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Meson-meson scattering within one-loop chiral perturbation theory and its unitarization
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We present a complete one-loop calculation of all the two-meson scattering amplitudes within the frame-

work of SU~3! chiral perturbation theory, which includes pions, kaons, and the eta. In addition, we have

unitarized these amplitudes with the coupled channel inverse amplitude method, which simultaneously ensures

the good low energy properties of chiral perturbation theory and unitarity. We show how this method provides

a remarkable description of meson-meson scattering data up to 1.2 GeV including the scattering lengths and the

generation of seven light resonances, which is consistent with previous determinations of the chiral parameters.

Particular attention is paid to discussing the differences and similarities of this work with previous analyses in

the literature.

DOI: 10.1103/PhysRevD.65.054009 PACS number~s!: 13.75.Lb, 11.80.Et, 12.39.Fe, 14.40.2n

I. INTRODUCTION

In the last 20 years, chiral perturbation theory ~ChPT!
@1–3# has emerged as a powerful tool to describe the inter-

actions of the lightest mesons. These particles are consider-
ably lighter than the rest of the hadrons, which is nowadays
understood as a consequence of the spontaneous breaking of
the SU(3)L3SU(3)R chiral symmetry down to SU(3)L1R ,
which would be present in QCD if the three lightest quarks
were massless. In such a case, the light mesons would cor-
respond to the massless Goldstone bosons associated with
spontaneous chiral symmetry breaking. Of course, quarks are
not massless, but their masses are so small compared to the
typical hadronic scales O(1 GeV) that their explicit symme-
try breaking effect also translates into a small mass for the
lightest mesons, which become pseudo Goldstone bosons.
Hence, the three pions correspond to the pseudo Goldstone
bosons of the SU~2! spontaneous breaking that would occur
if only the u and d quarks were massless, which is a remark-
ably good approximation. Similarly, the meson octet formed
by the pions, the kaons, and the eta can be identified with the
eight pseudo Goldstone bosons associated with the SU~3!
breaking when the s quark is also included.

The low energy interactions of pions, kaons, and the eta
can be described in terms of an effective Lagrangian that
follows the SU(3)L3SU(3)R→SU(3)L1R spontaneous
symmetry breaking pattern. If we do not include any addi-
tional field apart from the pseudo Goldstone bosons, this
description will be valid only for energies much below the
scale where new states appear. That is, the effective ChPT
Lagrangian provides just a low energy description. As a con-
sequence we can organize all the possible terms that respect
the symmetry requirements in a derivative ~and mass! expan-
sion. Therefore, any amplitude is obtained as a perturbative
expansion in powers of the external momenta and the quark
masses. The importance of this formalism is that the theory
is renormalizable and predictive, in the following sense: all
loop divergences appearing at a given order in the expansion
can be absorbed by a finite number of counterterms, or low
energy constants, that appear in the Lagrangian at that very
same order. Thus, order by order, the theory is finite and
depends on a few parameters that can be determined experi-

mentally. Once these parameters are known, any other calcu-

lation at that order becomes a prediction. Basically, these are

the main ideas underlying ChPT, which has proved very suc-

cessful in describing low energy hadron phenomenology ~for

reviews see @4#!.
Despite the success of this approach, it is unfortunately

limited to low energies ~usually, less than 500 MeV!. That is

the reason why, over the last few years, there has been a

growing interest in extending the applicability range of the

chiral expansion to higher energies. Of course, this requires

the use of nonperturbative methods to improve the high en-

ergy behavior of ChPT amplitudes. These methods include

the explicit introduction of heavier resonant states in the La-

grangian @5#, resummation of diagrams in a Lippmann-

Schwinger or Bethe-Salpeter approach @6#, or other methods

that unitarize the amplitudes like the inverse amplitude

method ~IAM! @7,8#. The last method has been generalized to

allow for a coupled channel formalism @9#, yielding a suc-
cessful description of the meson-meson scattering ampli-
tudes up to 1.2 GeV, and even generating dynamically seven
light resonances.

In principle, these methods recover at low energies the
good properties of ChPT, since they use part of the perturba-
tive information. However, it should be noted that, so far, the
full results to one loop for all the meson-meson scattering
processes are not available in the literature. At present, only
the pp→pp @10#, Kp→Kp @10#, hp→hp @10#, and the

two independent K1K2
→K1K2,K1K2

→K0K̄0 @11# am-
plitudes have been obtained in the SU~3! ChPT framework,
although with different procedures and notation. As a conse-
quence, the IAM has been applied rigorously only to the pp,

KK̄ final states, whereas for a complete treatment of the
whole low energy meson-meson scattering, additional ap-
proximations had to be made @9#. In particular, the lowest
order expansion could not be recovered complete up to
O(p4), thus spoiling the scattering lengths and, in addition,
it was not possible to compare directly with the low energy
parameters of standard ChPT in dimensional regularization
and the modified minimal subtraction MS21 scheme.

In this work, we have calculated all the meson-meson
scattering amplitudes at one loop in ChPT. There are three
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amplitudes that have never appeared published in the litera-
ture: Kh→Kh , hh→hh , and Kp→Kh . The other five
have been recalculated independently and all of them are
given together in a unified notation, ensuring exact perturba-
tive unitarity and also correcting previous misprints. Then,
we have applied the coupled channel IAM to describe the
whole meson-meson scattering below 1.2 GeV, including
low energy data like scattering lengths. This new calculation
allows for a direct comparison with the standard low energy
constants of ChPT and that is why we have made a consid-
erable effort to estimate the uncertainties in all our results,
which are in very good agreement with the present determi-
nations obtained from low energy data without unitarization.
The main differences of this work from @9# are that we con-
sider the full one-loop results for the amplitudes, ensuring
their finiteness and scale independence in dimensional regu-
larization, we take into account the new processes mentioned
above, and we are able to describe the low energy region
more accurately. This had already been achieved for the pp,

KK̄ system only in @11#, but here we complete this task for
all meson-meson scattering.

The paper is organized as follows. In Sec. II we review
the main features of the meson-meson scattering calculations
at one loop in ChPT. The final results for the amplitudes are
collected in Appendix B because of their length. The defini-
tion of partial waves and unitarity is discussed in Sec. III,
and the IAM is presented in Sec. IV. In Sec. V, we review the
available data on meson-meson scattering. In Secs. VI and
VII we first use the IAM with present determinations of the
low energy constants and next make a fit to the data re-
viewed in Sec. V. Our conclusions are summarized in Sec.
VIII. Apart from the amplitudes in Appendix B, we have also
collected some useful formulas in Appendix A.

II. MESON-MESON SCATTERING AT ONE LOOP

The lowest order Lagrangian for SU~3! chiral perturbation
theory is

L25

f 0
2

4
^]mU†]mU1M 0~U1U†!&, ~1!

where f 0 is the pion decay constant in the SU~3! chiral limit
and the angular brackets stand for the trace of the 333 ma-
trices. The matrix U collects the pseudo Goldstone boson
fields p, K, h through U(F)5exp(i&F/f0), where

F~x !5S 1

&
p0

1

1

A6
h p1 K1

p2
2

1

&
p0

1

1

A6
h K0

K2
K̄0

2

2

A6
h

D
~2!

and M 0 is the tree level mass matrix. Throughout this paper
we will be assuming the isospin limit, so that M 0 is given by

M 05S M 0p
2 0 0

0 M 0p
2 0

0 0 2m0K
2

2M 0p
2
D . ~3!

As a matter of fact, from these definitions, it can be easily
seen that the tree level masses satisfy the Gell-Mann–Okubo

relation @12# 4M 0K
2

2M 0p
2

23M 0h
2

50, which will be very

useful for simplifying the amplitudes.
From the Lagrangian in Eq. ~1!, one can obtain the O(p2)

amplitudes just by calculating the corresponding tree level
Feynman diagrams. In order to obtain the O(p4) contribu-
tions, one has to consider loop diagrams, whose generic to-
pology is given in Fig. 1, which will generate UV diver-
gences. If loop integrals are regularized with dimensional
regularization, which preserves the chiral symmetry con-
straints, the divergences can be reabsorbed in the chiral pa-
rameters L i of the fourth order Lagrangian:

L45L1^]mU†]mU&2
1L2^]mU†]nU&^]mU†]nU&

1L3^]mU†]mU]nU†]nU&1L4^]mU†]mU&^U†M 0

1M 0
†U&1L5^]mU†]mU~U†M 01M 0

†U !&1L6^U†M 0

1M 0
†U&2

1L7^U†M 02M 0
†U&2

1L8^M 0
†UM 0

†U

1U†M 0U†M 0&, ~4!

where the terms that couple to external sources, like gauge
fields, are omitted @2,3#. The L i constants are related to the

renormalized L i
r(m) generically as L i5L i

r(m)1G il @3#
where m is the MS21 renormalization scale,

l5

md24

16p2 F 1

d24
2

1

2
~ log 4p2g11 !G , ~5!

g is the Euler constant, and the G i coefficients can be found
in @3#. We remark that the L3 and L7 constants are not renor-
malized and are therefore scale independent, i.e., G35G7

50.
Thus, up to fourth order one has to consider the tree level

diagrams from O(p2) and O(p4), together with the one-loop
diagrams in Fig. 1. We stress that mass and wave function
renormalizations should be accounted for to the same order.

