground state |Ψ0〉

has strong AFM correlations. In the case of the classical Néel state, this assumption becomes

exact. Otherwise, the basis can be orthonormalized using the Gram-Schmidt method.

In general, we expect that the Hamiltonian has non-zero matrix elements between states

corresponding to different spinon positions, 〈 jsx+δ jx , 0|〈ψ0|ĤJ |ψ0〉| j
s
x , 0〉 6= 0; Note that these

states also correspond to different string configurations, but they must have the same holon

position to guarantee a non-zero matrix element. The additional terms added to the effective

Hamiltonian introduce spinon – and thus meson – dynamics. Because the matrix elements

responsible for such processes are proportional to Jx , we expect that the typical spinon or

meson bandwidth is proportional to Jx ≪ t. The same result is predicted by conventional

theories of magnetic polarons in 2D [9,11,12]; But in that case the severe modification of the

bandwidth of the hole, from 8t for a free holon to an expression∝ Jx , is usually interpreted

as a consequence of strong polaronic mass renormalization. In the main part of the paper, we

have implicitly included spinon dynamics in the trial wavefunction in Eq. (4).

The second types of processes (ii) lead to polaronic dressing of the meson by spin-wave

excitations. Now we argue that this can be understood as a result of quantum fluctuations

of the surrounding spins. To describe such fluctuations, we introduce a generalization of the

squeezed space commonly used to describe the 1D t − J model [35,38]. In 2D, the squeezed

space can be constructed as an extension of the restricted string basis, assuming a fixed spinon

position j s. A new set of operators S̃ j̃ is defined on the squeezed space lattice, which is obtained

from the original 2D lattice by excluding the site ( jsx , 0) where the hole was initially created.

In squeezed space, the hole motion has no effect, because the new operators S̃ j̃ explicitly
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depend on the string configuration Σ. They can be defined by writing the operators Ŝ j on the

original 2D lattice as

Ŝ j =

∞
∑

Σ=−∞

|Σ〉〈Σ| S̃gΣ( j)
. (9)

The sites j and j̃ = gΣ( j) in real and squeezed space are related by a string-dependent function

gΣ( j) taking the role of a metric. This metric is defined by

gΣ( jx , 0) = ( jx + sign(Σ), 0) , if jx ∈ [ j
s
x , jsx +Σ), (10)

i.e. if the site ( jx , 0) is part of the string. Otherwise

gΣ( j) = j , (else), (11)

except when j = ( jsx +Σ, 0), for which

gΣ( j
s
x +Σ, 0) = ( jsx , 0). (12)

From this definition, it is easy to see that geometric strings introduce frustrated couplings

between spins in squeezed space. The Heisenberg interactions J Ŝi · Ŝ j between neighboring

sites 〈i, j〉 in real space can become next-nearest neighbor interactions J Ŝĩ · Ŝ j̃ in squeezed

space, for example, depending on the instantaneous metric gΣ( j). Such frustrated couplings

introduce additional quantum fluctuations in squeezed space, which lead to local changes of

the spin wavefunction |ψ0〉 around j s. On the one hand, this can renormalize the string tension

dE/dℓ. On the other hand, we expect that correlations build up between the spins S̃ j̃ and the

string configurations Σ, in particular when t and Jx ,y become comparable. Both effects go

beyond the frozen spin approximation (FSA) introduced in the main part of the paper. We

address them in more detail in a forthcoming work [58].

Spin-charge correlations with pinned AFM order. In the main part of the paper, we

described how we calculate the two-point function Cz
SH(dh) defined in Eq. (6) in a three-leg

ladder. The result is shown in Fig. 3 (a), for a staggered magnetic field B = J at the short

edges, see Fig. 3 (c), pinning the AFM order. Here we present data for different values of the

pinning field B and explain how it relates to the theory of geometric strings.

Our results for 0≤ B ≤ J are shown in Fig. 7, along with fits to the data at short distances.

For the largest pinning field, B = J , the behavior of Cz
SH(dh) is qualitatively similar to the result

expected for a hole moving inside a classical Néel state, see Fig. 3 (a). At short distances dh

of the reference spin in the correlator to the hole, we observe a pronounced dip. As explained

in the main text and Fig. 3 (b), this is a direct consequence of the string of displaced spins

formed along the trajectory of the hole. When the reference spin at a distance dh from the

hole approaches the edge of the system, the correlator Cz
SH(dh) increases for B = J because of

the enhanced influence of the pinning field. As shown in Fig. 7, the same behavior is found as

long as B ≥ 0.2J .

