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Abstract

We study the photon-to-meson transition form factors (TFFs) FMγ(Q
2) for γγ∗ → M us-

ing light-front holographic methods. The Chern-Simons action, which is a natural form in

5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-

pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical

to the leading order QCD result where the distribution amplitude has asymptotic form. The

Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability.

It only retains the qq̄ component of the pion wavefunction, and further, it projects out only

the asymptotic form of the meson distribution amplitude. It is found that in order to de-

scribe simultaneously the decay process π0 → γγ and the pion TFF at the asymptotic limit,

a probability for the qq̄ component of the pion wavefunction Pqq̄ = 0.5 is required; thus giving

indication that the contributions from higher Fock states in the pion light-front wavefunction

need to be included in the analysis. The probability for the Fock state containing four quarks

(anti-quarks) which follows from analyzing the hadron matrix elements, Pqq̄qq̄ ∼ 10%, agrees

with the analysis of the pion elastic form factor using light-front holography including higher

Fock components in the pion wavefunction. The results for the TFFs for the η and η′ mesons

are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q2

is not compatible with the models discussed in this article, whereas the theoretical calculations

are in agreement with the experimental data for the η and η′ TFFs.

PACS numbers:
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I. INTRODUCTION

The AdS/CFT correspondence between an effective gravity theory on a higher dimen-

sional anti-de Sitter (AdS) space and conformal field theories in physical space-time [1–3]

has led to a remarkably accurate semiclassical approximation for strongly-coupled QCD,

and it also provides physical insights into its non-perturbative dynamics. Incorporating

the AdS/CFT correspondence as a useful guide, light-front holographic methods were

originally introduced [4] by matching the electromagnetic (EM) current matrix elements

in AdS space [5] to the corresponding Drell-Yan-West (DYW) expression, [6, 7] using

light-front (LF) theory in physical space-time. One obtains the identical holographic

mapping using the matrix elements of the energy-momentum tensor [8] by perturbing

the AdS metric

ds2 =
R2

z2
(

ηµνdx
µdxν − dz2

)

, (1)

around its static solution. [9]

A precise gravity dual to QCD is not known, but color confinement can be incorporated

in the gauge/gravity correspondence by modifying the AdS geometry in the large infrared

(IR) domain z ∼ 1/ΛQCD, which also sets the mass scale of the strong interactions in

a class of confining models. The modified theory generates the point-like hard behavior

expected from QCD, such as constituent counting rules [10–12] from the ultraviolet (UV)

conformal limit at the AdS boundary at z → 0, instead of the soft behavior characteristic

of extended objects. [13]

One can also study the gauge/gravity duality starting from the Hamiltonian equation

of motion in physical space-time. [14] To a first semiclassical approximation, where quan-

tum loops and quark masses are not included, this leads to a LF Hamiltonian equation

which describes the bound-state dynamics of light hadrons in terms of an invariant im-

pact variable ζ which measures the separation of the partons within the hadron at equal

light-front time. This allows us to identify the holographic variable z in AdS space with

the impact variable ζ. [4, 8, 14]

The pion transition form factor (TFF) between a photon and pion measured in the

e−e− → e−e−π0 process, with one tagged electron, is the simplest bound-state process in
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QCD. It can be predicted from first principles in the asymptotic Q2 → ∞ limit. [11] More

generally, the pion TFF at large Q2 can be calculated at leading twist as a convolution

of a perturbative hard scattering amplitude TH(γγ
∗ → qq̄) and a gauge-invariant meson

distribution amplitude (DA) which incorporates the nonperturbative dynamics of the

QCD bound-state. [11]

The BABAR Collaboration has reported measurements of the transition form factors

from γ∗γ → M process for the π0, [15] η, and η′ [16, 17] pseudoscalar mesons for a

momentum transfer range much larger than previous measurements. [18, 19] Surprisingly,

the BABAR data for the π0-γ TFF exhibit a rapid growth for Q2 > 15 GeV2, which is

unexpected from QCD predictions. In contrast, the data for the η-γ and η′-γ TFFs are

in agreement with previous experiments and theoretical predictions. Many theoretical

studies have been devoted to explaining BABAR’s experimental results. [20–33]

