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We report results for the masses of the flavor nonsinglet light 0þþ, 1��, and 1þ� mesons from

unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavors of

sea quarks. For the 0þþ and 1þ� mesons we look for the effect of decays on the mass dependence. For the

light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and

transverse decay constants of the � meson. We test the mass dependence of the KSRF relations, between

the mass, leptonic coupling constant, and strong coupling of the rho meson.
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I. INTRODUCTION

Modern unquenched lattice QCD calculations include
the dynamics of light sea quarks (with pion masses below
300 MeV) and use multiple lattice spacings and volumes
[1]. This has allowed calculations of many basic quantities
of long-lived hadrons that decay via the weak force to be
computed to high accuracy. Of particular note is that un-
quenched lattice QCD calculations are nowmaking contact
with the results of chiral perturbation theory calculations
[2,3], particularly for light pseudoscalar mesons.

There has been much less work on studying resonances
with the latest generation of lattice QCD calculations.
Some of the most interesting questions in light quark
hadron spectroscopy are looking for glueball degrees of
freedom in the experimental f0 mesons and looking for
experimental evidence for the exotic 1�þ mesons. There
are new experiments, such as Gluex [4] and PANDA [5]
that will start around 2015, that aim to study hadronic
resonances. The new hadronic physics experiments will
require results from lattice QCD to guide their searches for
new hadrons. The lattice results for light resonances have
recently been reviewed by [6–11].

In this paper we test basic lattice QCD techniques to
study the b1, a0, and � mesons. The observation of the
decay of the � meson has been a long goal of the lattice
community. The issue of dealing with the decay of the �
meson has stopped many calculations of weak decays such
as B ! ��e [12]. In the case of determining jVubj from the
semileptonic decay B ! ��e, the simplest thing is to just
ignore this decay and focus on B ! ��e. However there
are some very important reactions such as B ! K?� and
B ! �� that have no simple equivalent form factors with a
meson that is stable under strong decay. The effect of the

strong decays on these lattice calculations is an unknown
systematic error. It is also important to understand the
effect of strong decay on the � meson for calculations
relevant to g� 2 [13,14].
It has been proposed (see [6–9] for a review) that the

a0ð980Þ contains tetraquark or molecular degrees of free-
dom. It is interesting to see whether quark-antiquark op-
erators actually couple to this state in lattice QCD
calculations. Understanding whether the a0ð980Þ is a tetra-
quark is important for classifying the f0 and a0 mesons into
�qq or qqqq multiplets [9].
First we define some notation. We call the lightest flavor

nonsinglet states from the lattice calculations with JPC

given by 0þþ, 1þ�, and 1�� as the a0, b1, and � mesons,
respectively, at the masses used in the lattice calculation.
We include the mass of the state when we deal with the
experimental state, such as a0ð980Þ, �ð770Þ.
The plan of the paper is thus. We first discuss some

general issues about the effect of hadronic decays on
mesons. We then describe the details of the lattice QCD
calculation and report results for the masses in lattice units.
In Sec. IV we discuss the interpretation of the results for
the a0 and b1 channels. In Sec. V we then discuss the
results for the masses of the vector mesons. We then
discuss the leptonic decay constant of the � meson. In
the penultimate section we test the KSRF relations. In
Sec. VIII we draw our conclusions.

II. GENERIC BACKGROUND TO THE
CALCULATION

At first analysis, it is not clear that the concept of a
hadronic resonance makes sense in an Euclidean lattice
QCD calculation with a finite box size. Naively, the size of
the decay width could be a measure of the systematic error
on the mass of the resonance on the lattice, however there
are arguments that suggest this is a pessimistic estimate.
Michael [15] reviews some of the phenomenology of un-
stable hadrons and notes that many unstable mesons fit

*karl.jansen@desy.de
†c.mcneile@physics.gla.ac.uk
‡cmi@liverpool.ac.uk
xCarsten.Urbach@physik.hu-berlin.de

PHYSICAL REVIEW D 80, 054510 (2009)

1550-7998=2009=80(5)=054510(14) 054510-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.054510


well with mesons that are stable under the strong decays,
using SU(3) symmetry, for example. Also Bijnens et al.
[16] obtained acceptable fits to the masses of the light
vector mesons with an effective theory (but some parame-
ters coming from a model) that did not include the effect of
the vector meson decay.

In Fig. 1 we show a ‘‘picture’’ of what we expect
happens when a resonance (R) decays to two mesons M1

and M2 in the lattice calculation. When the mass of the
decay channels and the resonance are close there is mixing
between them (an avoided level crossing). The hadronic
decay in Fig. 1 requires the creation of a quark- antiquark
pair, so it is only present in unquenched lattice QCD
calculations.

For an S-wave decay the threshold for decay is MR ¼
M1 þM2. For a P-wave decay the decay products must
carry momentum. For example, in the real world the �
decays into two pions, via a P-wave decay. The threshold

for decay at rest is 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ ð2�L Þ2
q

where L is the side of the

box, assuming periodic boundary conditions in space. The
CERN group [17,18] found excited masses for the � chan-

nel that were consistent with 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ ð2�L Þ2
q

. For heavy

quark masses it can be more kinematically favorable to
study the decay of the �meson with one unit of momentum
to decay to a pion at rest and a pion with one unit of
momentum [19–21]. It may well be that one of the mesons
(M1 or M2) in Fig. 1 is also a resonance, in that case there
will be second decay. One example of this is one of the
decays of the b1 meson.

b1 ! !� ! �ð���Þ: (1)

Our lattice calculations can in principle test the effect of
the opening of decay thresholds, because as we lower the
sea quark masses in the calculations, the various decays
channels become open. In practice it may be hard to see the
effect of the open decay as the quark mass changes, be-
cause other systematic errors may change as well.