FIG. 1. Generic one-loop Feynman diagrams that have to be

evaluated in meson-meson scattering.
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The latter are schematically represented by the tadpole dia-
gram ~e! in Fig. 1. As is customary, we define the bare fields

in terms of the renormalized ones as p5Zp
1/2p ren and so on

for the kaons and eta, so that scalar fields have finite canoni-
cal kinetic terms. Taking into account all the different con-
tributions from diagrams of type ~e! in Fig. 1 plus those tree
level diagrams coming from L4 , one obtains

Zp511

4

3
mp1

2

3
mK2

4l

3 f 0
2 ~2M 0p

2
1M 0K

2 !

2

8

f 0
2 @2L4

r M 0K
2

1~L4
r
1L5

r !M 0p
2 # ,

ZK511

1

2
mp1mK1

1

2
mh2

2l

3 f 0
2 ~M 0p

2
15M 0K

2 !

2

8

f 0
2 @~2L4

r
1L5

r !M 0K
2

1L4
r M 0p

2 # ,

Zh5112mK2

4l

f 0
2 M 0K

2
2

8

3 f 0
2 @~3L4

r
2L5

r !M 0p
2

12~3L4
r
12L5

r !M 0K
2 # , ~6!

where

m i5

M i
2

32p2 f 0
2 log

M i
2

m2 , ~7!

with i5p ,K ,h .
Note that the wave function renormalization constants Z i

contain a divergent part and they are scale dependent. As for
the mass renormalizations, the physical pion and kaon
masses are given in terms of the tree level ones as @3#

M p
2

5M 0p
2 F11mp2

mh

3
1

16M 0K
2

f 0
2 ~2L6

r
2L4

r !

1

8M 0p
2

f 0
2 ~2L6

r
12L8

r
2L4

r
2L5

r !G ,

M K
2

5M 0K
2 F11

2mh

3
1

8M 0p
2

f 0
2 ~2L6

r
2L4

r !

1

8M 0K
2

f 0
2 ~4L6

r
12L8

r
22L4

r
2L5

r !G ,

M h
2
5M 0h

2 F112mK2

4

3
mh1

8M 0h
2

f 0
2 ~2L8

r
2L5

r !

1

8

f 0
2 ~2M 0K

2
1M 0p

2 !~2L6
r
2L4

r !G1M 0p
2 F2mp1

2

3
mK

1

1

3
mhG1

128

9 f 0
2 ~M 0K

2
2M 0p

2 !2~3L71L8
r !. ~8!

According to the chiral power counting, we have to use Eqs.
~6! and ~8! only in the tree level part of the amplitudes. In
fact, the mass renormalization Eq. ~8! affects only the mass
terms coming from the Lagrangian in Eq. ~1! and not the
masses coming from the kinematics of the corresponding
process. As will be seen below, we will not need the mass
renormalization of M h in any of our expressions.

The meson decay constants are also modified to one loop.
It will be convenient for our purposes to write all the one-
loop amplitudes in terms of a single decay constant, which
we have chosen to be f p . For that reason and for an easier
comparison with previous results in the literature, we also
give here the result for the meson decay constants to one
loop @3#:

f p5 f 0F122mp2mK1

4M 0p
2

f 0
2 ~L4

r
1L5

r !1

8M 0K
2

f 0
2 L4

r G ,

f K5 f 0F12

3mp

4
2

3mK

2
2

3mh

4
1

4M 0p
2

f 0
2 L4

r

1

4M 0K
2

f 0
2 ~2L4

r
1L5

r !G ,

f h5 f 0F123mK1

4L4
r

f 0
2 ~M 0p

2
12M 0K

2 !1

4M 0h
2

f 0
2 L5

r G . ~9!

It is important to stress that both the physical masses in
Eq. ~8! and the decay constants in Eq. ~9! are finite and scale
independent.

Therefore, the one-loop ChPT scattering amplitude
~renormalized and scale independent! for a given process
will have the generic form

T~s ,t ,u !5T2~s ,t ,u !1T4
pol~s ,t ,u !1T4

uni~s ,t ,u ! ~10!

where s,t,u are the Mandelstam variables. Here, T2 is the tree
level contribution from the Lagrangian in Eq. ~1!, whereas

T4
pol contains the fourth order terms which are polynomials in

s,t,u. Those polynomials have four possible origins: tree
level terms from the Lagrangian in Eq. ~4! proportional to

L i
r , other polynomial terms proportional to L i with i

54,...,8 coming from the mass and decay constant renormal-
ization in Eqs. ~8! and ~9!, terms proportional to m i coming
from tadpole diagrams @~d! and ~e! in Fig. 1#, and finally pure
polynomial fourth order terms which stem from our param-
etrization of the one-loop functions ~see Appendix A!. Let us
remark that, for technical reasons explained in Sec. III B, we
have chosen to write all our amplitudes in terms of f p only
since, using Eqs. ~9!, f K and f h can be expressed in terms of

f p , L4
r , and L5

r . In addition, T4
uni stands for the contribution

of diagrams ~a!, ~b!, and ~c! in Fig. 1. These contributions
not only contain the imaginary parts required by unitarity but
also yield the correct analytic structure for the perturbative
amplitudes, as will be discussed below. We remark that all

the terms in T4
uni will be proportional to the J̄ and J% functions

defined in Appendix A.
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Using crossing symmetry it is not difficult to see that
there are only eight independent meson-meson amplitudes.
We have calculated these amplitudes to one loop in SU~3!
ChPT. They are given in Appendix B. Three of these ampli-

tudes had not been calculated before, namely, K̄0h→K̄0h ,
hh→hh , and Kh→Kp0. For the rest, we have checked
that our amplitudes coincide with previous results @10,11# up
to differences in notation and different simplification
schemes, equivalent up to O(p4). In particular, since we are
interested in the ‘‘exact’’ form of perturbative unitarity ~see
below!, we have written our final results in terms of a single
pion decay constant f p , and we have used the Gell-Mann–
Okubo relation, taking care to preserve exact perturbative
unitarity. Furthermore, we have explicitly checked that all
the amplitudes remain finite and scale independent.

Finally, we wish to add a remark about h-h8 mixing,
since the physical h is indeed a mixture of the U~3! octet and
singlet pseudoscalars, whereas in this work we are only us-
ing the standard SU~3! ChPT. One may wonder then if our
description of the h is just that of the pseudoscalar octet
component, since in this Lagrangian the singlet field is not an
explicit degree of freedom. However, it has been shown @13#
that the standard framework results from an expansion in
powers of the inverse powers of the ‘‘topological suscepti-
bility’’ of the complete U~3! Lagrangian. In that context the
h8 is considered as a massive state ~that is why it does not
count as an explicit degree of freedom! but the singlet com-
ponent generates a correction to L7 . Note that, indeed, the
mass of the h contains an L7 contribution, and that is why
we can use M h in Eq. ~8! with its physical value, whereas
M 0h is the one satisfying the Gell-Mann–Okubo relation ex-
actly. Therefore, our approach can be understood as the low-
est order approximation to the h-h8 mixing problem, where
all the effects of the mixing appear only through L7 . Since
we will compare only with data in states with one h at most,
and below 1200 MeV, our results seem to suggest that this
approximation, although somewhat crude, is enough with the
present status of the experimental data. Indeed, we will see
that the values that we obtain for L7 are in perfect agreement
with those given in the literature ~and this comparison can
now be done because we have the complete one-loop ampli-
tudes renormalized in the standard way!.

III. PARTIAL WAVES AND UNITARITY

A. Partial waves

Let us denote by Tab
IJ (s) the partial wave for the process

a→b , i.e., the projection of the amplitude for that process
with given total isospin I and angular momentum J. That is,

if Tab
I (s ,t ,u) is the isospin combination with total isospin I,

one has

Tab
IJ ~s !5

1

32Np
E

21

1

dx PJ~x !Tab
I „s ,t~s ,x !,u~s ,x !…

~11!

where t(s ,x),u(s ,x) are given by the kinematics of the pro-
cess a→b with x5cos u, the scattering angle in the center of
mass frame.

Note that we are normalizing the partial waves including
a factor N, such that N52 if all the particles in the process
are identical and N51 otherwise. Recall that, since we are
working in the isospin limit, the three pions are considered as
identical, so that N52 only for the pp→pp and hh
→hh processes.