Motivated by the conflict of theory with experimental results we have examined in a

companion paper [32] existing models and approximations used in the computation of

pseudoscalar meson TFFs in QCD, incorporating the evolution of the pion distribution

amplitude [11, 34] which controls the meson TFFs at largeQ2. In this article we will study

the structure of the meson TFFs which follows from the Chern-Simons (CS) action present

in the higher dimensional gravity side. [3, 35] A simple analytical form is found which

satisfies both the low energy theorem for the decay π0 → γγ and the QCD predictions at

large Q2, thus allowing us to encompass the perturbative and non-perturbative space-like

regimes in a simple model. We choose the soft-wall approach to modify the infrared AdS

geometry to include confinement, but the general results are not expected to be sensitive

to the specific model chosen to deform AdS space in the IR since the Chern-Simons action

is a topological invariant.

After introducing the Chern-Simons structure of the meson transition form factor in

AdS space in Section II, the pion transition form factors calculated with the free and

dressed currents are presented in Sections III and IV, respectively. The higher Fock

state contributions to the pion transition form factor are studied in Section V. The

results for the η and η′ transition form factors are given in Section VI. Some conclusions

are presented in Section VII. Different forms for the pion distribution amplitude from
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holographic mapping are discussed in Appendix A.

II. THE CHERN-SIMONS STRUCTURE OF THE MESON TRANSITION

FORM FACTOR IN ADS SPACE

The pion transition form factor can be studied by exploring the mathematical structure

of higher-dimensional forms describing the pion-photon amplitude in AdS space and its

holographic mapping to light-front QCD by constructing higher dimensional transition

amplitudes. In the case of the U(1) gauge theory the Chern-Simons (CS) action is

of the form ǫLMNPQAL∂MAN∂PAQ in the five dimensional Lagrangian [3, 35], where

xM are the five-dimensional coordinates xM = (xµ, z). The Chern-Simons form is the

product of three fields at the same point in five-dimensional space corresponding to a

local interaction.

In order to compute the transition form factor Fπγ using holographic methods, one

needs to relate the five-dimensional CS amplitude to the γ∗γ → π0 amplitude:

∫

d4x

∫

dz ǫLMNPQAL∂MAN∂PAQ

∼ (2π)4δ(4) (pπ + q − k)Fπγ(q
2)ǫµνρσǫµ(q)(pπ)νǫρ(k)qσ, (2)

with the meson field in AdS space identified with the Az component. [36, 37] In the r.h.s

of (2) q and k are the momenta of the virtual and on-shell photons respectively with

corresponding polarization vectors ǫµ(q) and ǫµ(k). The momentum of the outgoing pion

is pπ.

The incoming electromagnetic field propagates in AdS according to Aµ(x
µ, z) =

ǫµ(q)e
−iq·xV (q2, z), where V (q2, z) is the bulk-to-boundary propagator with boundary

conditions V (q2 = 0, z) = V (q2, z = 0) = 1. [5] Since the incoming photon with momen-

tum k is on its mass shell, k2 = 0, its wave function is Aµ(x
µ, z) = ǫµ(k)e

ik·x.

The propagation of the pion in AdS space is described by a normalizable mode

Φpπ(x
µ, z) = e−ipπ ·xΦπ(z) with invariant mass pπµpπ

µ = M2
π and plane waves along

Minkowski coordinates xµ. In the chiral limit for massless quarks Mπ = 0. The normal-

izable mode Φ(z) scales as Φ(z) → zτ=2 in the limit z → 0, since the leading interpo-
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lating operator for the pion has twist two. A simple dimensional analysis implies that

Az ∼ Φπ(z)/z, matching the twist scaling dimensions: two for the pion and one for the

EM field. Substituting in (2) the expression given above for the the pion and the EM

fields propagating in AdS we find (Q2 = −q2 > 0)

Fπγ(Q
2) =

1

2π

∫ ∞

0

dz

z
Φπ(z)V

(

Q2, z
)

. (3)

We have defined our units such that the AdS radius R = 1. As will become clear be-

low, the higher dimensional amplitude (2), with the normalization given by (3), can

be consistently mapped to physical QCD in the light front, reproducing the asymp-

totic QCD prediction. Since the pion field is identified as Φπ(z) ∼ zA(z), the CS form

ǫLMNPQAL∂MAN∂PAQ is similar in form to an axial current; this correspondence can

explain why the resulting pion distribution amplitude has the asymptotic form.