For smaller pinning fields B < 0.2J , we observe an overall decrease of Cz
SH(dh) towards

smaller values, which is almost independent of dh. While the shape of the dip at short distances

remains almost unaffected, the correlations Cz
SH(dh)< 0 become negative – first only for small

dh but eventually everywhere when B = 0. This effect is directly related to the sign change

of the Néel order observed in Fig. 6, which we interpret as a precursor of stripe formation.

Indeed, for sufficiently large dh we expect from the FSA introduced in the main text that

Cz
SH(dh)≈ (−1)dh

�

〈Ŝz
j0+dh
〉〈n̂h

j0
〉 − 〈Ŝz

j0+1+dh
〉〈n̂h

j0+1〉
�

(13)

factorizes; I.e. Cz
SH(dh)≃ 〈n̂

h
j0
〉Ω j0+dh

reflects the local Néel order parameterΩ j = (−1) jx+ jy 〈Ŝz
j
〉.
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Figure 7: Pinning long-range order. We use DMRG to calculate the two-point

function Cz
SH(dh), see Eq. (6), in a 40× 3 system with open boundary conditions for

j0 = Lx/2. The procedure is identical to the one described in Fig. 3 (a) of the main

text, but we tune the strength of the staggered magnetic field B which is applied at

the short edges of the system to pin the AFM order, see Fig. 3 (c). The two-point

function shows a pronounced dip at short distances dh, which depends only weakly

on the applied pinning field B. To extract the characteristic length scale associated

with the dip, we performed fits of the form A1 + A2e−dh/ξ(B) in the range 1 ≤ dh ≤ 8

(solid lines).

As illustrated in Fig. 6 (c), we expect that the holon in the central chain is bound to the

two spinon excitations in the upper and lower chains of the three-leg system when B = 0. The

holon motion still creates geometric strings, connecting the holon to the two spinons in this

case. Because the string tension expected from the FSA introduced in the main part of the

paper only depends on the local spin correlators of the surrounding spin system, we expect

that the length of geometric strings in the case B = 0 is similar to the result for a simpler meson

with one holon and one spinon in an infinite system.

To confirm our expectation, we extract the characteristic length scale of the dip observed in

Cz
SH(dh) at small distances dh. To this end we fit the data with an offset decaying exponential,

see Fig. 7. The resulting decay length ξ(B) of these fits is plotted as a function of B in Fig. 3

(d). As concluded in the main part of the paper, this length scale depends only weakly on B.

Finally, we note that the microscopic origin of the dip observed in Cz
SH(dh) can be different at

different values of B, but it is always caused by the spinon excitation(s) defining the end of

the geometric string.

Revealing string order. Here we describe how we identify strings from snapshots of the

quantum mechanical wavefunction when measured in the z-basis of the spins. Numerically,

we generate such snapshots from the ground state wavefunction |ΨmD〉 which we obtain using

exact diagonalization of a 6 × 3 mixD t − J model with periodic boundary conditions in x-

direction. To this end we represent |ΨmD〉 =
∑

α cα|α〉 in the Fock basis of spins in z-direction

{|α〉} and sample Fock states according to the probability distribution defined by |cα|
2.

For a given Fock state |α〉, we calculate the correlators Cσ( jx ,α) = 〈α|Ĉσ( jx)|α〉 and

C±
Σ
( jx ,α) = 〈α|Ĉ±

Σ
( jx)|α〉 defined in Eqs. (7), (8) of the main text, see also Fig. 4 (a). This

is easy because the operators Ĉσ, Ĉ±
Σ

are diagonal in the z-basis. For sites next to the hole,

jx = jhx ± 1, we add −1/4 to all correlators such that bonds involving the hole contribute as if

they were part of a perfect string. This allows us to treat all sites on the same footing in the

14

https://scipost.org
https://scipost.org/SciPostPhys.5.6.057


SciPost Phys. 5, 057 (2018)

following.