We shall comment now on the Tab
I amplitudes for every

possible process involving p ,K ,h . Using crossing symmetry
and assuming isospin symmetry exactly, we will determine
the number of independent amplitudes for each process. The
discussion is general and there is no need to invoke ChPT,
although we will refer to the results for the amplitudes in
Appendix B, which gives the one-loop ChPT results.

pp→pp scattering. There is only one independent am-
plitude, so that one has

T0~s ,t ,u !53T~s ,t ,u !1T~ t ,s ,u !1T~u ,t ,s !,

T1~s ,t ,u !5T~ t ,s ,u !2T~u ,t ,s !,

T2~s ,t ,u !5T~ t ,s ,u !1T~u ,t ,s !,

where T(s ,t ,u) is the p1p2
→p0p0 amplitude. At one loop

in ChPT it is given in Appendix B, Eq. ~B4!.
Kp→Kp scattering. Crossing symmetry allows us to

write the I51/2 in terms of the I53/2 one as

T1/2~s ,t ,u !5
1
2 @3T3/2~u ,t ,s !2T3/2~s ,t ,u !# . ~12!

Here, T3/2(s ,t ,u) is the K1p1
→K1p1 amplitude, whose

expression at one loop within ChPT corresponds to Eq. ~B5!.

KK̄→KK̄ scattering. We can write the isospin amplitudes
as

T0~s ,t ,u !5Tch~s ,t ,u !1Tneu~s ,t ,u !,

T1~s ,t ,u !5Tch~s ,t ,u !2Tneu~s ,t ,u !, ~13!

where Tch and Tneu are, respectively, the amplitudes for the

processes K1K2
→K1K2 and K̄0K0

→K1K2. Their ex-
pressions to one loop correspond to Eqs. ~B7! and ~B8!, re-
spectively.

KK̄→pp scattering. In this case, one has

T0~s ,t ,u !5

)

2
@T3/2~u ,s ,t !1T3/2~ t ,s ,u !# ,

T1~s ,t ,u !5

1

&
@T3/2~u ,s ,t !2T3/2~ t ,s ,u !# , ~14!

where T3/2(s ,t ,u) is the K1p1
→K1p1 amplitude, given in

Appendix B for one-loop ChPT, Eq. ~B5!.
Kh→Kh scattering. This is a pure I51/2 process. The

one-loop amplitude can be read directly from Eq. ~B2!.

K̄K→hh scattering. This is an I50 process that using
crossing symmetry can be obtained from the previous ampli-
tude as follows:

T K̄0K0→hh~s ,t ,u !5T K̄0h→K̄0h~ t ,s ,u !. ~15!
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Kh→Kp scattering. This is also an I51/2 process,
whose amplitude, correctly normalized, is

T1/2~s ,t ,u !52)T K̄0h→K̄0p0~s ,t ,u !, ~16!

where the one-loop expression for K̄0h→K̄0p0 can be found
in Eq. ~B3!.

K̄K→ph scattering. This is an I51 process related to

the K̄0h→K̄0p0 amplitude by crossing symmetry, i.e.,

T1~s ,t ,u !52&T K̄0h→K̄0p0~ t ,s ,u !. ~17!

ph→ph scattering. This is a pure I51 isospin ampli-
tude whose one-loop ChPT expression can be read directly
from Eq. ~B6!.

pp→hh scattering. Now I50 and the amplitude is ob-
tained from the previous one by crossing, as

Tp0p0→hh~s ,t ,u !5Tp0h→p0h~ t ,s ,u !. ~18!

hh→hh scattering. Here, I50 and the corresponding
one-loop amplitude can also be read directly from Eq. ~B1!.

In this paper we will be interested in the case when there
are several coupled states for a given choice of I,J, i.e., the
coupled channel case. In particular, with the above normal-

ization, the relationship between the T-matrix elements Tab
IJ

and the S-matrix ones is given for two coupled channels
(a ,b51,2) by

S115112is1T11 , ~19!

S225112is2T22 , ~20!

S125S2152iAs1s2T12 , ~21!

where the IJ superscripts have been suppressed to ease the
notation and we have used the fact that due to time reversal

invariance T i j5T j i . Here, s i52q i /As where q i is the cen-
ter of mass momentum in the state i. Note that s i is nothing

but the phase space of that state at As . In the I50 channel
above the hh threshold we will use the corresponding gen-
eralization in the case of three channels.

B. Unitarity

The S matrix should be unitary, i.e., SS†
51. In case there

is only one state available, that means that S can be param-
etrized in terms of a single observable, which is customarily
chosen as the phase shift. For the case of two channels, the
elements S i j are organized in a unitary 232 matrix, contain-
ing only three independent parameters. We will follow the
standard parametrization:

S5S he2id1 iA12h2e i~d11d2!

iA12h2e i~d11d2! he2id2
D , ~22!

where the d i are the phase shifts and h is the inelasticity.
The unitarity relation translates into relations for the ele-

ments of the T matrix of a particularly simple form for the
partial waves. For instance, if there is only one possible state

1 for a given choice of I,J, the partial wave T11 satisfies Eq.
~19!, so that unitarity means that

Im T115s1uT11u
2
⇒Im T11

21
52s1 . ~23!

In principle, the above equation holds only above threshold

up to the energy where another state 2 is physically acces-
sible. If there are two states available, then the T-matrix el-
ements satisfy

Im T115s1uT11u
2
1s2uT12u

2,

Im T125s1T11T12
* 1s2T12T22

* ,

Im T225s1uT12u
2
1s2uT22u

2.

In matrix form they read

Im T5TST*⇒Im T21
52S , ~24!

with

T5S T11 T12

T12 T22
D , S5S s1 0

0 s2
D , ~25!

which allows for a straightforward generalization to the case
of n accessible states by using n3n matrices.

One must bear in mind that the unitarity relations imply
that the partial waves are bounded as the energy increases.
For instance, in the one-channel case, from Eq. ~23! we can
write

T115
sin d

s1

e id ~26!

where d is the phase of t11 .
Note that all the unitarity relations Eqs. ~23! and ~24! are

linear on the left hand side and quadratic on the right. As a
consequence, if one calculates the amplitudes perturbatively
as truncated series in powers of an expansion parameter, say
T5T21T41¯ , the unitarity equations will never be satis-
fied exactly. In particular, for ChPT that means that unitarity
can only be satisfied perturbatively: i.e.,

Im T250,

Im T45T2ST2 , ~27!

¯ ,

where the second equation is satisfied exactly only if one is
careful to express T4 in terms of masses and decay constants
consistently with the choice made for T2 . That has not al-
ways been the case in the literature and that is one of the
reasons why we have recalculated some processes: all our
results satisfy exact perturbative unitarity. Otherwise there
are additional O(p6) terms in Eq. ~27!. As we will see below,
this will be relevant in obtaining a simple formula for the
unitarized amplitudes. Our choice has been to rewrite all the

f K and f h contained in the amplitudes in terms of f p , L4
r ,

and L5
r using the relations in Eq. ~9!.
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The deviations from Eq. ~24! are more severe at high
energies, and in particular in the resonance region, since uni-
tarity implies that the partial waves are bounded @see Eq.
~26!#, which cannot be satisfied by a polynomial. Generi-
cally, in the resonance region, the unitarity bounds are satu-
rated. If a polynomial is adjusted to saturate unitarity in a
given region, in general, it will break the unitarity bound
right afterward. Another way of putting it is that resonances
are associated with poles in the complex plane, which will
never be reproduced with polynomials.

For all these reasons, if we are interested in extending the
good properties of ChPT to higher energies, we have to
modify the amplitudes, imposing unitarity and a functional
form that allows for poles in the complex plane. This will be
achieved with the inverse amplitude method.

IV. THE COUPLED CHANNEL INVERSE AMPLITUDE

METHOD

As can be seen from the unitarity condition in Eq. ~24!,
the imaginary part of the inverse amplitude is known exactly
above the corresponding thresholds, namely, Im T21

52S.
Indeed, any amplitude satisfying the unitarity constraint
should have the following form:

T5~Re T21
2iS !21, ~28!

Consequently, we should only have to calculate the real part
of T21. As a matter of fact, many unitarization methods are
just different approximations to Re T21 ~see @9# for details!.
The idea behind the inverse amplitude method is to use Eq.
~28!, but approximating Re T21 with ChPT. Since we have
T.T21T41¯ , then

T21.T2
21~12T4T2

21
1¯ !, ~29!

Re T21.T2
21@12~Re T4!T2

21
1¯# , ~30!

so that multiplying Eq. ~28! by T2T2
21 on the left and T2

21T2

on the right, we find

T.T2~T22Re T42iT2ST2!21T2 . ~31!

At this point, if the amplitude satisfies ‘‘exact perturbative
unitarity,’’ namely, Eq. ~27!, we can simplify the above equa-
tion to obtain the simple expression

T.T2~T22T4!21T2 . ~32!