In Ref. [37] the pion TFF was studied in the framework of a CS extended hard-wall

AdS/QCD model with Az ∼ ∂zΦ(z). The expression for the TFF which follows from (2)

then vanishes at Q2 = 0, and has to be corrected by the introduction of a surface term

at the IR wall. [37] However, this procedure is only possible for a model with a sharp

cutoff. The pion TFF has also been studied using the holographic approach to QCD in

Refs. [38, 39].

III. A SIMPLE HOLOGRAPHIC CONFINING MODEL

Conformal invariance can be broken analytically by the introduction of a color-

confining dilaton profile ϕ(z) in the action,

S =

∫

d4x

∫

dz
√
geϕ(z)L, (4)

thus retaining conformal AdS metrics as well as introducing a smooth IR cutoff. It is not

possible in this model to introduce a surface term as in Ref. [37] to match the value of the

TFF at Q2 = 0 derived from the decay π0 → γγ. Instead, higher Fock components which

modify the pion wave function at large distances are required to satisfy this low-energy

constraint naturally. Since the higher-twist components have a faster fall-off at small

distances, the asymptotic results are not modified.
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It is convenient to scale away the dilaton factor in the action by a field redefinition. [40]

For example, for a scalar field we shift Φ → e−ϕ/2Φ, and the bilinear component in

the action is transformed into the equivalent problem of a free kinetic part plus an

effective potential V (Φ, ϕ). The five-dimensional CS action for the redefined pion field is

determined by the equation of motion in the presence of the effective potential V (Φ, ϕ).

A particularly interesting case is a dilaton profile exp (±κ2z2) of either sign, since it

leads to linear Regge trajectories consistent with the light-quark hadron spectroscopy. It

avoids the ambiguities in the choice of boundary conditions at the infrared wall. [41] In

this case the effective potential takes the form of a harmonic oscillator confining potential

κ4z2, and the normalizable solution for a meson of a given twist τ , corresponding to the

lowest radial n = 0 node, is given by

Φτ
π(z) =

√

2Pτ

Γ(τ−1)
κτ−1zτe−κ2z2/2, (5)

with normalization

〈Φτ |Φτ 〉 =
∫

dz

z3
e−κ2z2Φτ (z)2 = Pτ , (6)

where Pτ is the probability for the twist τ mode (5). This agrees with the fact that

the field Φτ couples to a local hadronic interpolating operator of twist τ defined at the

asymptotic boundary of AdS space, and thus the scaling dimension of Φτ is τ . The

decay constant of the hadron described by the AdS mode (5) is normalized according to

(Appendix A)

fτ =
1

4π

∂zΦ
τ (z)

z

∣

∣

∣

z=0
, (7)

and thus the decay constant for the pion (τ = 2)

fπ =
√

Pqq̄
κ√
2π
. (8)

The QCD asymptotic prediction of the TFF can be computed from first principles

by analyzing the local coupling of the free electromagnetic current to the elementary

constituents in the interaction representation. [11] To compare with the asymptotic QCD

prediction, we first consider a simplified model where the non-normalizable mode V (q2, z)

for the EM current satisfies the “free” AdS equation, dual to the free QCD current, [4]
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and thus

V (Q2, z) = zqK1(zQ), (9)

with boundary conditions V (Q2 = 0, z) = V (Q2, z = 0) = 1. Substituting the pion wave

function (5) for twist τ = 2 in (3) and using the integral representation for V (Q2, z)

zQK1(zQ) = 2Q2

∫ ∞

0

tJ0(zt)

(t2 +Q2)2
dt, (10)

we find upon integration

Fπγ(Q
2) =

√

2Pqq̄ Q
2

πκ

∫ ∞

0

tdt

(t2 +Q2)2
e−t2/2κ2

. (11)

Changing variables as x = Q2

t2+Q2 one obtains

Fπγ(Q
2) =

Pqq̄

2π2fπ

∫ 1

0

dx exp

(

−(1− x)Pqq̄Q
2

4π2f 2
πx

)

. (12)

Upon integration by parts, Eq. (12) can also be written as

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x)

1− x

[

1− exp

(

−(1− x)Pqq̄Q
2

4π2f 2
πx

)]

, (13)

where φ(x) =
√
3fπx(1−x) is the asymptotic QCD distribution amplitude with fπ given

by (8).