Although it appears that S-wave decays are kinemati-
cally easier to observe than P-wave decays, the a0 and b1
mesons are noisier than the �meson. The �meson at rest is
stable to two-pion decay in this calculation, so for this state
we try to build in the physics of the meson decay by
studying the chiral extrapolation formulas in Sec. V. We
also estimate the decay transition amplitude directly on the
lattice, to gain an understanding of possible consequences
of the mixing of the � meson with the two-pion state.
The MILC Collaboration claimed to see some evidence

for the a0 resonance to decay into two light hadrons [22].
Latter work showed that more analysis was required to
understand the a0 decay in staggered calculations [23–25].
Lüscher has developed a technique to compute the scat-

tering phase shifts [26]. The method was applied to 2-d
theories [27] and the �4 theory [28]. We have not inves-
tigated newer methods [29,30] based on Lüscher’s tech-
nique [26], but plan to do so in the near future. Morningstar
[31] has recently presented a simple example of the basic
method in quantum mechanics [32].

III. DETAILS OF THE LATTICE CALCULATION

Our lattice calculation uses the twisted mass QCD for-
malism [33]. Once a single parameter has been tuned,
twisted mass QCD has nonperturbative OðaÞ improvement
[34]. We call this maximally twisted mass QCD
(MTMQCD). This OðaÞ improvement was checked nu-
merically by scaling studies using quenched QCD calcu-
lations [35–39], and has recently been checked in lattice
perturbation theory [40]. As a prerequisite for large-scale
unquenched calculations, the phase structure of twisted
mass QCD has been studied [41–45]. The twisted mass
formalism has recently been reviewed by Shindler [46].
The ETM Collaboration has already published a com-

parison of the lattice results for m� and f� against chiral
perturbation theory [47,48]. Results for the nucleon and �
masses and a comparison with chiral perturbation theory
are reported in [49]. The masses of the flavor singlet
pseudoscalar mesons have been presented [50]. Light
quark masses and decay constants from a partially
quenched analysis have been published from this data set
[51]. There are ongoing projects to look at the moments of
parton distributions [52,53], the form factor of the pion
[54], and the properties of heavy-light mesons [55]. For an
overview of the broad range of physics projects undertaken
by the ETM Collaboration see the review by Urbach [56].
For the gauge fields we use the tree-level Symanzik

improved gauge action [57], which includes the plaquette
term U1�1

x;�;� and rectangular (1� 2) Wilson loops U1�2
x;�;�

Sg ¼ �

3

X
x

�
b0

X4
�;�¼1
1��<�

f1� re trðU1�1
x;�;�Þg

þ b1
X4
�;�¼1
���

f1� re trðU1�2
x;�;�Þg

�
(2)

R

M + M1 2
1 2

M (p)+M (−p)

Hadron Energy

R

M + M1 2
Quark Mass

FIG. 1 (color online). The effect of decays on the energy levels
of a resonance at finite volume.
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with b1 ¼ �1=12 and b0 ¼ 1� 8b1. This choice of gauge
action was made after a study of the phase structure of
unquenched QCD with nf ¼ 2 mesons.

The fermionic action for two degenerate flavors of
quarks in twisted mass QCD is given by

SF ¼ a4
X
x

��ðxÞðDW½U� þm0 þ i��5	
3Þ�ðxÞ (3)

with 	3 the Pauli matrix acting in the isospin space, � the
bare twisted mass and the massless Wilson-Dirac operator
given by

DW½U� ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

�: (4)

where

r�c ðxÞ ¼ 1

a
½Uy

�ðxÞc ðxþ a�̂Þ � c ðxÞ� and

r�
�c ðxÞ ¼ � 1

a
½U�ðx� a�̂Þc ðx� a�̂Þ � c ðxÞ�: (5)

Maximally twisted Wilson quarks are obtained by setting
the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter � is kept nonvanishing
in order to work away from the chiral limit. In Eq. (3) the
quark fields � are in the so-called ‘‘twisted basis.’’ The
‘‘physical basis’’ is obtained for maximal twist by the
simple transformation

c ðxÞ ¼ exp

�
i�

4
�5	

3

�
�ðxÞ;

�c ðxÞ ¼ ��ðxÞ exp
�
i�

4
�5	

3

�
:

(6)

In terms of the physical fields the action is given by

Sc
F ¼ a4

X
x

�c ðxÞ
�
1

2
��½r� þr�

��

� i�5	
3

�
�ar

2
r�r�

� þmcr

�
þ�

�
c ðxÞ: (7)

The generation of the gauge configurations is reported in
[48,58,59]. The methods used to compute the correlators
and extract the masses and decay constants of the light
mesons, from nf ¼ 2 unquenched twisted mass QCD are

described in [47,48]. Reference [48] is intended to be the
main reference that explains the basic lattice techniques
used by the ETM Collaboration, such as those used to
compute the light meson spectrum. Here we briefly sum-
marize some of the methods from [48]. We used meson
interpolating operators in the twisted basis (based on
Eq. (6)), as described in [48]. The ensembles used in this
calculation are summarized in Table I. Correlators sepa-
rated by 10 trajectories were used. We fit a matrix of
correlators to a factorizing fit form [48]. Correlated fits
with reasonable �2=dof were used to choose the fitting
regions in time. The basis of smearing functions includes

local and fuzzed operators. A fuzzing length of 6 in lattice
units was used [48].
The correlators were calculated with all-to-all quark

propagators computed using the ‘‘one-end-trick’’ [48,60].
The all-to-all propagators used Z2 noise in both the real and
complex components from a single time source, chosen
randomly for each measurement to reduce the autocorre-
lations [48]. A variant of ‘‘spin-dilution’’ is used to com-
pute the all-to-all propagators called ‘‘linked-sources’’
[48], so that all 16 local quark-antiquark bilinears were
constructed.
At finite lattice spacing, there is an order a mixing of

mesons with different parity in MTMQCD. When studying
charged mesons this has the consequence that the � and a1
mesons mix. Assuming we are at maximal twist, the mix-
ing will be of order a, then at large t the lightest state, the �
meson, will dominate. The � can be created by a vector or
tensor current so we used a 4 by 4 matrix of correlators
(vector/tensor and local/fuzzed). We obtain a good fit with
one meson state for the time regions 8–18 and 10–20 for �
3.9 and 4.05, respectively. We checked these fits using
either a subset of operators or with more states.
The charged a0 and b1 mesons mix under twisting with

spin-exotic mesons so we do not expect at large t any
significant contributions from parity mixing since those
states will be heavy. For these cases, we fit a 2 by 2 matrix
of correlators (local/fuzzed) with two meson states, using
the fit regions in time 4–12 and 5–14, for� ¼ 3:9 and 4.05,
respectively.
In Table II we report the masses for the a0, b1 and �

mesons in lattice units. In Fig. 2 we plot the effective mass
plot for the � correlators for the B6 ensemble.
In Sec. IV we process the raw data and convert the

results into physical units. To convert the results into lattice
units we use the scale from the pion decay constant, at
a�¼3:9 ¼ 0:0855ð5Þ fm and a�¼4:05 ¼ 0:0667ð5Þ fm.