This is the generalization of the IAM to coupled channels.
Note that this formula ensures exact unitarity only if T4 sat-
isfies exact perturbative unitarity.

The IAM was first applied to just one elastic channel @7#
and it was able to reproduce well the pp and pK scattering

phase shifts below the KK̄ and Kh thresholds, respectively.
In addition it was able to generate the s @now called
f 0(400– 1200)#, the r, and the K* resonances @8#. Further-
more, it was shown how the formula for the one-channel
IAM can be justified in terms of dispersion relations @8#,
which allowed for the analytic continuation to the complex

plane and the identification of the pole associated with each
resonance in the second Riemann sheet.

In view of Eq. ~32!, it may seem necessary to know the
complete O(p4) ChPT calculation of each one of the
T-matrix elements. Nevertheless, one could use a further ap-
proximation and calculate only the s-channel loops ~Fig. 1a!,
which are the only ones responsible for the unitarity cut and
are supposed to dominate in the resonant region. This was
the approach followed in @9#, having in mind that the com-
plete ChPT calculations were not available at that time for
any meson-meson scattering two-channel matrix. The results
were remarkable, reproducing up to 1.2 GeV seven ~I,J!
meson-meson scattering channels ~17 amplitudes!, and even
generating seven resonances. However, the fact that the
s-channel loops were regularized with a cutoff, together with
the omission of crossed loops and tadpoles, made it impos-
sible to compare the chiral parameters with those of standard
ChPT ~still, they had the correct order of magnitude, as ex-
pected!. In addition, the low energy ChPT predictions were
recovered only partially. This motivated the authors in @11# to
calculate the full O(p4) K1K2

→K1K2 and K1K2

→K0K̄0 amplitudes,1 which allowed for the unitarization
with Eq. ~32! of the (I ,J)5(0,0) and ~1,1! channels. This
approach again yielded a good high energy description but
also reproduced simultaneously the low energy pp scattering
lengths. All these results were obtained with L i parameters
compatible with those of standard ChPT @11#.

As we saw in the previous section, we have calculated the
last three independent O(p4) meson-meson scattering ampli-
tudes that were still missing. They are given in Appendix B
in a unified notation with the other five that we have recal-
culated independently ~correcting some minor misprints in
the literature!. Therefore, we are now ready to unitarize the
complete meson-meson scattering by means of Eq. ~32!.

However, at this point we have to recall that for a given
energy Eq. ~32! has been justified only for a matrix whose
dimension is exactly the number of states accessible at that
energy. The reason is that the unitarity relation Eq. ~24! in-
creases its dimensionality each time we cross a new thresh-
old. Thus, for instance, in pp scattering, one should use the

one-dimensional IAM up to the KK̄ threshold, then the two-
dimensional IAM, etc., although this procedure yields dis-
continuities on each threshold, instead of a single analytic
function. Another possibility @9# is to use the IAM with the
highest possible dimensionality of the I,J channel for all
energies.2 This second possibility yields an analytic ~and

1An erratum for these amplitudes has appeared, published when

we were preparing this work. The previous results and conclusions

in @11# are nevertheless correct, since the errata did not affect the

numerical calculations. We thank J. A. Oller for discussions and for

letting us check that their corrected amplitudes coincide with ours.
2As a technical remark, let us note that in this case the IAM has to

be rederived in terms of the partial waves Tab divided by the c.m.

momenta of the initial and final states to the Jth power, to ensure

that these new amplitudes are real at lowest order. From there the

derivation follows the same steps, and we recover the very same

Eq. ~32! by multiplying by the initial and final state momenta in the

end.
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hence continuous! function, but it may not satisfy unitarity

exactly at all energies, namely, when the number of opened

channels is smaller than the dimensionality of the IAM for-

mula. Following the pp-KK̄ example, if we use the two-

dimensional IAM formula, we will have exact unitarity en-

sured above the KK̄ threshold, but not below. In particular, if

we still use the two-dimensional IAM below the KK̄ thresh-

old, the IAM pp scattering element will have an additional

spurious contribution from the imaginary part of the KK̄

scattering left cut, which extends up to As54(M K
2

2M p
2 ).

This is a well known and lasting problem in the literature

@14–16# that affects other unitarization methods also, like the

K-matrix method @15#. As a matter of fact, several years ago

@14# it was suggested that the physical solution would prob-

ably be an interpolation between the two approaches just

mentioned. However, in the context of ChPT and the IAM,

and for the pp-KK̄ channels, it was found @11# that the

violations of unitarity are, generically, of the order of a few

percent only. We have confirmed this result but now for the

whole meson-meson scattering sector. Even the threshold pa-

rameters can be accurately reproduced, since they are defined

through the real parts of the amplitudes, which are almost not

affected by the spurious part. The origin of this problem is

that the IAM in Eq. ~32! mixes the left cuts of all the chan-

nels involved when performing the inverse of the T2-T4 ma-

trix. Thus, it is not able to reproduce the left cut singularities

correctly @8,17#, although numerically their contribution is

negligible when all the observables are expressed in terms of
the real parts of the amplitude, and taking into account the

present status of the data and the uncertainties in the L i .
In this paper we have chosen to show the second ap-

proach, since the one-dimensional IAM has been thoroughly
studied in @8#. Very recently, there have been dispersive ap-
proaches @16# proposed to circumvent this problem in the

pp-K̄K system, but they involve the calculation of left cut
integrals that are hard to estimate theoretically. It would be
interesting to have them extended and related to the ChPT
formalism, but that is beyond the scope of this work. The
fact that we use the higher dimensional IAM formalism,
which contains spurious cuts, does not allow for a clean con-
tinuation to the complex plane. Nevertheless, since poles as-
sociated with resonances have already been found in the one-
dimensional case @8# and in other approximated coupled
channel IAM approaches @9#, we leave their description for a
generalized IAM approach with better analytic properties
@18#. In this work we will concentrate on physical s values,
and the compatibility of the unitarized description of reso-
nances and low energy data with existing determinations of
the chiral parameters. Nevertheless, we will also show that
this can also be achieved with the first, discontinuous, ap-
proach.

V. MESON-MESON SCATTERING DATA

Let us then comment on the data available for each chan-
nel.

Channel „I ,J…Ä„1,1…

For the energies considered here, the two states that may

appear in this channel are pp and KK̄ . In Figs. 2~a! and 3~a!,
we plot the data on the pp scattering phase shift obtained
from @19# and @20#, which correspond to the squares and
triangles, respectively. Let us remark that the first set of data
points tends to be between two and three standard deviations
higher than the second when the phase shift is higher than
90°, and the other way around for smaller values of the phase
shift ~note that the error bars are smaller than the data sym-
bols!. Thus the data sets are not quite consistent with one
another, which could be fixed with the addition of a system-
atic error of the order of a few percent.

This channel is completely dominated by the pp state and

there is almost no inelasticity due to KK̄ production below
1200 MeV. The (12h11

2 )/4 points from the inelasticity
analysis given in @21# are shown in the lowest part of Figs.
2~d! and 3~d!.

Channel „I ,J…Ä„0,0…

For this channel we may have up to three states, namely,

pp, KK̄ and hh. In this case, there are three observables
with several sets of data, which, as can be seen in Figs. 2~b!,
2~c!, and 2~d!, are somewhat incompatible between them-
selves when considering only the errors quoted in the experi-
ments. Again, they become compatible if we assume a sys-
tematic error of a few percent. For the pp scattering phase
shift ~d00 , see Fig. 2~b!!, the experimental data shown come
from different analyses of the CERN-Munich Collaboration
@22# ~open squares!, as well as from @19# ~solid squares!, @23#
~solid triangles!, and @24# ~solid circles!. Concerning the

pp→KK̄ phase shift, the data in Figs. 2~c! and 3~c! corre-
spond to @21# ~solid triangles! and @25# ~solid squares! and
they are reasonably compatible, mainly due to the large er-
rors in the first set. Finally, we also show in Figs. 2~d! and

3~d! the data for (12h00
2 )/4, since it is customary to repre-

sent in that way the values of the inelasticity h00 . The ex-
perimental results are rather confusing here, mainly up to
1100 MeV, due to problems in the normalization. From the
data shown in the figure, in Sec. VII we have only fitted to
those coming from @25# ~solid squares!, @26# ~solid triangles!,
@27# ~open squares!, and @28# ~open circles!. There is a dis-
agreement in the normalization of the data of @29# ~dia-
monds! up to a factor of 2 ~see @30# for a discussion!. We
have not included the latter in the fit, mostly because in the
analysis of @29# the authors neglect the unitarity constraint,
which in our approach is satisfied exactly at those energies.

Channel „I ,J…Ä„2,0…

There is only the pp state and so we display in Figs. 2~e!
and 3~e! only the d20 phase shifts again from the CERN-
Munich Collaboration @31# ~open squares! and the CERN-
Saclay Collaboration @32# ~solid triangles!.