Remarkably, the pion transition form factor given by (13) for Pqq̄ = 1 is identical

to the results for the pion TFF obtained with an exponential light-front wave func-

tion (LFWF) [42]; it also reproduces the leading order QCD result [11] for the TFF at

the asymptotic limit, Q2Fπγ(Q
2 → ∞) = 2fπ. [43] The leading-twist result (13) does

not include non-leading order αs corrections in the hard scattering amplitude nor gluon

exchange in the evolution of the distribution amplitude, since the semiclassical corre-

spondence implied in the gauge/gravity duality does not contain quantum effects such as

particle emission and absorption.

The transition form factor at Q2 = 0 can be obtained from Eq. (13),

Fπγ(0) =
1

2π2fπ
Pqq̄. (14)

The form factor Fπγ(0) is related to the decay width for the π0 → γγ decay,

Γπ0→γγ =
α2πm3

π

4
F 2
πγ(0), (15)
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where α = 1/137. The form factor Fπγ(0) is also well described by the Schwinger, Adler,

Bell and Jackiw anomaly [44] which gives

F SABJ
πγ (0) =

1

4π2fπ
, (16)

in agreement within a few percent of the observed value obtained from the the decay

π0 → γγ.

Taking Pqq̄ = 0.5 in (14) one obtains a result in agreement with (16). Thus (13) repre-

sents a description on the pion TFF which encompasses the low-energy non-perturbative

and the high-energy hard domains, but includes only the asymptotic DA of the qq̄ com-

ponent of the pion wave function at all scales. The results from (13) are shown as dotted

curves in Figs. 1 and 2 for Q2Fπγ(Q
2) and Fπγ(Q

2) respectively. The calculations agree

reasonably well with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) , but disagree with BABAR’s large Q2 data.
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FIG. 1: The γγ∗ → π0 transition form factor shown as Q2Fπγ(Q
2) as a function of Q2 = −q2.

The dotted curve is the asymptotic result predicted by the Chern-Simons form. The dashed

and solid curves include the effects of using a confined EM current for twist-two and twist-two

plus twist-four respectively. The data are from [15, 18, 19].
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FIG. 2: Same as Fig. 1 for Fπγ(Q
2).

IV. TRANSITION FORM FACTOR WITH THE DRESSED CURRENT

The results described in Section III correspond to a free current propagating on AdS

space. It is dual to the electromagnetic point-like current in the Drell-Yan-West light-

front formula [6, 7] for the pion form factor.

The DYW formula is an exact expression for the form factor. It is written as a sum

of an overlap of LF Fock components with an arbitrary number of constituents. This

allows one to map state-by-state to the effective gravity theory in AdS space. However,

this mapping has the shortcoming that the multiple pole structure of the time-like form

factor cannot be obtained in the time-like region unless an infinite number of Fock states is

included. Furthermore, the moments of the form factor at Q2 = 0 diverge term-by-term;

for example one obtains an infinite charge radius. [45]

Alternatively, one can use a truncated basis of states in the LF Fock expansion with a

limited number of constituents, and the non-perturbative pole structure can be generated

with a dressed EM current as in the Heisenberg picture, i.e., the EM current becomes

modified as it propagates in a IR deformed AdS space to simulate confinement. The

dressed current is dual to a hadronic EM current which includes any number of virtual
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qq̄ components.

The simple valence qq̄ model discussed above should thus be modified at small Q2

by introducing the dressed current. In the case of soft-wall potential, the EM bulk-to-

boundary propagator is

V (Q2, z) = Γ

(

1 +
Q2

4κ2

)

U

(

Q2

4κ2
, 0, κ2z2

)

, (17)

where U(a, b, c) is the Tricomi confluent hypergeometric function. The modified current

V (Q2, z), (17), has the same boundary conditions as the free current (9), and reduces to

(9) in the limit Q2 → ∞. Eq. (17) can be conveniently written in terms of the integral

representation [46]

V (Q2, z) = κ2z2
∫ 1

0

dx

(1− x)2
x

Q2

4κ2 e−κ2z2x/(1−x). (18)

Inserting the pion wave function (5) for twist τ = 2 and the confined EM current (18)

in the amplitude (3) one finds

Fπγ(Q
2) =

Pqq̄

π2fπ

∫ 1

0

dx

(1 + x)2
xQ

2Pqq̄/(8π2f2
π). (19)

Eq. (19) gives the same value for Fπγ(0) as (14) which was obtained with the free current.