These scales were consistent with those obtained from
the mass of the nucleon [49].
In Table II we also include the lattice masses for the

neutral �0 operator. In the twisted mass formalism the �0

TABLE I. Summary of ensembles used in this calculation. The
format of the measurement column is number of blocks times
block length.

Ensemble � � L3 � T Measurements

B1 3.9 0.004 243 � 48 111� 8
B2 3.9 0.0064 243 � 48 78� 32
B3 3.9 0.0085 243 � 48 66� 32
B4 3.9 0.01 243 � 48 38� 32
B5 3.9 0.015 243 � 48 44� 32
B6 3.9 0.004 323 � 64 81� 6
C1 4.05 0.003 323 � 64 64� 8
C2 4.05 0.006 323 � 64 66� 8
C3 4.05 0.008 323 � 64 61� 8
C4 4.05 0.012 323 � 64 40� 8
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and �þ mesons are not degenerate because of the flavor
violation from the twisted mass term. The results in
Table II show that the �0 and �þ are essentially degenerate.
A theoretical discussion with numerical examples for why
this is so is contained in [61].

As reported in [61] the main effect of the flavor violation
from the twisted mass term is in the mass splitting between
the mass of the �0 and �þ mesons. This has implications
for decay thresholds of the �þ and �0 mesons.
Experimentally the dominant decays of the �þ and �0

meson are to �þ�0 and �þ��, respectively. The physical
decay of �0 to �0�0 is not allowed, because of isospin
symmetry, however at nonzero lattice spacing this decay is
allowed in twisted mass lattice QCD. At � ¼ 3:9 the mass
splitting between the �0 and �þ is approximately 50 MeV
at � ¼ 0:004 [48]. This should be compared with one unit

of quantized momentum of 600 MeV and 450 MeVon the
243 and 323 lattices, respectively, at � ¼ 3:9.
For a study of flavor singlet vector mesons such as the�

and !, evaluation of disconnected diagrams is required.
Earlier lattice work [62] showed that these contributions
are small. For the tensor coupling of the vector meson, the
considerable variance reduction possible using MTMQCD
has allowed these contributions to be evaluated with some
precision for the first time [63] so yielding first principles
results on the !� � mass difference and mixing.
Here we are discussing the flavor nonsinglet mesons. For

the neutral � meson there are also disconnected diagrams
that contribute to the correlators, because the twisted mass
formalism breaks isospin symmetry at nonzero lattice
spacing. These contributions would be expected to be
small but, to check this, for the B1 and C1 ensembles we
computed the relevant disconnected diagram for the vector
mesons. Because of favorable variance reduction [48], we
are able to determine the disconnected contribution rather
precisely for neutral � correlations using a vector coupling.
The results are in Figs. 3 and 4. As we explain in Sec. VI,
the neutral and charged vector currents renormalize differ-
ently, thus explaining that the ratio of correlators tends to
something close to 2, rather than 1. The neutral and
charged tensor current renormalize the same way, so the
ratio of correlators is close to 1. For both ensembles the
disconnected diagrams make a negligible contribution to
the correlators, so we do not consider their contribution any
further.

FIG. 2 (color online). Effective mass plot for the charged �
correlators (vector coupling) for the B6 ensemble. F and L are
the fuzzed and local operators, respectively.

FIG. 3 (color online). The ratio of correlators for the
(i) connected neutral and (ii) connected plus disconnected neu-
tral to the connected charged � correlator for the B1 ensemble. T
is the tensor and V is the vector current. As discussed in Sec. VI
the different currents renormalize differently, which explains
whether the ratio tends to one or to the ratio of the square of
the renormalization factors.

TABLE II. Masses in lattice units for the a0, b1, and �mesons.

Ensemble amb1 ama0 am�þ am�0

B1 0.702(52) 0.539(115) 0.404(22) 0.391(17)

B2 0.685(28) 0.573(59) 0.422(9) 0.434(17)

B3 0.729(24) 0.619(31) 0.428(8) 0.424(14)

B4 0.681(29) 0.666(34) 0.438(6) � � �
B5 0.746(30) 0.699(28) 0.481(7) � � �
B6 0.674(29) 0.636(53) 0.416(14) 0.409(21)

C1 0.552(38) 0.509(45) 0.335(12) 0.352(23)

C2 0.555(29) 0.410(29) 0.337(12) 0.344(13)

C3 0.526(35) 0.511(26) 0.345(8) � � �
C4 0.638(32) 0.545(19) 0.368(6) � � �
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IV. RESULTS FORTHEMASSES OF THE a0 AND b1
MESONS

The results for the mass of the lightest flavor singlet 0þþ
meson from lattice QCD up to 2007 have been reviewed
[6–8]. The physics goal is to decide whether a �qq inter-
polating operator will couple to the experimental a0ð980Þ.
The basic summary of the older quenched work was that
�qq interpolating operators did not see the a0ð980Þ meson
and coupled to the higher nonsinglet state.

The unquenched calculation by the RBC Collaboration
[64] using nf ¼ 2 domain wall fermions also found a mass

close to the mass of the experimental state a0ð1450Þ. In an
update on their analysis, that included 5 times the statistics,
the RBC Collaboration found 1.11(8) GeV for the lightest
state in the 0þþ channel [65]. McNeile and Michael [66] in
an unquenched lattice QCD calculation focused on the
mass difference (in the hope that systematics cancel) be-
tween the 1þ� and the 0þþ mesons. Using this mass
splitting it was claimed that the lightest state in the 0þþ
channel was consistent with the a0ð980Þ state. Lang et al.
reported masses for the lightest flavor nonsinglet 0þþ
consistent with the mass of the a0ð980Þ meson, from an
unquenched lattice QCD calculation using chirally im-
proved fermions [67]. In an unquenched lattice QCD cal-
culation with 2þ 1 flavors of sea quarks, Lin et al. [68]
found the lightest a0 state to be consistent with the experi-
mental a0ð980Þ.