Low energy K l4 decay data

This reaction is particularly important since it yields very
precise information on the d00-d11 combination of pp scat-
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tering phase shifts at very low energies. In Figs. 2~f! and 3~f!
we show the data from the Geneva-Saclay group @33# ~solid
triangles! and the very recent, and more precise, data from
the E865 Collaboration at Brookhaven @34# ~solid squares!.

Channel „I ,J…Ä„1Õ2,1…

Here the possible states are Kp and Kh . We have plotted
in Figs. 2~g! and 3~g! data from the following experi-
ments: @35# ~solid squares! and @36# ~solid triangles!. Note

FIG. 2. The curves represent the result of applying the coupled channel IAM using the determination of the ChPT low energy constant

given in the fourth column of Table I. The shaded area covers the uncertainty due to the errors in those determinations ~assuming they were

totally uncorrelated!.
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that the first set is systematically lower than the second,

which is newer and more precise. Nevertheless, they are

compatible, thanks mostly to the large error bars on the first
set.

Channel „I ,J…Ä„1Õ2,0…

Here the states are also Kp and Kh . The data in Figs.
2~h! and 3~h! come from the following experiments: @35#
~solid squares!, @37# ~open triangles!, @38# ~open diamonds!,

FIG. 3. The curves represent the result of the coupled channel IAM fit to meson-meson scattering observables that is described in the text.

The shaded area covers only the uncertainty due to the statistical errors in the L i parameters obtained from MINUIT ~assuming they were

uncorrelated!. The area between the dotted lines corresponds to the error bands including in the L i the systematic error added to the data ~see

text for details!. Finally, the dashed line corresponds to the use of the one-channel IAM when only one channel is accessible, but keeping the

same parameters as in the previous fit.
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@36# ~solid triangles!, and @39# ~open squares!. It can be eas-
ily noticed that not all the data sets are compatible within
errors, but once again they can be reconciled by assuming a
systematic error of the order of a few percent.

Channel „I ,J…Ä„3Õ2,0…

The only state here is pK . In this case we have plotted in
Figs. 2~i! and 3~i! data sets from @36# ~solid triangles! and
@40# ~solid squares!. The latter are somewhat lower than the
former, although they are compatible mostly due to the large
errors in @36#.

Channel „I ,J…Ä„1,0…

The possible states for this case are ph and KK̄ . We have
plotted in Figs. 2~j! and 3~j! the ph effective mass distribu-
tion from the pp→p(hp1p2)p reaction studied by the
WA76 Collaboration @41#. In order to reproduce these data,
we use

dsph

dEc.m.

5cpphuT12
10u2

1background, ~33!

where the c factor accounts for the normalization of the mass
distribution and the dashed curve in these figures corre-
sponds to a background due to other resonances apart from
the a0(980) ~see @41# for details!.

Once we have described the data in the different channels,
we will first compare with the IAM ‘‘predictions’’ from the
present values of the ChPT low energy constants, and later
we will fit these data by means of the IAM.

VI. THE IAM WITH PRESENT LOW ENERGY CONSTANT

DETERMINATIONS

In this section we will comment on the results of applying
the coupled channel IAM using the low energy constants
from standard ChPT. Since the values of these constants have
been determined from low energy data or large Nc argu-
ments, the high energy results could be considered as predic-
tions of the IAM. For our calculations we have used f p

592.4 MeV, M p5139.57 MeV, M K5495.7 MeV, and M h

5547.45 MeV.
In the second column of Table I we list the values ob-

tained from a very recent and precise two-loop O(p6) analy-
sis of K l4 decays @42#. Note that the errors are only statisti-
cal. In the next column we list the central values of the same
analysis but only at O(p4). In the fourth column we list the
values from another set where L1 ,L2 ,L3 are taken from an
overall fit to Ke4 and pp data @43# and the rest are taken
from @2#. Note that all of them are quite compatible and,
except for L5 , the size of the error bars is comparable.

In Fig. 2 we show the results of the IAM with the values
given in the fourth column of Table I. The solid curve cor-
responds to the central values, whereas the shaded areas
cover the uncertainty due to the error on the parameters.
They have been obtained with a Monte Carlo Gaussian sam-

pling of 1000 choices of low energy constants for each As ,
assuming the errors are uncorrelated. It is worth noticing that

these error bands are so wide that the results for the other

columns in Table I are rather similar, even for the central

values. Qualitatively all of them look the same.
It is noticeable that the IAM results, even with the low

energy parameters from standard ChPT, already provide dis-
tinct resonant shapes of the r, f 0(980), K*, and a0(980)
~see Figs. 2~a!, 2~b!, 2~g!, and 2~j!, respectively!. In addition,
the IAM also provides two other extremely wide structures
in the ~0,0! pp and ~1/2,0! pK scattering amplitudes. They
correspond to the s @or f 0(400– 1200)# and k ~see Figs. 2~b!
and 2~h!!. These structures are too wide to be considered as
Breit-Wigner resonances, but they are responsible for the
relatively high values of the phase shifts ~the strength of the
interaction! already near threshold. In recent years there has
been a considerable discussion about the existence and prop-
erties of these two states ~for references, see the scalar meson
review by the Particle Data Group ~PDG! @45#!. Since ChPT
does not deal directly with quarks and gluons, it is very
difficult to make any conclusive statement about the spectro-
scopic nature of these states ~whether they are qq̄ , four-
quark states, meson molecules, etc.! unless we make addi-
tional assumptions @44#, which would then spoil much of the
model independency of our approach, which is based just on
chiral symmetry and unitarity. Nevertheless, the simplicity
and remarkable results of this method give strong support,
from the theoretical side, for the existence of both the s and
the k poles. From previous work, it is known that the ChPT
amplitudes unitarized with the IAM generate the poles in the
second Reimann sheet associated with the s and the k
around Aspole.4402i225 @8,9# and 7702i250 MeV @9#, re-
spectively. ~Let us remember that, since these states are very

wide, the familiar relations M.Re Aspole and G.
22 Im Aspole are very crude approximations.! We have
checked that similar results are obtained for the amplitudes
of this work. These values have to be considered as esti-
mates, since the uncertainties must be rather big, taking into
account that the data in these channels are very conflicting
~see Figs. 2 and 3!. The fact that we are able to reproduce
these states with parameters compatible with previous deter-
minations is also strong support for their pole positions,
which are in agreement with recent experimental determina-

TABLE I. Different sets of chiral parameters 3103. The second

and third columns come from an O(p6) and O(p4) analysis of K l4

decays @42#, respectively. Note that L4
r and L6

4 are set to zero. In the

third column L1
r ,L2

r ,L3 are taken from @43# and the rest from @2#

~L4
r and L6

r are estimated from the Zweig rule!.

K l4 decays O(p6) K l4 decays O(p4) ChPT

L1
r (M r) 0.5360.25 0.46 0.460.3

L2
r (M r) 0.7160.27 1.49 1.3560.3

L3 22.7261.12 23.18 23.561.1

L4
r (M r) 0 0 20.360.5

L5
r (M r) 0.9160.15 1.46 1.460.5

L6
r (M r) 0 0 20.260.3

L7 20.3260.15 20.49 20.460.2

L8
r (M r) 0.6260.2 1.00 0.960.3
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tions for both the s and the k @46#.
To summarize, we have just shown how the present status

of both the experimental data and the L i determinations al-
lows for use of the IAM despite the approximations made in
its derivation, like the poor description of the left cut noted
above.

VII. INVERSE AMPLITUDE METHOD FIT TO THE

SCATTERING DATA

Once we have seen that the IAM already describes the
basic features of meson-meson scattering, we can proceed to
fit the data in order to obtain a more accurate description. For
that purpose we have used the MINUIT function minimization
and error analysis routine from the CERN program library
@47#.

Our results are presented in Fig. 3, whose different curves
and bands can be understood as follows. As we have already

seen when commenting on the experiments in the previous

section, and as can be observed in Figs. 2 and 3, there are

several incompatible sets of data for some channels. In the

literature, this is usually solved by adding an extra system-

atic error until these values are compatible. We have made

three fits by adding 1%, 3%, and 5% errors to the data in

each channel. The continuous line corresponds to the 3%

case and the resulting L i values are listed in the second col-

umn of Table II. The shaded areas have been obtained again
from a Monte Carlo sampling using the L i uncertainties
given by MINUIT for this fit, which are listed in the third
column of Table II. Let us remark that there would be almost
no difference to the naked eye if we showed the fit with a 1%
or a 5% error, in either the central continuous line or the
shaded bands. Furthermore, the x2 per degree of freedom for
any of these fits is always O(1).

However, although the curves remain almost unchanged
when fitting with a different global systematic error, the val-
ues of L i come out somewhat differently from each fit. This
is an additional source of error on the L i parameters, listed in
the fourth column of Table II. It can be seen that it dominates
the uncertainty on L i . For illustration, the area between the
dotted lines in Fig. 3 corresponds to a Gaussian sampling of
the chiral parameters with the two sources of error added in
quadrature.