In order to determine the string configuration in a snapshot αwe apply the following rules,

explained in more detail below, to all lattice sites jx which are not occupied by the hole:

(i) If Cσ( jx ,α) = 0 and C+
Σ
( jx ,α) = C−

Σ
( jx ,α) = +1, we count jx as part of a string.

(ii) If C+
Σ
( jx ,α) = C−

Σ
( jx ,α) = 0 and Cσ( jx ,α) = +1, we count jx as part of the background

(not the string).

(iii) Otherwise, we determine the smallest of the three correlators. If the minimum is realized

by C−
Σ
( jx ,α) or C+

Σ
( jx ,α) or both of them, we count jx as part of a string. If the minimum

is realized by just Cσ( jx ,α), we count jx as part of the background (not the string). In

all remaining cases, the configuration remains undefined.

From the so-determined configuration we can extract the string length ℓ(α). To this end

we start from the site jhx occupied by the hole. If the configuration at site jhx +1 is a string and

the one at site jhx −1 is not, or vice-versa, we say that a string of length ℓ≥ 1 emerges from the

hole. We follow it and count the number of segments ℓ(α), stopping as soon as one element

is no longer found to be in a string configuration. In all other cases, i.e. when no string is

present, we set ℓ(α) = 0. By sampling Fock states |α〉 as described above, we obtain the string

length distributions shown in Fig. 4.

Finally, we explain the motivation for using rules (i) - (iii) defined above. As mentioned in

the main text, the basic idea is that nearest-neighbor correlations C1 are enhanced compared

to C2,3,... in the 2D Heisenberg AFM due to a large admixture of local singlets [44]. Therefore,

if we consider the ground state |Ψ0〉 of the 2D Heisenberg model without any geometric strings,

〈Ĉσ( jx)〉= −0.45 is large and negative while 〈Ĉ±
Σ
( jx)〉= −0.09 is a five times smaller negative

number. In contrast, if we shift all spins on the central chain (with jy = 0) by one lattice site,

mimicking the effect of a geometric string, we find that 〈Ĉ±
Σ
( jx)〉 have large negative values of

−0.45 and −0.34 whereas 〈Ĉσ( jx)〉 = −0.09 is a small negative number much closer to zero.

This explains rule (iii), which identifies strings by finding the smallest of the three correlators.

Rules (i) and (ii) are motivated by the effects of quantum fluctuations on top of a classical

Néel state pointing in z-direction. In a classical Néel state without quantum fluctuations,

rule (iii) is sufficient to identify all strings. The two dominant types of quantum fluctuations

correspond to flips of individual spins and exchanges of two anti-aligned spins. Rules (i) and

(ii) take into account cases where only the central spin at site ( jx , 0) is flipped. As a result Cσ
changes from −1 in the classical Néel state without a string to +1, whereas C±

Σ
= 0 remains

unchanged. Moreover, C±
Σ

changes from −1 in the classical Néel state with a string at site

( jx , 0) to +1. These cases are taken into account by rules (i) and (ii).

Dimensional crossover. In the following we describe our analysis of the dimensional crossover

from 1D, realized for Jy = 0, to the mixD case with Jy = Jx . As described in the main text,

we performed DMRG simulations in a three-leg ladder with Lx = 40 sites. We assumed open

boundary conditions, used t = 3Jx , set Sz = 1/2 and varied Jy between 0 and 1. To extract the

string length ξ(Jy) shown in Fig. 5 (a), we calculated the two-point function Cz
SH(dh) defined

in Eq. (6) of the main text. The result is shown in Fig. 8, together with the fits by a function

A1 + A2e−dh/ξ which we performed in the range 1≤ dh ≤ 9.

In the main text we compare our DMRG results in the three-leg ladder to calculations

using the trial wavefunction from Eq. (4) in a 16 × 8 system with periodic boundary con-

ditions. To this end we first determined the mean-field spinon Hamiltonian at zero doping

and at various Jy , for which the Gutzwiller projected mean-field wavefunction P̂GW|ΨMF〉 has

the lowest variational energy, see next paragraph for more details. Then we evaluated the

meson wavefunction in Eq. (4) using VMC methods and calculated the three-point function
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Cz
SHS(d, dh = 1). To extract the string length ξ(Jy) shown in Fig. 5, we fitted the result by a

function A1 + A2e−d/ξ in the range 3≤ d ≤ 9. The fits and the data are shown in Fig. 9.