One complication is that experimentally the a0 decays to
�
. In the two-flavor world, the lightest 
 meson is the
flavor singlet pseudoscalar meson at the 800 MeV level. It
is the mixing between the light and strange loops in a
lattice calculation that drives the mixing between flavor

singlet pseudoscalar states 
 and 
0. Hence, the decay
thresholds will be very different for the nf ¼ 2 and nf ¼
2þ 1 calculations that involve decay to a flavor singlet
pseudoscalar meson. The ETM Collaboration has recently
published the masses of the flavor singlet pseudoscalar
meson (called 
2) on these ensembles [69] and these
results will be used to estimate decay thresholds here. In
Fig. 5 we plot the a0 data and the decay thresholds.
To learn how to deal with mesons with open decays on

the lattice, we need some simple test cases to validate the
lattice methods. A bad example to study would be the
a1ð1260Þ because of its large experimental decay width
of 250 to 600 MeV [70]. The b1ð1235Þ meson is good
choice, because most models treat it as a �qq state and its
width is not too large at 142 MeV [70]. A direct study of
the decay transition b1 ! !� has been made on the lattice
with acceptable agreement [60] with the experimental
decay width. To illustrate the impact of this (S-wave)
decay threshold on the b1 meson, we can use the �� decay
threshold (because the difference between the � and !
masses is shown to be small [63]).
In Fig. 6 we plot our results from the ETMCollaboration

for the mass of the b1 meson with the estimate of the !�
threshold, as a function of the square of the pion mass. The
mass of the lightest state in the b1 channel is above the
decay threshold. This necessitates including the !� op-
erators with the b1 operators in a variational analysis,
which we plan to do in future work.
In Fig. 7 we plot the mass difference between the mass

of the b1 and a0 meson as a function of the square of the
pion masses from a collection of recent unquenched lattice
calculations. The fact that the majority of the results show
the mass of the a0 meson to be lighter than the mass of the
b1 meson is good evidence for the lightest a0 on the lattice
corresponding to the experimental a0ð980Þ state. The
Kentucky group has recently stressed that the identification
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FIG. 5 (color online). Mass of lightest state in 0þþ channel
with the �
2 decay threshold.

FIG. 4 (color online). The ratio of correlators for the
(i) connected neutral and (ii) connected plus disconnected neu-
tral to the connected charged � correlator for the C1 ensemble.
The notation is the same as for the caption of Fig. 3.
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of the a0ð980Þ state on the lattice requires an understanding
of dynamics of the strong decay [71].

V. RESULTS FOR THE MASSES OF THE LIGHT
1�� MESON

In this section we will discuss the physical results for the
mass of the vector mesons. There is much more informa-
tion on effective field theory for the vector mesons, so there
is more we can dowith the chiral extrapolations in the mass
of the light quarks. The data for the � meson are useful for
applications such as the calculation of the vacuum polar-
ization tensor that is part of the QCD corrections to g� 2
[13,14] and the comparison of the electromagnetic form
factor of the pion with the vector exchange model [54].

In Fig. 8 we plot the mass of the lightest vector meson as
a function of the square of the pion mass. Our lattice data

seem high relative to the experimental mass of the �
meson. A more detailed comparison with experiment re-
quires a discussion of the chiral extrapolations. Also the
effect of � decay needs to be accounted for. There has been
a long history of attempts to deal theoretically with the
effect of the � decay on the mass of the � meson [72–76].
In [7] the vector meson mass as a function of the square

of the pion mass was plotted with data from lattice QCD
calculations that used improved staggered (MILC
Collaboration [22]), and domain wall fermions (RBC-
UKQCD [77]). There was reasonable agreement between
the data from the different formalisms, although the statis-
tical errors need to be reduced on some results (including
ours).
Lattice correlators should have a signal to noise ratio

which goes like e�ðmM�m�Þt for a meson of mass mM [78].
We have checked that our data at � ¼ 3:9 obeys this
relation. So there is no fundamental problem with the
increase in the statistical errors as the mass of the light
quarks is reduced. On a subset of the configurations we
tried a technique called color dilution to improve the signal
to noise ratio for the connected � correlators [79]. This did
not reduce the statistical noise. ETMC have used an ex-
trapolation of the partially quenched � masses to reduce
the statistical errors [80].
At � ¼ 3:9 and � ¼ 0:004, we have also estimated the

mixing element between �0 and �þ�� from a correlator
ratio using the method described in [20]. The three-point
function ratio was computed using

c3ðtÞ ¼ h�ð0Þj�ðtÞ�ðtÞi
h�ð0Þj�ðtÞi1=2h�ð0Þ�ð0Þj�ðtÞ�ðtÞi1=2 : (8)

When the �-mass and �� energy are degenerate, for small
enough x [20] (where x ¼ h�j��i), this ratio can be fitted
to the model in Eq. (9).
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FIG. 7 (color online). Mass splitting between the b1 and a0
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c3ðtÞ ! xtþ const: (9)

The formalism required, where the �-mass and �� energy
are not degenerate, is discussed in [81]. The correlator ratio
c3ðtÞ is plotted in Fig. 9 for the decay � ! �ðk ¼
2�
L Þ�ðk ¼ � 2�

L Þ. Since the �-mass is somewhat larger (by

0.19 in lattice units) than the lightest two-pion energy, we
plot in the figure a theoretical curvewhich modifies Eq. (9),
taking this into account, as used in Ref. [20]. This fit to the
three-point function ratio gives ax ¼ 0:060ð15Þ. Since on a
lattice, energy is not conserved, we have evaluated the
transition amplitude to a final state with sufficient momen-
tum that its energy is more than that of the � at rest, so
strictly a zero decay width. So, to compare with experi-
ment, it is optimum to evaluate the coupling constant. This
may have some dependence on momentum in general, but
it is a useful point of reference. The g2��� coupling defined

via

� ¼ g2���

6�

k3

m2
�

(10)

is found to be g��� ¼ 5:2ð1:3Þ. The corresponding value of
g��� from the experimental value of the � width is 6.0. So

we have consistency between the lattice estimate of the
coupling between � and �� and that observed.