By comparing the L i
r from the IAM fit in Table II with

those of previous ChPT determinations ~in Table I!, we see
that there is perfect agreement between them. This compari-
son of the complete IAM fit parameters is possible only now
that we have the full O(p4) amplitudes, given in Appendix
B, which are regularized and renormalized following the
same scheme as in standard ChPT. In particular, the agree-
ment in the value of L7 indicates that we are including the
effects of the h8 consistently at lowest order.

The threshold parameters ~scattering lengths and slope pa-

TABLE II. Low energy constants ~3103! obtained from an

IAM fit to the meson-meson scattering data. The errors listed in the

second column are obtained by adding in quadrature those of col-

umns 3 and 4.

Fit1errors

~curve in Fig. 3!
MINUIT error

~band in Fig. 3!
Systematic error

from data

L1
r (M r) 0.5660.10 60.008 60.10

L2
r (M r) 1.2160.10 60.001 60.10

L3 22.7960.14 60.02 60.12

L4
r (M r) 20.3660.17 60.02 60.17

L5
r (M r) 1.460.5 60.02 60.5

L6
r (M r) 0.0760.08 60.03 60.08

L7 20.4460.15 60.003 60.15

L8
r (M r) 0.7860.18 60.02 60.18

TABLE III. Scattering lengths a IJ and slope parameters b IJ for different meson-meson scattering chan-

nels. The experimental data come from @10,55#, the one-loop results from @5,8,10#, and those at two loops

from @42#. We are using the definitions and conventions given in those references. Let us remark that our

one-loop IAM results are closer to those of two-loop ChPT, although the IAM depends on many fewer

parameters than the O(p6) ChPT.

Experiment IAM fit

ChPT

O(p4)

ChPT

O(p6)

a00 0.2660.05 0.231
20.006
10.003 0.20 0.21960.005

b00 0.2560.03 0.3060.01 0.26 0.27960.011

a20 20.02860.012 20.0411
20.001
10.0009

20.042 20.04260.01

b20 20.08260.008 20.07460.001 20.070 20.075660.0021

a11 0.03860.002 0.037760.0007 0.037 0.037860.0021

a1/20 0.13 to 0.24 0.11
20.09
10.06 0.17

a3/20 20.13 to 20.05 20.049
20.003
10.002

20.5

a1/21 0.017 to 0.018 0.01660.002 0.014

a10 0.15
20.11
10.07 0.0072
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rameters! obtained with the IAM are given in Table III for
the low energy constants in the second column in Table II.
The errors in Table III are obtained by a Gaussian sampling
of the above low energy constants. Note that the experimen-
tal values of the threshold parameters have not been used as
input in the fit, and the numbers we give are therefore pre-
dictions of the IAM. As we have anticipated before and Table
III shows clearly, we are able to reproduce the low energy
behavior with great accuracy. Let us then comment, for each
different channel, on the results of the IAM fit.

Channel „I ,J…Ä„1,1…

The most striking feature of this channel is the r~770!
resonance, which, as can be seen in Fig. 3~a!, can be fitted
with great precision. This had already been achieved at
O(p4) with both the single @8# and the coupled @11# channel
formalisms. However, it is now achieved in a simultaneous
fit with all the other channels, but since we are using the
complete O(p4) expressions we have a good description of
the high energy data without spoiling the scattering lengths
listed in Table III.

This channel depends very strongly on 2L1
r
1L32L2

r ,

and this combination can thus be fitted with great accuracy.
The mass and width from a clear Breit-Wigner resonance can
be obtained from the phase shift by means of

d IJ~M R!590°, GR5

1

M R
S dd IJ

ds
D

s5M
R
2

21

. ~34!

For the ~1,1! case we obtain M r5775.7
23.3
14.3 MeV, and Gr

5135.5
29.0
18.0 MeV, in perfect agreement with the values given

by the PDG @45#. The errors correspond to a Gaussian sam-
pling with the central values quoted in the second column of
Table II and the MINUIT errors of the fit.

Finally, and just for illustration, the inelasticity prediction
from the IAM is shown in Fig. 3~d!. Note that the data values
are so small and the claimed precision is so tiny that any
other effect not considered in this work ~like the 4p interme-
diate state! would yield a contribution beyond the precision
we can expect to reach with the IAM. That is why these data
have been excluded from the fit.

Channel „I ,J…Ä„0,0…

There are three independent observables in this channel
with data. Concerning the pp scattering phase shift, plotted
in Fig. 3~b!, we can reproduce two resonant structures. First,
there is the s @or f 0(400– 1200)#, which corresponds to a
broad bump in the phase shift that gets as high as 50° not
very far from threshold. This is not a narrow Breit-Wigner
resonance. Indeed, it was shown in the IAM with just one
channel @8# that it is possible to find an associated pole in the
second Riemann sheet, quite far from the real axis. Second,
we can nicely reproduce the shape of the f 0(980) which
corresponds to a narrow Breit-Wigner resonance although
over a background phase provided by the s, so that its mass
and width cannot be read directly from Eq. ~34!. Once more,

it can be seen that the scattering lengths can also be repro-
duced simultaneously with the high energy data.

The next observable is the pp→KK̄ phase shift, Fig.
3~c!, which can also be fitted neatly. Since we have included
the hh intermediate state, the fit is somewhat better than with
just two channels above the two-h threshold, as was sug-
gested in @11#, but not as much as expected ~this could be due
to our crude treatment of h-h8 mixing, which we noted at
the end of Sec. II!.

Finally, in Fig. 3~d!, we show the inelasticity in the ~0, 0!
channel. These are the most controversial sets of data, since
there is strong disagreement between several experiments
~up to a factor of 2 in the overall normalization!, as we
mentioned when commenting on the data for this observable.

Channel „I ,J…Ä„2,0…

We have plotted the results in Fig. 3~e!. Since only the pp
state can have these quantum numbers, we are simply repro-
ducing the single channel IAM formalism, which already
gave a very good description of this nonresonant channel @9#.
Nevertheless, let us remark that it is now fitted simulta-
neously with all the other channels, and the value of the
scattering length obtained from our fit is compatible with the
experimental result and standard ChPT ~see Table III!.

In addition, once we have a description of this and the ~0,
0! channel, we can obtain the phase of the e8 parameter
which measures direct CP violation in K→pp decays @48#.
It is defined, in degrees, as follows:

f~e8!590°2~d002d20!s5M
K
2 . ~35!

Our result is f(e8)53860.3, where the error is obtained
from a Gaussian sampling of the parameters listed in column
2 of Table II with the MINUIT errors in the third column. This
is in very good agreement with the experimentally observed
value of f(e8)543.567. Standard ChPT @49# predicts 45
66.

Low energy K l4 decay data

There is no real improvement in the description of these
low energy data in Fig. 3~f! compared to ChPT, since stan-
dard ChPT works very well at these energies. However, these
very precise data at such low energies ensure that the param-
eters of our fit cannot be too different from those of standard
ChPT. In addition, they are extremely important in the deter-
mination of the scattering lengths, in particular, of the con-
troversial a00 .

Channel „I ,J…Ä„1Õ2,1…

As happened in the ~1,1! channel with the r, this channel
is dominated by the K*(892). This is a distinct Breit-Wigner
resonance that can be fitted very accurately with the IAM
~see Fig. 3~g!!. From Eq. ~34! we find M K*588965 MeV
and GK*546613 MeV, in fairly good agreement with the
PDG @45#. The errors were obtained in the same way as for
the r resonance in the ~1, 1! channel.
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Channel „I ,J…Ä„1Õ2,0…

Because of the wide dispersion of experimental results,

our fit yields a wide error band for this channel, as can be

seen in Fig. 3~h!. Nevertheless, as happened in the ~0,0!
channel, the phase shift is of the order of 50° not far for

threshold, due to a wide bump similar to the s in that chan-

nel. Here, this broad structure has been identified by different

experimental and theoretical analyses @50,9,51,46# as the k
although there is still a controversy about its existence and

origin @52#, as also happened with the s. It is very similar to

the s, and hence it cannot be interpreted as a Breit-Wigner

narrow resonance.

We also give in Table III the value for the scattering

length of this channel, in good agreement with the experi-
mental data, which nevertheless are not very well known.

Channel „I ,J…Ä„3Õ2,0…

Since only pK can have these quantum numbers, this is
once more the IAM with a single channel, which already
provided a very good description @8#. We show in Fig. 3i the
results of the global fit for this channel, as well as the corre-
sponding scattering length in Table III.