Thus the anomaly result Fπγ(0) = 1/(4π2fπ) is reproduced if Pqq̄ = 0.5 is also taken in

(19). Upon integration by parts, Eq. (19) can also be written as

Q2Fπγ(Q
2) = 8fπ

∫ 1

0

dx
1− x

(1 + x)3

(

1− xQ
2Pqq̄/(8π2f2

π)
)

. (20)

Noticing that the second term in Eq. (20) vanishes at the limit Q2 → ∞, one recovers

Brodsky-Lepage’s asymptotic prediction for the pion TFF: Q2Fπγ(Q
2 → ∞) = 2fπ. [11]

The results calculated with (19) for Pqq̄ = 0.5 are shown as dashed curves in Figs. 1

and 2. One can see that the calculations with the dressed current are larger as compared

with the results computed with the free current and the experimental data at low- and

medium-Q2 regions (Q2 < 10 GeV2). The new results again disagree with BABAR’s data

at large Q2.
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V. HIGHER-TWIST COMPONENTS TO THE TRANSITION FORM FACTOR

In a previous light-front QCD analysis of the pion TFF [47] it was argued that the

valence Fock state |qq̄〉 provides only half of the contribution to the pion TFF at Q2 =

0, while the other half comes from diagrams where the virtual photon couples inside

the pion (strong interactions occur between the two photon interactions). This leads

to a surprisingly small value for the valence Fock state probability Pqq̄ = 0.25. More

importantly, this raises the question on the role played by the higher Fock components

of the pion LFWF,

|π〉 = ψ2|q̄q〉+ ψ3|qq̄g〉+ ψ4|qq̄qq̄〉+ · · · , (21)

in the calculations for the pion TFF.

The contributions to the transition form factor from these higher Fock states are

suppressed, compared with the valence Fock state, by the factor 1/(Q2)n for n extra qq̄

pairs in the higher Fock state, since one needs to evaluate an off-diagonal matrix element

between the real photon and the multi-quark Fock state. [11] We note that in the case of

the elastic form factor the power suppression is 1/(Q2)2n for n extra qq̄ pairs in the higher

Fock state. These higher Fock state contributions are negligible at high Q2. On the other

hand, it has long been argued that the higher Fock state contributions are necessary to

explain the experimental data at the medium Q2 region for exclusive processes. [48, 49].

The contributions from the twist-3 parts of the two-parton pion distribution amplitude to

the pion elastic form factors were evaluated in Ref. [50]. The three-parton contributions

to the pion elastic form factor were studied in Ref. [51]. The contributions from diagrams

where the virtual photon couples inside the pion to the pion transition form factor were

estimated using light-front wavefunctions in Ref. [22, 52]. The higher twist (twist-4

and twist-6) contributions to the pion transition form factor [53] were evaluated using

the method of light-cone sum rules in Refs. [30, 33], but opposite claims were made

on whether the BABAR data could be accommodated by including these higher twist

contributions.

It is also not very clear how the higher Fock states contribute to decay processes, such

as π0 → γγ, [54] due to the long-distance non-perturbative nature of decay processes.
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Second order radiative corrections to the triangle anomaly do not change the anomaly

results as they contain one internal photon line and two vertices on the triangle loop.

Upon regulation no new anomaly contribution occurs. In fact, the result is expected to

be valid at all orders in perturbation theory. [55, 56] It is thus generally argued that in

the chiral limit of QCD (i.e., mq → 0), one needs only the qq̄ component to explain the

anomaly, but as shown below, the higher Fock state components can also contribute to

the decay process π0 → γγ in the chiral limit.

As discussed in the last two sections, matching the AdS/QCD results computed with

the free and dressed currents for the TFF at Q2 = 0 with the anomaly result requires

a probability Pqq̄ = 0.5. Thus it is important to investigate the contributions from

the higher Fock states. In AdS/QCD there are no dynamic gluons and confinement is

realized via an effective instantaneous interaction in light-front time, analogous to the

instantaneous gluon exchange. [57] The effective confining potential also creates quark-

antiquark pairs from the amplitude q → qq̄q. Thus in AdS/QCD higher Fock states

can have any number of extra qq̄ pairs. These higher Fock states lead to higher-twist

contributions to the pion transition form factor.