Since we measure the strength of the transition from � to
�� on the lattice (namely x), we can estimate the mass
shift caused by this mixing. Then with a two-state model
with energy difference � where

� ¼ E2 � E1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ
�
2�

L

�
2

s
�m� (11)

with a� ¼ 0:19 in our case, we obtain, using [20], a shift
(downwards for the �) of

msplit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=4þ x2

q
� �=2: (12)

This mixing produces a 4% downward shift in the mass of
the � for ensemble B1 using this simplified mixing scheme.
This shift is comparable to our statistical error for that
state. This suggests that the mass of the vector mesons in
Fig. 8 are largely unaffected by the two � decay.
This mixing argument can be used to compare expecta-

tions between the B6 ensemble with L ¼ 32 and that above
with L ¼ 24 above. The differences will be that the energy
gap will become much smaller (� ¼ 0:08) since the mini-
mum momentum is reduced while the mixing contribution
(x2) will be reduced proportionally to the spatial volume.
The net effect is a rather similar estimate which is consis-
tent with our results which show that the � mass from the
B6 ensemble is half-� higher than for the B1 ensemble.
We now discuss the chiral extrapolation of the vector

masses to the physical point. For the case of an effective
field theory for vector mesons, the issues in writing down
an effective field theory are less clear than for pions. A
fully relativistic Lagrangian can be used for the vector
fields or a heavy meson effective theory (HMET)
[16,82]. The connection between the different effective
theories is discussed in [16,83].
The most basic effective field theory for the light vector

meson predicts that the mass of the vector meson depends
on the mass of the pion via [16,82]:

M� ¼ M0
� þ c1M

2
� þ c2M

3
�: (13)

The pions involved in � decay are not soft so � ! ��
can not be studied using chiral perturbation theory with
power counting [16,82]. However, Bijnens et al. [16] suc-
cessfully fitted the masses of the light vector mesons � to
�, including electromagnetic effects, using HMET but not
including the dynamics of the � ! �� decay.
The � decay will affect the chiral extrapolation model

used to extrapolate the mass of the � meson. The Adelaide
group has studied different regulators [74–76] for the
effective field theory of � decay. This produced additional
mass dependence at very light pion masses.
Models for the effect of �! and �� contributions to the

mass of the � meson have direct implications for the mass
of the ! meson (which has �� contributions). Hence
lattice results for the quark dependence of the mass split-
ting of the ! to � mesons [63] allow further constraints to
the study of individual terms.
Bruns and Meißner [84] have published a chiral extrapo-

lation formula for the mass of the � meson. The derivation

used a modified MS regulator and a power counting
scheme.

M� ¼ M0
� þ c1M

2
� þ c2M

3
� þ c3M

4
� ln

�
M2

�

M2
�

�
: (14)

The term with the c3 coefficient is due to the self-energy (in
the infinite volume limit). Bruns and Meißner [84] recom-
mend that the size of the ci coefficients obtained from the
fits to the lattice calculations be checked against con-
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FIG. 9 (color online). The correlator c3ðtÞ in Eq. (8) as a
function of time.
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straints from low-energy effective constants. However they
only quote, as reasonable, the constraints that jcij< 3. The
Adelaide group [74] claimed to know the sign and magni-
tude of the c2 coefficient (c2 ��1:70 GeV�2), but Bruns
and Meißner [84] claim their bounds are more general.

Using one-loop chiral perturbation theory and a tech-
nique called the inverse amplitude method, Hanhart et al.
[85,86] estimate c1 ¼ 0:90� 0:11� 0:13 GeV�1 M0

� ¼
0:735� 0:0017 GeV.

Bruns and Meißner, [84] from an analysis of an old
lattice QCD calculation by the CP-PACS Collaboration
[87], found that the curvature from the nonanalytic terms
can produce either an increase or decrease in the vector
mass over a simple linear fit. CP-PACS used the string
tension (440 MeV) to set the lattice spacing [87]; this
corresponds to r0 � 0:54 fm, roughly 10% higher than
the preferred r0 from the pion decay constant. If there is
any ambiguity in the lattice spacing, then this can hide the
curvature from the nonanalytic terms.

Unfortunately the size of errors on the � data and the
number of points does not allow us to include the c2 and c3
coefficients as free parameters. To get some idea of the
effect of these terms we use the augmented �2 method
[88,89] where the physics constraints from Bruns and
Meißner [84] can be built into the fit with Bayesian tech-
niques. The augmented �2 is used to constrain c2 and c3.

�2
aug ¼ �2 þ X3

j¼2

ðci � 0Þ2
32

: (15)

Schindler and Phillips have recently discussed using an
augmented �2 to using information from effective theories
in chiral extrapolations of lattice data. We use the bootstrap
method to estimate the errors. In principle given the proba-
bility distribution, the errors on the parameters can be
obtained by integrating the Monte Carlo integrals
[89,90]. Chen et al. checked [91] that consistent errors
were obtained from a bootstrap analysis and from an error
analysis based on the augmented �2 being a quadratic
function of the fit parameters around the minimum.