Channel „I ,J…Ä„1,0…

In our global fit, the data in this channel ~see Fig. 3j! are
reproduced using Eq. ~33!. The shape of the a0(980) is
neatly reproduced in the mass distribution. In order to com-
pare the value of the normalization constant c with experi-
ment, we also show in Fig. 4 the result of applying the IAM
with the parameters obtained from our fit to the experimental
data obtained from K2p→S1(1385)ph and K2p

→S1(1385)KK̄ @53#. These data have not been included in
our fit since they do not have error bars, but it can be seen
that the IAM provides a good description. Once again we are
using a formula like Eq. ~33!, but with a constant different
from that for Fig. 3j and no background. Our result is c

563615 mb/GeV, to be compared with the values quoted in
@53# where c was taken from 73 to 165 mb/GeV.

Channel „I ,J…Ä„0,1…

Finally, we show in Fig. 5 the results for the modulus of
the amplitude in the ~0, 1! channel. In this case, there is only

one meson-meson scattering channel, namely, KK̄→KK̄ .
Therefore, we can apply only the single channel IAM, and in
so doing we find a pole at approximately 935 MeV on the
real axis. The width of this resonance is zero, since within

our approach it can couple only to KK̄ and its mass is below
the two-kaon threshold. One is tempted to identify this reso-
nance with the f~1020! meson, but in fact it can only be
related to its octet part v8 . The reason is that the singlet part
v1 is SU~3! symmetric and it does not couple to two mesons
since their spatial function has to be antisymmetric. Conse-
quently we can associate the resonance obtained with the
IAM only with the octet v8 @9,54#. The position of the pole
seems consistent with an intermediate mass between the
f~1020! and the v~770!. This state had also been found

when using the IAM with incomplete chiral amplitudes @9#,
and it was used later to study the f→pp decay within a
chiral unitary approach @54#. The fact that we find it here
again confirms that it is not an artifact of the approximations
used in @9#. In addition, although the amplitudes used here
are complete up to O(p4) and the fit is rather different, it
appears almost at the same place, which supports the sound-
ness of the results in @9#.

Finally, we have also added in Fig. 3 a dashed line that
corresponds to the result with the central values of the pa-
rameters in the second column of Table II but where we have
used the one-channel IAM at energies where there is only
one state available, the two-channel IAM when there are

FIG. 4. We show the effective mass distributions of the two

mesons in the final state of K2p→S1(1385)ph ~top! and K2p

→S1(1385)KK̄ ~bottom!; the data come from @53#. The curves and

bands are as in Fig. 3.

FIG. 5. We show the modulus of the (I ,J)5(0,1) KK̄→KK̄

amplitude. The pole around 935 can be identified with the octet v8

~see text for details!. Although that cannot be shown in a plot, the

modulus of the amplitude actually becomes infinite.
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two, etc. As we commented at the end of Sec. IV, this ap-

proach ensures exact unitarity at all energies, but we can see

that it generates a discontinuity at each threshold. The results

are compatible within the wider error bands with the previ-

ous IAM fit ~the space between the dotted lines!. This was

expected since, as we have already commented, the differ-

ence between the two approaches is of the order of a few

percent, which is also the order of magnitude of the system-

atic error added to the data for the fit. Of course, it is possible

to obtain a fit with this method also, as done in @8#, and the

resulting parameters are still compatible with those listed in

Table III.

VIII. CONCLUSIONS

In this work we have completed the calculation of the
lightest octet meson-meson scattering amplitudes within chi-
ral perturbation theory at one loop. We have calculated three
new amplitudes hh→hh , Kh→Kh , and Kh→Kp , but we
have also recalculated the other five independent amplitudes,
checking and revising previous results. The full expressions
are given in Appendix B in a unified notation, using dimen-
sional regularization and the MS21 renormalization
scheme, which is the usual one within ChPT. All the meson-
meson scattering partial waves below 1200 MeV, with defi-
nite isospin I and angular momentum J, can be expressed in
terms of these eight amplitudes.

Since ChPT is a low energy theory, the one-loop ampli-
tudes have to be unitarized in order to reach energies as high
as 1200 MeV ~and, in particular, the two-kaon threshold!.
For that purpose we have applied the coupled channel in-
verse amplitude method, which ensures unitarity for coupled
channels and is also able to generate resonances and their
associated poles, without introducing any additional param-
eter. In addition, it respects the chiral expansion at low en-
ergies, in our case up to O(p4). Thus, we have shown that it
is possible to describe simultaneously the data on the (I ,J)
5(0,0), ~1,1!, ~2,0!, ~1,0!, ~1/2,0!, ~1/2,1!, and ~3/2,0!
meson-meson channels below 1200 MeV, which correspond
to 20 different reactions. We also describe seven resonant
shapes, namely, the s, r~770!, K*(892), k, f 0(980),
a0(980), and the octet v8 .

This description is achieved with values for the low en-
ergy constants that are perfectly compatible with previous
determinations obtained using standard ChPT and low en-
ergy data. This comparison is possible only since we now
have the complete O(p4) expression for all the amplitudes in
the standard ChPT scheme. Indeed, with the present determi-
nations of standard ChPT, we can already find the resonance
shapes and we obtain the most distinct features of each chan-
nel, although with large uncertainties due to the present
knowledge of the chiral parameters.

Nevertheless, we have performed a fit of our unitarized
amplitudes to the meson-meson data and we have obtained a
very accurate description not only of the resonance region,
but also of the low energy data, and in particular of the
scattering lengths. We have also paid particular attention to
the uncertainties and errors in our description, which have
been estimated with Monte Carlo samplings of the fitted chi-

ral parameters within their resulting error bars.
Summarizing, we have extended and completed previous

analyses using these techniques in the meson sector so that
we believe that our present work will be useful for further
phenomenological applications.
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APPENDIX A: USEFUL FORMULAS

Here we will give the main results and definitions of the
different functions coming from the one-loop ChPT calcula-
tion. We are following the notation and conventions of @3#.

When calculating the ChPT amplitudes, the typical loop
integrals that appear are, on the one hand, the tadpole inte-
gral, i.e., the Feynman boson propagator evaluated at x50:

E ddq

~2p !d

i

q2
2M i

2 52M i
2l1

M i
2

16p2 log
M i

2

m2 ~A1!

where m is the renormalization scale, i5p ,K,h, and we have
extracted its divergent part for d→4, with l given in Eq. ~5!.
On the other hand, the integral coming from diagrams ~a!,
~b!, and ~c! in Fig. 1 is:

JPQ~p2!52iE ddq

~2p !d

1

@q2
2M P

2 #@~q2p !2
2M Q

2 #
~A2!

where P, Q5p ,K,h and whose divergent contribution in di-
mensional regularization can be separated as

JPQ~s !5JPQ~0 !1 J̄PQ~s !1O~d24 !, ~A3!

where

JPQ~0 !522l2

1

16p2

1

D
FM P

2 log
M P

2

m2 2M Q
2 log

M Q
2

m2 G ,

J̄PQ~S !5

1

32p2 F21S D

s
2

S

D
D log

M Q
2

M P
2

2

n~s !

s
log

@s1n~s !#2
2D2

@s2n~s !#2
2D2G , ~A4!

and

D5M P
2

2M Q
2 ,

S5M P
2

1M Q
2 ,
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n2~s !5@s2~M P1M Q!2#@s2~M P2M Q!2# .

For the case of a single mass M P5M Q , the above inte-
grals read

JPP~s !522l2

1

16p2 S 11log
M P

2

m2 D 1 J̄PP~s !,

J̄PP~s !5

1

16p2 F21s~s !log
s~s !21

s~s !11
G , ~A5!

with

s~s !5~124M P
2 /s !1/2 ~A6!

Note that the above integrals have the correct unitarity
structure in the right cut, which extends on the real axis from
s5(M P1M Q)2 to infinity. In fact, all the integrals appearing
to one loop in ChPT can be expressed in terms of the tadpole

and J̄ integrals above @3#. However, it is customary to ex-
press the results also in terms of

J% PQ~s ![ J̄~s !2sJ̄8~0 !, ~A7!

where from Eq. ~A4! one has

J̄8~0 !5

1

32p2 F S

D2 12
M P

2 M Q
2

D3 log
M Q

2

M P
2 G . ~A8!

From the above definitions it is easy to check that the

functions J̄(s)/s and J% (s)/s2 have well-defined limits as s

→0.

APPENDIX B: ONE LOOP AMPLITUDES FROM CHPT

Here we list the expressions for the eight independent
meson-meson scattering amplitudes to one loop in ChPT. We
have carefully checked the scale independence and perturba-
tive exact unitary ~see Sec. III!. Note that we have used Eq.

~9! to write all the f K and f h in terms of f p , L4
r , and L5

r , in

order to ensure ‘‘exact’’ perturbative unitarity, Eq. ~27!. Let
us first give the three amplitudes that had never before ap-
peared in the literature in any form.