To illustrate this observation consider the two diagrams in Fig. 3. In the leading

process, Fig. 3 (a), where both photons couple to the same quark, the valence |qq̄〉 state
has Jz = Sz = Lz = 0,

|qq̄〉 = 1√
2

(∣

∣

∣
+

1

2
,−1

2

〉

−
∣

∣

∣
− 1

2
,+

1

2

〉)

. (22)

Eq. (22) represents a JPC = 0−+ state with the quantum numbers of the conventional π

meson axial vector interpolating operator O = ψ̄γ+γ5ψ.

In the process involving the four quark state |qq̄qq̄〉 of the pion, Fig. 3 (b), where each

photon couples directly to a qq̄ pair, the four quark state also satisfies Jz = Sz = Lz = 0

and is represented by

|qq̄qq̄〉 = 1

2

(∣

∣

∣
+

1

2
,−1

2
,+

1

2
,−1

2

〉

+
∣

∣

∣
+

1

2
,−1

2
,−1

2
,+

1

2

〉

−
∣

∣

∣− 1

2
,+

1

2
,+

1

2
,−1

2

〉

−
∣

∣

∣− 1

2
,+

1

2
,−1

2
,+

1

2

〉)

. (23)

The four quark state in Eq. (23) has also quantum numbers JPC = 0−+ corresponding
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γ
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γ
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γ
= +1, Lz

γ
= −1

γ(k)

−1/2

+1/2

−1/2 u

ū
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FIG. 3: Leading-twist contribution (a) and twist-four contribution (b) to the process γγ∗ → π0.

to the quantum numbers of the local interpolating operators O = ψ̄γ+γ5ψψψ̄ where the

scalar interpolating operator ψ̄ψ has quantum numbers JPC = 0++.

We note that for the Compton scattering γH → γH process, similar higher-twist

contributions, as illustrated in Fig. 3 (b), are proportional to
∑

ei 6=ej
eiej and are necessary

to derive the low energy amplitude for Compton scattering which is proportional to the

total charge squared e2H = (ei + ej)
2 of the target. [58]

Both processes illustrated in Fig (3) make contributions to the two photon process

γ∗γ → π0. Time reversal invariance means that the four quark state |qq̄qq̄〉 should also

contribute to the decay process π0 → γγ. In a semiclassical model without dynamic

gluons, Fig. 3 (b) represents the only higher twist term which contribute to the γ∗γ → π0

process. The twist-four contribution vanishes at large Q2 compared to the leading-twist

contribution, thus maintaining the asymptotic predictions while only modifying the large

distance behavior of the wave function.

To investigate the contributions from the higher Fock states in the pion LFWF, we
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write the twist-two and twist-four hadronic AdS components from (5)

Φτ=2
π (z) =

√
2κz2√
1 + α2

e−κ2z2/2, (24)

Φτ=4
π (z) =

ακ3z4√
1 + α2

e−κ2z2/2, (25)

with normalization
∫ ∞

0

dz

z3
[

|Φτ=2
π (z)|2 + |Φτ=4

π (z)|2
]

= 1, (26)

and probabilities Pqq̄ = 1/(1 + |α|2) and Pqq̄qq̄ = α2/(1 + |α|2). The pion decay constant

follows from the short distance asymptotic behavior of the leading contribution and is

given by

fπ =
1√

1 + α2

κ√
2π
. (27)

Using (24) and (25) together with (18) in equation (3) we find the total contribution

from twist-two and twist-four components for the dressed current,

Fπγ(Q
2) =

1

π2fπ

1

(1 + α2)3/2

∫ 1

0

dx

(1 + x)2
xQ

2/[8π2f2
π(1+α2)]

[

1 +
4α√
2

1− x

1 + x

]

. (28)

The transition from factor at Q2 = 0 is given by

Fπγ(0) =
1

2π2fπ

1 +
√
2α

(1 + α2)3/2
. (29)

The Brodsky-Lepage’s asymptotic prediction for the pion TFF can be recovered from

Eq. (28) by noticing that the second term vanishes at Q2 → ∞ and the similarity between

Eq. (20) and the first term in Eq. (28).