We also investigated an approach developed by the
Adelaide [74] group. The Adelaide method uses a dipole

regulator, rather than the MS scheme, to regulate the
effective field theory corrections to the � mass [74]. The
extrapolation model for the mass of the � meson is

M� ¼ M0
� þ c1M

2
� þ ��!ð��!;M�Þ þ���ð���;M�Þ

2ðM0
� þ c1M

2
�Þ

(16)

where ��! and ��� are the self-energies from the �� and
�! states. The fit parameters in Eq. (16) are M0

�, c1 and

��!. The parameter ��� is related to ��!. The � self-
energy contribution ��� contains a cut at m� ¼ 2m� for

the decay � ! ��. For the continuum integral we used the
principle value of the integral when the decay is open. We
found that our data was too noisy to get stable fits from this
method. We were also unable to resolve the quadratic c2
term in Eq. (13), because the error bars were too large. The
original study [74] of Eq. (16) used � masses from lattice
QCD with 1% errors at heavier quark masses [74].
The summary of the final results is in Table III. We use

the pion mass of 135 MeV, because we do not include any
electromagnetism in the lattice calculation. We also ex-
trapolate our results to mass of the notional strange-strange
pseudoscalar meson (696 MeV). We call this the unitary �
analysis. Note that a better approach to the�meson within
an nf ¼ 2 formalism would be to treat the strange quark as

a (partially quenched) valence quark with a sea of light
quarks.
In Fig. 10 we plot the linear fit and the extrapolation

model in Eqs. (14).
The lattice data for the vector mesons seem to prefer a

smaller lattice spacing than the scales obtained from the
pion decay constant [47] and the nucleon mass [49]. This is
probably because we are missing some of the effect from

TABLE III. The � mass from chiral extrapolation from different fit models at � ¼ 3:9.

Equation Model m� GeV m� GeV M0
� GeV c1 GeV�1 c2 ðGeVÞ�2 c3 ðGeVÞ�3

(13) linear 0.90(4) 1.13(8) 0.89(5) 0.49(26) � � � � � �
(14) Bruns and Meißner 0.90(5) 1.07(10) 0.89(6) 3.5(4.7) �0:09ð81Þ �0:82ð41Þ
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FIG. 10 (color online). Fit to the mass of the vector meson
using a linear fit in the square of the pion mass and Eq. (14) at
� ¼ 3:9. Also included in the plot is the first decay threshold to
�� for L ¼ 24.
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the � decay and possibly also from the dynamical strange
quark.

VI. THE DECAY CONSTANTS OF THE � AND �
MESONS

We first introduce the leptonic decay constant of the
vector mesons, such as the � or �, in the continuum
[92]. The decay constant of the vector meson V is defined
[93] via

h0jV�jVi ¼ m�fV�� (17)

where the vector current is defined via

V�ðxÞ ¼ �c ðxÞ��c ðxÞ: (18)

There are other possible (slightly different) definitions of
the decay constant of the � definitions, for example, as
used by Lewis and Woloshyn [92].

The decay constants of the � and � mesons can be
extracted from 	 decay and eþ e� annihilation (see
[94,95] for a discussion).

f
expt

�þ � 208 MeV (19)

fexpt
�0 � 216ð5Þ MeV (20)

f
expt
� � 233 MeV: (21)

The difference between the experimental values of the f
expt

�þ

and f
expt

�0 is probably due to the problems of extracting the

parameters of the � meson from experimental data, rather
than electromagnetic effects that are important for light
pseudoscalar mesons [96].

The transverse decay constant (fTVð�Þ) of the V meson is
defined by

h0j �c���c jVi ¼ ifTVð�Þðp��� � p���Þ (22)

where ��� ¼ i=2½��; ���. It is convenient to introduce the
tensor current T�� ¼ �c���c . In the lattice calculations

we do not include any momentum.
There is no experimental result for the tensor decay

constant fTVð�Þ for the � or � mesons. However, light
cone sum rules require the transverse decay constant of

the �meson [97,98] for the extraction of jVtdj
jVtsj from the B !

�� and B ! K?� decays. The transverse decay constant of
the � meson is also used in the analysis of other B decays
[12]. There have been previous lattice QCD calculations of
the transverse decay constants of the �meson [94,99–101].

There needs to be a way to estimate the effect of the
strong decay of the � meson to two � on the decay
constants, in the same way we tried for the � mass in
Sec. V. A simple test is look at the fV decay constant for
the � and � mesons as these give us an estimate of our

accuracy. The majority of older lattice QCD calculations
concentrated on the ratio of fTV to fV .
There are various correlators that can be used to extract

the fV and fTV decay constants, for example, the correlators
in Eqs. (23)–(25). Our results are based on factorizing fits
to a basis of 4 by 4 smearing functions that include the
local operators as matrix elements in the smearing matrix,
so the operators in Eqs. (23)–(25) are included.

X
x

X3
�¼1

hV�ðx; txÞV�ð0; 0Þyi ! 3mVf
2
Ve

�mVtx

2
(23)

X
x

X3
�¼1

hT�0ðx; txÞV�ð0; 0Þyi ! 3fVf
T
VmVe

�mVtx

2
(24)

X
x

X3
�¼1

hT�0ðx; txÞT�0ð0; 0Þyi ! 3mVðfTVÞ2e�mVtx

2
: (25)

The local vector V� and T�� tensor currents need to be

renormalized. This involves some discussion of the twisted
mass formalism. We do all our fits in the twisted bases,
however the identification of states is done in the physical
basis [48]. Assuming that the calculations are done at
maximal twist (see Eq. (6)), we have

hijV3
�jjicont ¼ ZVhijV3

�jjitwisted lattice (26)

hijV
�jjicont ¼ ZA�

3�hijA�
�jjitwisted lattice (27)

hijT
��jjicont ¼ ZThijT

��jjitwisted lattice (28)

where takes the values of 1 or 2. Given that we found that
the disconnected graphs for vector mesons were negligible
(in Sec. IV), then the connected charged and neutral vector
mesons give us a separate estimate of the decay constants
that use different renormalization constants. This is a use-
ful test of the renormalization and cutoff effects.
The relevant renormalization factors ZV , ZT , and ZA,

have been computed [102,103] using the Rome-
Southampton nonperturbative method [104]. The ZV factor
has also been computed using the conserved vector current
[48]. It was found that the conserved vector current pro-
duced a more accurate estimate of ZV than the Rome-
Southampton method, so we use the result from the con-
served current in this analysis. In this paper we use the ZA

and ZT values calculated through the ‘‘p2-window’’
method without the use of the subtraction of Oða2g2Þ
terms. In Table IV we summarize the renormalization
factors used in this calculation [102,103].
The value of the tensor current depends on the scale. The

tensor current at �2
a is obtained from that at another scale

(�2
b) by using the renormalization group equation.