For hh→hh ,

T~s ,t ,u !5

16M K
2

27M p
2

9 f p
2 1

mp

9 f p
2 $7M p

2
248M h

2 %2

mK

18f p
2 M K

2 $81@ t2
2su24tM h

2 #114M p
4

248M p
2 M h

2
1378M h

4 %

2

mh

3 f p
2 M h

2 $M p
4

28M p
2 M h

2
124M h

4 %1

4

f p
4 ~2L1

r
12L2

r
1L3!$s2

1t2
1u2

24M h
4 %2

8

3 f p
4 $12M h

4 L4
r
1~3M p

4

210M p
2 M h

2
113M h

4 !L5
r
236M h

4 L6
r
224~M p

4
23M p

2 M h
2
12M h

4 !L726L8
r ~2M p

4
26M p

2 M h
2
17M h

4 !%

2

1

192p2 f p
4 $27~ t2

2su24tM h
2 !116~23M h

4
222M K

2 M h
2
110M K

4 !%1

1

6 f p
4 $ 1

27 ~16M K
2

27M p
2 !2J̄hh~s !

1M p
4 J̄pp~s !1

1
12 ~9s22M p

2
26M h

2 !2J̄KK~s !1@s↔t#1@s↔u#%. ~B1!

For K̄0h→K̄0h ,

T~s ,t ,u !5

9t26M h
2
22M p

2

12 f p
2 2

2L5
r

3 f p
4 @3M p

4
112M h

4
1M p

2 ~5M h
2
29t !#1

1

3 f p
4 $2~12L1

r
15L3

r !~2M K
2

2t !~2M h
2
2t !1~12L2

r
1L3!

3@~s2M K
2

2M h
2 !2

1~u2M K
2

2M h
2 !2#%1

4

f p
4 $8~L6

r
2L4

r !M K
2 M h

2
12L7~M p

4
24M p

2 M h
2
13M h

4 !

1L8
r ~M p

4
23M p

2 M h
2
16M h

4 !12L4
r t~M h

2
1M K

2 !%2

mp

48f p
2 ~M K

2
2M h

2 !
$2M K

2 @26M h
2
169t#284M K

4

13@16M h
4

250tM h
2
1~s2u !2#%2

mK

72 f p
2 M K

2 ~M K
2

2M h
2 !

$92M K
6

281M h
2 t2

260M K
4 @3t1M h

2 #

118M K
2 ~5t2

22su16tM h
2
18M h

4 !%1

mh

144f p
2 M h

2 ~M K
2

2M h
2 !

$144tM K
4

2128M K
6

1@27~s2u !2
2486tM K

2

1428M K
4 #M h

2
12@153t2166M K

2 #M h
4
1144M h

6 %1

1

2304f p
4 p2 $116M K

4
1M K

2 @184M h
2
2153t#
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29@10t2
12su23tM h

2
14M h

4 #%1

t J̄KK~ t !~9t22M p
2

26M h
2 !

16f p
4 1

J̄hh~ t !~9t22M p
2

26M h
2 !~16M K

2
27M p

2 !

216f p
4

1

t J̄pp~ t !M p
2

8 f p
4 1

1

32 f p
4 H J̄Kh~s !

9
@27s~s2u !1189M K

4
18M p

4
154uM h

2
145M h

4
112M p

2 ~3s22M h
2 !

218M K
2 ~6s23u14M p

2
19M h

2 !#1

J̄Kp~s !

9
@27s~s2u !129M K

4
111M p

4
118M h

4
12M K

2 ~18s127u247M p
2

278M h
2 !16M p

2 ~9u26s18M h
2 !#2

J̄Kp~s !

s
$M K

4 ~3u114M p
2

28M h
2 !12M K

6
22M K

2 M p
2 ~3u15M p

2
14M h

2 !

1M p
2 @6M h

4
1M p

2 ~3u14M h
2 !#%1

J̄Kh~s !

s
~M K

2
2M h

2 !2~4M p
2

218M K
2

26M h
2
23u !16~M K

2
2M h

2 !2

3

J% Kp~s !~M K
2

2M p
2 !2

1J% Kh~s !~M K
2

2M h
2 !2

s2 1@s↔u#J . ~B2!

For K̄0h→K̄0p0,

T~s ,t ,u !5

8M K
2

13M h
2
1M p

2
29t

12) f p
2

1

mp

48) f p
2 ~M K

2
2M p

2 !
$27s2

118su127u2
1174tM K

2
2292M K

4
112~5M K

2
26t !M p

2

232M p
4 %2

mK

24) f p
2 M K

2 ~M K
2

2M p
2 !

$9t2M p
2

124M K
6

14M K
4 ~17M p

2
215t !12M K

2 @9~s2u !2
16tM p

2
222M p

4 #%

2

mh

16) f p
2 ~M K

2
2M h

2 !
$3~s2u !2

12~3t214M K
2

110M h
2 !~M k

2
22M h

2 !%1

1

256)p2 f p
4

$2~2s1u !~s12u !2192M K
4

223tM h
2
216M h

4
15M K

2 ~13t124M h
2 !%2

L3

) f p
4

$s2
14su1u2

230M K
4

22tM h
2
12M h

4
16M K

2 ~ t12M h
2 !%

1

1

) f p
4

$3M p
4 @L5

r
22~2L71L8

r !#1M h
4 @6~2L71L8

r !2L5
r #26L5

r M p
2 ~ t2M h

2 !%2

9t28M K
2

2M p
2

23M h
2

144) f p
4

@3t J̄KK~ t !

14M p
2 J̄ph~ t !#1

1

288) f p
4 H J̄Kh~s !@27s~u2s !245M K

4
114M p

4
26M h

2 ~9u17M p
2 !29M h

4
1M K

2 ~36s254u

122M p
2

1156M h
2 !#13 J̄Kp~s !@29M K

4
17M p

4
13s~9s13u24M h

2 !22M K
2 ~16s19u218M p

2
13M h

2 !

2M p
2 ~40s118u230M h

2 !#19
J̄Kh~s !

s
~M K

2
2M h

2 !@10M K
4

12M p
4

2M h
2 ~3u18M p

2 !1M K
2 ~3u212M p

2
18M h

2 !#

19
J̄Kp~s !

s
~M K

2
2M p

2 !2~3u22M K
2

12M p
2 !2

54J% Kh~s !

s2 ~M K
2

2M p
2 !~M K

2
2M h

2 !3
2

54J% Kp~s !

s2 ~M K
2

2M p
2 !3

3~M K
2

2M h
2 !1@s↔u#J . ~B3!

Apart from the above three amplitudes, we have recalculated the other independent five. The reason is threefold. First, we
wanted them to satisfy exact perturbative unitarity to apply the simplest IAM formulas. This was not the case of all the
calculations in the literature, even when considering the one-channel case. Second, there have been several unfortunate
misprints and errata in the published formulas ~including some errata made by one of us!. Finally we would like to have a
self-contained description of the one-loop calculation, together with all the resulting formulas. Nevertheless, when compared
with previous analyses, our results are not exactly the same because we have chosen to express the amplitudes in terms of only
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one physical decay constant f p , and we have used the Gell-Mann–Okubo relation only to simplify masses if it did not affect
the exact perturbative unitarity relation. Apart from previous misprints, the differences are O(p6). The first amplitude to
appear in the literature was p1p2

→p0p0, although in SU~2! @2#. However, we have been able to check also with the SU~3!
calculation @10#. The result, following the notation in Appendix A, is

T~s ,t ,u !5

s2M p
2

f p
2 2

mp

3 f p
2 M p

2 $4s2
24tu24sM p

2
19M p

4 %2
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4
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r
1L3!~s22M p

2 !2

1L2
r @~ t22M p

2 !2
1~u22M p

2 !2#%1

8M p
2

f p
4 $~2L4

r
1L5

r !s12~2L6
r
1L8

r
22L4

r
2L5

r !M p
2 %1

1

576p2 f p
4 $30~M p

2
2s !s

121tu256M p
4 %1

1

2 f p
4 H s2J̄KK~s !

4
1

M p
4 J̄hh~s !

9
1~s2

2M p
4 !J̄pp~s !J 1

1

6 f p
4 H ~ t24M K

2 !~2s1t24M p
2 !J̄KK~ t !

4

1@ t~ t2u !22M p
2 ~ t22u1M p

2 !# J̄pp~ t !1@ t↔u#J . ~B4!

The K1p1
→K1p1 one-loop calculation was first given in @10#. It was correct up to O(p4) but when expressed in terms

of physical constants it did not satisfy exact perturbative unitarity. One of us gave an expression satisfying that relation @8#, but
there was also a typographical error in that reference. Our corrected result, expressed just in terms of f p is
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The one-loop p0h→p0h amplitude was calculated in @10#. We give here the result expressed in terms of physical
quantities:
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Finally, the KK scattering amplitudes were calculated in @11#. They were given in a rather different notation from the
previous ones. Our result is, for K1K2

→K1K2,
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and for K̄0K0
→K1K2,
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