Imposing the anomaly result (16) on (29) we find two possible real solutions for α:

α1 = −0.304 and α2 = 1.568. [59] The larger value α2 = 1.568 yields Pqq̄ = 0.29,

Pqq̄qq̄ = 0.71, and κ = 1.43 GeV. The resulting value of κ is about 4 times larger than the

value obtained from the AdS/QCD analysis of the hadron spectrum and the pion elastic

form factor, [60] and thereby should be discarded. The other solution α1 = −0.304 gives

Pqq̄ = 0.915, Pqq̄qq̄ = 0.085, and κ = 0.432 GeV – results that are similar to that found

from an analysis of the space and time-like behavior of the pion form factor using LF

holographic methods, including higher Fock components in the pion wave function. [60]

Semiclassical holographic methods, where dynamical gluons are not presented, are thus

15



compatible with a large probability for the valence state of the order of 90%. On the

other hand, QCD analyses including multiple gluons on the pion wave function favor a

small probability (25%) for the valence state. [47] Both cases (and examples in between)

are examined in Ref. [32].

The results for the transition form factor are shown as solid curves in Figs. 1 and 2.

The agreements with the experimental data at low- and medium-Q2 regions (Q2 < 10

GeV2) are greatly improved compared with the results obtained with only twist-two

component computed with the dressed current. However, the rapid growth of the pion-

photon transition form factor exhibited by the BABAR data at high Q2 still cannot be

reproduced. So we arrive at a similar conclusion as we did in a QCD analysis of the pion

TFF in Ref. [32]: it is difficult to explain the rapid growth of the form factor exhibited

by the BABAR data at high Q2 within the current framework of QCD.

VI. TRANSITION FORM FACTORS FOR THE η AND η′ MESONS

The η and η′ mesons result from the mixing of the neutral states η8 and η1 of the

SU(3)F quark model. The transition form factors for the latter have the same expression

as the pion transition form factor, except an overall multiplying factor cP = 1, 1√
3
, and

2
√
2√
3
for the π0, η8 and η1, respectively. By multiplying equations (13), (19) and (28) by

the appropriate factor cP , one obtains the corresponding expressions for the transition

form factors for the η8 and η1.

The transition form factors for the physical states η and η′ are a superposition of the

transition form factors for the η8 and η1




Fηγ

Fη′γ



 =





cos θ −sin θ

sin θ cos θ









Fη8γ

Fη1γ



 , (30)

where θ is the mixing angle for which we adopt θ = −14.5o±2o. [61] The results for the η

and η′ transitions form factors are shown in Figs. 4 and 5 for Q2FMγ(Q
2), and Figs. 6 and

7 for FMγ(Q
2). The calculations agree very well with available experimental data over

a large range of Q2. We note that other mixing schemes were proposed in studying the

mixing behavior of the decay constants and states of the η and η′ mesons. [62–64] Since

16



the transition from factors are the primary interest in this study it is appropriate to use

the conventional single-angle mixing scheme for the states. Furthermore, the predictions

for the η and η′ transition form factors remain largely unchanged if other mixing schemes

are used in the calculation.
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FIG. 4: The γγ∗ → η transition form factor shown as Q2Fηγ(Q
2) as a function of Q2 = −q2.

The dotted curve is the asymptotic result. The dashed and solid curves include the effects of

using a confined EM current for twist two and twist two plus twist four respectively. The data

are from [15, 18, 19].

VII. CONCLUSIONS

The light-front holographic approach provides a direct mapping between an effective

gravity theory defined in a fifth-dimensional warped space-time and a corresponding

semiclassical approximation to strongly coupled QCD quantized on the light-front. In

addition to predictions for hadron spectroscopy, important outputs are the elastic form

factors of hadrons and constraints on their light-front bound-state wavefunctions. The

soft wall color-confining AdS/QCD model is particularly successful.

We have studied the photon-to-meson transition form factors FMγ(Q
2) for γ∗γ → M

using light-front holographic methods. The Chern-Simons action, which is a natural
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FIG. 5: Same as Fig. 4 for the γγ∗ → η′ transition form factor shown as Q2Fη′γ(Q
2).
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FIG. 6: Same as Fig. 4 for the γγ∗ → η transition form factor shown as Fηγ(Q
2).

form in 5-dimensional AdS space, leads directly to an expression for the photon-to-pion

transition form factor for a class of confining models. Remarkably, the pion transition

form factor given by Eq. (13) derived from the CS action is identical to the leading order

QCD result where the distribution amplitude has the asymptotic form φ(x) ∝ x(1− x).