ZTð�2
aÞ ¼ Cð�2

aÞ
Cð�2

bÞ
ZTð�2

bÞ (29)
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Cð�2Þ ¼
�
sð�Þ
�

�
�0
�
1þ

�
sð�Þ
�

�
ð ��1 � ��1 ��0Þ

þ 1

2

�
sð�Þ
�

�
2½ð ��1 � ��1 ��0Þ2 þ ��2 þ ��2

1 ��0

� ��1 ��1 � ��2 ��0�
�

(30)

with

�� i ¼ �i

�0

; ��i ¼ �i

�0

(31)

�0 ¼ 1

4

�
11� 2

3
nf

�
�1 ¼ 1

16

�
102� 38

3
nf

�

�2 ¼ 1

64

�
2857

2
� 5033nf

18
þ 325n2f

54

�
:

(32)

The anomalous dimension for the tensor current has
been computed by Gracey [105,106] to three loops in the

RI0 and the MS schemes.

�0 ¼ 1

3
�1 ¼

543�26nf
216

�2 ¼�
�36n2fþ1440�3nfþ5240nfþ2784�ð3Þ�52555

5184

�
(33)

where the value of the standard constant is �3 ¼ 1:20206.
For the coupling we used the RunDec package [107] to

compute the coupling from �QCD using four-loop evolu-

tion [108,109]. There has not been a calculation of the
strong coupling using information from these configura-
tions. We used the value of �QCD ¼ 261ð17Þð26Þ MeV
from QCDSF [110]. The QCDSF value is consistent with
that from ALPHA [111], that also used nf ¼ 2 QCD.

The results for the leptonic decay constant are reported
in Table V and the results for the transverse � decay
constant are in Table VI. The decay constants from the
neutral and charged vector mesons agree within the errors.
We now only consider the decay constants of charged
vector mesons. In Fig. 11 we plot the decay constant of
the vector meson as a function of the square of the pion
mass. There is reasonable scaling between the decay
constants at � ¼ 3:9 and � ¼ 4:05. The data with larger
masses also disagree with the value of the decay constant
of the � meson. The � has a small decay width

(4.26(4) MeV), so we might expect to be able get the
properties of this meson correctly. However, the � is
considered to be mostly �s��s, so our neglect of the dy-

namics of the strange quark could be important.
It has been found that chiral perturbation theory is

required to extrapolate the decay constants of the light
pseudoscalar mesons to their values at the physical quark
masses [2,3]. As discussed in Sec. V the application of
effective Lagrangian techniques to study the � meson is
problematic because of the large mass of the � meson
relative to the chiral scale [84]. There are expressions for
quark mass dependence of the vector meson decay con-
stants in [112]. The corrections due to loops start at

mq logmq and m3=2
q . Given the size of the statistical errors

on the decay constants we did not try to include any chiral
corrections in the chiral extrapolations. A simple fit, linear
in the square of the pion mass, of the � ¼ 3:9 data gives

fphys� ¼ 239ð18Þ MeV and fphys� ¼ 308ð29Þ MeV.

At the moment there are no results for the mass depen-
dence of the transverse leptonic decay constants from
effective field theory, however the formalism for tensor
currents has started to be developed [113,114]. It will be
interesting to see the predictions for the mass dependence

TABLE IV. Summary of the nonperturbative renormalization
factors used in this calculation. The Cð�Þ function is the solu-
tion, in Eq. (30), of the RG equation for the tensor current.

� ZA ZTð� ¼ 1
aÞ ZV

Cð2 GeVÞ
Cð�¼1

aÞ
3.9 0.771(4) 0.769(4) 0.6104(02) 1.01

4.05 0.785(6) 0.787(7) 0.6451(02) 1.03

TABLE V. Summary of the leptonic decay constant of the
vector meson for the different ensembles from this calculation.

Charged Neutral

Ensemble afV=ZA fV MeV fV MeV afV=ZV

B1 0.13(1) 234(18) 252(13) 0.179(9)

B2 0.148(4) 264(7) 283(18) 0.20(1)

B3 0.149(4) 265(7) 274(14) 0.19(1)

B4 0.151(4) 269(7) � � � � � �
B5 0.162(4) 289(11) � � � � � �
B6 0.151(7) 269(12) 275(19) 0.19(1)

C1 0.119(10) 277(24) 306(22) 0.16(1)

C2 0.117(6) 272(14) 291(14) 0.152(7)

C3 0.117(4) 272(10) � � � � � �
C4 0.121(3) 281(9) � � � � � �

TABLE VI. Summary of the transverse decay constant
(fTVð�Þ) of the vector meson. The scale is � ¼ 2 GeV.

Ensemble afTV=ZT fTV (2 GeV) MeV
fTV ð2 GeVÞ

fV

B1 0.108(8) 194(15) 0.83(4)

B2 0.109(3) 195(5) 0.74(2)

B3 0.111(2) 198(6) 0.75(1)

B4 0.113(3) 203(6) 0.75(1)

B5 0.128(5) 218(8) 0.78()

B6 0.109(5) 196(9) 0.73(2)

C1 0.089(7) 214(18) 0.77(5)

C2 0.081(4) 193(9) 0.71(2)

C3 0.089(3) 214(8) 0.79(2)

C4 0.090(3) 215(7) 0.76(1)
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of the ratio of the transverse to leptonic decay constant
from effective field theory, because this will test whether a
chiral extrapolation of the ratio of the leptonic to transverse
decay constant results in a cancellation of systematic errors
as is hoped.

There has not been a definitive unquenched calculation
of the leptonic decay constant of the � meson, although
there have been many attempts. Lewis and Woloshyn came
within 1% of the experimental result for the f� in a

quenched QCD calculation using the D234 improved ac-
tion [92]. Lewis and Woloshyn summarize older quenched
calculations [92]. SESAM reported leptonic decay con-
stants for vector mesons that agreed with experiment at
the 20% level from an unquenched lattice QCD calculation
with Wilson fermions [115]. CP-PACS [93] from un-
quenched calculations with the tadpole improved clover
action found that they could not do a reliable continuum
extrapolation of f�. CP-PACS [93] found the nonperturba-

tive and perturbative renormalization factors to be very
different. QCDSF obtained f� ¼ 256ð9Þ MeV from an

unquenched calculation with clover fermions [100].
Hashimoto and Izubuchi [65] obtained f� ¼
210ð15Þ MeV from a nf ¼ 2 unquenched calculations

that use domain wall fermions. However this calculation

also found that rphys0 ¼ 0:549ð9Þ fm from the mass of the �
meson, so we expect that this is the reason for obtaining a
number close to the physical point.