Mean-field spinon Hamiltonian. Now we describe the (quadratic) mean-field (MF) Hamil-

tonian ĤMF for the spinons f̂k,σ. We use it to determine the mean-field spinon wavefunction

|ΨMF〉 appearing in the trial wavefunction Eq. (4) before Gutzwiller projection. We consider

only the half-filling case with zero doping in the following, and treat the couplings defining

ĤMF as variational parameters which need to be optimized in order to minimize the variational

energy E0 = 〈ΨMF|P̂GWĤP̂GW|ΨMF〉. For the isotropic case, Jx = Jy , we reproduce exactly the

results of Refs. [41,42].

Following Refs. [40–42] we consider the following class of MF spinon Hamiltonians,

ĤMF =− t x
eff

∑

〈i, j〉x ,σ

�

eiθi, j f̂
†
j ,σ

f̂i,σ + h.c.
�

− t
y

eff

∑

〈i, j〉y ,σ

�

eiθi, j f̂
†
j ,σ

f̂i,σ + h.c.
�

+
Bst

2

∑

j ,σ

(−1) jx+ jy f̂
†
j ,σ
(−1)σ f̂ j ,σ. (14)

Here the gauge choice θi, j = Φ/4(−1) jx+ jy+ix+iy realizes a staggered magnetic flux Φ per pla-

quette, t x
eff

and t
y

eff
denote effective NN tunnelings and Bst is an effective staggered magnetic

field. The corresponding Bloch Hamiltonian, defined for momenta k in the magnetic Brillouin

zone (MBZ), can be written as

ĤMF(k) =

�

Re rk , Im rk ,
(−1)σBst

2

�T

· σ̂, (15)

where rk = −2t x
eff

cos(kx)e
−iΦ/4 − 2t

y

eff
cos(ky)e

iΦ/4.

In the isotropic case, Jx = Jy = J , the optimal parameters were determined in Ref. [42] to

be Φ = 0.4π and Bst = 0.44× t
x ,y

eff
. To study the dimensional crossover where Jy/Jx is varied

from 0 to 1, we optimized the mean-field parameters as a function of Jy . We observed that the

optimum staggered flux Φ ≈ 0.5π varies only weakly with Jy/Jx , and performed optimization

of Bst/t x
eff

and t
y

eff
/t x

eff
using a finer grid at fixed Φ = 0.5π. The resulting lowest energy E0 is
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Figure 8: Spin-hole correlations. The two-point function Cz
SH(dh) is calculated for

different values of Jy using DMRG. Parameters are Lx = 40, L y = 3, Sz = 1/2 and

t = 3Jx . The solid lines indicate fits of the form A1 + A2e−dh/ξ which we used to

extract the length scale ξ(Jy).
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Figure 9: Spin-hole-spin correlations. The three-point function Cz
SHS(d, dh = 1)

is calculated for different values of Jy from the meson trial wavefunction in Eq. (4)

evaluated at kMP = (π/2,π/2), Φ = π/2 for optimized Bst as shown in Fig. 10.

Parameters are Lx = 16, L y = 8, Sz = 1/2 and t = 3Jx . The solid lines indicate fits

of the form A1 + A2e−d/ξ which we used to extract the length scale ξ(Jy).
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Figure 10: Dimensional cross over. (a) The variational energy E0 is shown for

a 12× 12 system at zero doping. It was obtained for Φ = 0.5π by minimizing with

respect to t
y

eff
/t x

eff
and Bst/t x

eff
. (b) The optimized parameters at Φ = 0.5π are plotted

as a function of Jy/Jx . Discrete steps are due to the underlying grid used to determine

the optimal variational parameters. The solid lines correspond to Eqs. (16), (17) and

provide an approximate description of the optimal values.

shown as a function of Jy/Jx in Fig. 10 (a). The optimal parameters are plotted in Fig. 10 (b).

Their numerical values can be approximated by the following curves,

Bst|opt ≈ 0.36× t x
eff

e−Jx/(4Jy ), (16)

t
y

eff
|opt ≈ t x

eff
(Jy/Jx)

0.75, (17)

which we used in our analysis of the dimensional crossover presented in the main text.

Data availability. The data that support the findings of this study are available from the

corresponding author upon request.
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