In Fig. 12 we plot the transverse decay constant of the
vector meson as a function of the pion mass squared in
physical units. The ratio of transverse to leptonic decay
constant is plotted in Fig. 13.

A collection of results for the transverse decay constants
are presented in Table VII. We also present results from
using the ratio of tensor to vector correlators in the boot-
strap analysis, that we call the ‘‘ratio method.’’ In [80] the

ETM Collaboration presents results for
fT
K?

fK?
in a partially

quenched analysis on the same configurations. We see that
our result for fT� (2 GeV) is approximately 30 MeV higher

than most previous results. The RBC-UKQCD
Collaboration also reports a result for the transverse decay
constant of the K? meson. Only QCDSF [100] compute fT�

on its own; all the others compute
fT�
f�

and then multiply by

experiment value for f�.

From what we call the unitary � analysis we obtain
fT� ¼ 170ð14Þ MeV from the ratio method and fT� ¼
222ð26Þ MeV from the direct method, both at the scale
of 2 GeV. These can be compared with the results in
Table VII.
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FIG. 11 (color online). The leptonic decay constant of the
vector meson (as defined in Eq. (17)) is plotted as a function
of the square of the pion mass. The experimental points for the �
and � are also included.
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FIG. 12 (color online). The transverse decay constant of the
vector meson is plotted as a function of the square of the pion
mass.
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FIG. 13 (color online). The ratio of transverse to leptonic
decay constant of the � meson as a function of the square of
the pion mass. The transverse decay constant is at the scale of
2 GeV.
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Cata and Mateu [121] (see also [122]) have argued that

in the large Nc limit that
fT�
f�

¼ 1ffiffi
2

p . Their result is consistent

with the lattice results in Table VII for both the quenched
and unquenched results. There is some ambiguity in the
large Nc result, because it does not depend on the renor-
malization scale as it should. There are also predictions for
the tensor decay constants of the excited vector mesons
from large Nc [121], that in principle could be measured in
future lattice QCD calculations that use modern variational
techniques [123].

VII. TESTING THE MASS DEPENDENCE OF THE
KSRF RELATIONS

In this paper we have discussed the mass of the �meson,
the lepton decay constant f�, and the coupling g��� for �

decay to ��. Perhaps surprisingly there are postulated
connections between the three constants, that are called
the KSRF relationships [124,125]. The original derivation
of the KSRF relations used the application of the PCAC
relation to � decay [124,125]. However, the KSRF rela-
tions are also predictions of some effective field theories of
mesons (see Birse for a review [126]), such as those with

‘‘hidden symmetry’’ [127] and the vector realization of
chiral symmetry [128].
Equations (34) and (35) are known as the KSRF1 and

KSRF2 relationships [127], respectively.

f�
m�ffiffiffi
2

p ¼ f2�g��� (34)

m2
� ¼ f2�g

2
���: (35)

Collectively, KSRF1 and KSRF2 are known as the KSRF
relations [127], named after the four authors:
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin. We are
using the convention where the physical pion decay con-
stant is f� ¼ 130:7 MeV. In the effective field theory
written down by Georgi [128], there is an additional 2 on
the right-hand side of Eq. (35) that makes his model not
agree with experiment very well. The KSRF relations can
also be analyzed using AdS/CFT [129,130].
In Fig. 14 we plot g��� from Eqs. (34) and (35) for the

� ¼ 3:9 data, as a function of the square of the pseudo-
scalar meson. Within the size of the error bars, the value of
g��� is relatively independent of the pseudoscalar mass.

This will be a useful test for hadronic effective field
theories that include the � meson.
Some of the work on the KSRF relation in effective field

theory is used as a qualitative guide to building technicolor
models of electroweak symmetry breaking [127,128].

VIII. CONCLUSIONS

The first publication from the ETM Collaboration
showed impressive agreement between the predictions of
chiral perturbation theory and the lattice results [47]. In
this paper we have found that getting agreement between
the lattice results and the experimental data for the �, b1,
a0 mesons is much harder. The statistical errors on the
masses and couplings are too large to look for subtle effects
in the chiral extrapolation models. More work, using the
variational basis for the vector, the b1 and the a0 states and
more statistics will be needed to eventually test the various
chiral extrapolations.
We have started to explore using various tools, such as

the Adelaide [74–76] method, computation of decay

TABLE VII. Summary of results for transverse decay constants of the � and � meson. We only include the result from the finest
lattice of Braun et al. [99].

Group Method fT� (2 GeV) fT� (2 GeV)
fT�
f�

Ball et al. [116–118] sum rule 155(10) 208(15) 0.74(3)

Becirevic et al. [119] quenched lattice 150(5) 177(2) 0:72ð2Þþ2
0

Braun et al. [99] quenched lattice 154(5) 182(2) 0.74(1)

QCDSF [120] quenched lattice 149(9) � � � � � �
QCDSF [100] unquenched lattice 168(3) � � � � � �
RBC-UKQCD [101] unquenched lattice 143(6) 175(2) 0.69(3)

This work unquenched lattice 184(15) � � � � � �
This work (ratio method) unquenched lattice 159(8) � � � 0.76(4)

0.05 0.1 0.15 0.2 0.25
mπ

2  GeV2

3

4
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g ρπ
π

ρ  -> ππ (expt)
KSRF 1
KSRF 2
direct determination

FIG. 14 (color online). Comparing the g��� coupling from the
two KSRF relations with experiment and the direct determina-
tion described in Sec. V.
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widths, and looking for avoided level crossings, to study
resonance mesons on the lattice. Eventually, the issue of
dealing with resonances in lattice QCD will use Lüscher’s
technique [26] and variants of [131]. These methods are
computationally intensive, so more pragmatic approaches
to studying strong decays on the lattice are still important
at this time. Lüscher’s technique for resonances was re-
cently applied to the � meson by the CP-PACS
Collaboration [21].
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