The Chern-Simon form is local in AdS space and is thus somewhat limited in its

predictability. It only retains the qq̄ component of the pion wavefunction, and further, it
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FIG. 7: Same as Fig. 4 for the γγ∗ → η′ transition form factor shown as Fη′γ(Q
2).

projects out only the asymptotic form of the meson distribution amplitude φ(x) ∝ x(1−
x). In contrast, the holographic light-front mapping of electromagnetic and gravitational

form factors gives the full form of the distribution amplitude φ ∝
√

x(1− x) for arbitrary

values of Q2. This apparently contradictory result was first found in Ref. [37] in a hard-

wall AdS extended model. This contradiction indicates that the local interaction from the

CS action can only represent the point-like asymptotic form. [65] If the QCD evolution for

the distribution amplitude is included, the asymptotic DA is recovered. The asymptotic

result coincides with the CS amplitude which is only sensitive to short-distance physics.

It is found that in order to describe simultaneously the decay process π0 → γγ and

the pion TFF at the asymptotic limit a probability for the qq̄ component of the pion

wavefunction Pqq̄ = 0.5 is required for the calculations with the free and dressed AdS

currents.

We have argued that the contributions from the higher Fock components in the pion

light-front wave function also need to be included in the analysis of exclusive processes.

In fact, just as in 1+1 QCD, the confining interaction of the LF Hamiltonian in light-front

holography leads to Fock states with any number of extra qq̄ pairs. These contributions

lead to higher-twist contributions to the hadron form factor. We have shown how the

effect of the higher Fock states in form factors can be obtained by analyzing the hadron
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matrix elements of the confined dressed electromagnetic Heisenberg current from the

gauge/gravity duality. The probability for the four-quark states obtained in this work,

Pqq̄qq̄ = 0.085 is similar to that found from an analysis of the space- and time-like behavior

of the pion form factor using LF holographic methods, including higher Fock components

in the pion wave function. [60]

The results obtained for the η- and η′-photon transition form factors are consistent

with all currently available experimental data. However, the rapid growth of the pion-

photon transition form factor exhibited by the BABAR data at high Q2 is not compatible

with the models discussed in this article, and in fact is very difficult to explain within

the current framework of QCD.
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Appendix A: Distribution Amplitudes From Holographic Mapping

For a two-parton bound state, light-front holographic mapping relates the light-front

wavefunction ψ(x, ζ, ϕ) in physical space-time with a field Φ(z) which represents a

hadronic state in AdS space. The relation is [14]

ψ(x, ζ, ϕ) = eiMϕX(x)
φ(ζ)√
2πζ

, (A1)

where we have factored out the angular dependence ϕ and the longitudinal, X(x), and

transverse mode φ(ζ) = ζ−3/2Φ(ζ). The holographic variable z is related to the light-

front invariant variable ζ which represents the transverse separation of the quarks within

the pion: z → ζ =
√

x(1− x)|b⊥|. The LF variable x is the longitudinal light-cone

momentum fraction x = k+/P+ and b⊥ is the impact separation and Fourier conjugate

to k⊥, the relative transverse momentum coordinate.

The LFWF is normalized according to

〈ψqq̄/π|ψqq̄/π〉 = Pqq̄, (A2)
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where Pqq̄ is the probability of finding the qq̄ component in the pion light-front wavefunc-

tion. We choose the normalization of the LF mode φ(ζ) = 〈ζ|ψ〉 as

〈φ|φ〉 =
∫

dζ |〈ζ|φ〉|2 = Pqq̄, (A3)

and thus the longitudinal mode is normalized as
∫ 1

0

X2(x)

x(1− x)
= 1. (A4)

The factorization of the LFWF given by (A1) is a natural factorization in the light front

since the corresponding canonical generators, the longitudinal and transverse generators

P+ and P⊥ and the z-component of the orbital angular momentum Jz, are kinematical

generators which commute with the LF Hamiltonian generator P−. Using this factoriza-

tion one can map the elastic electromagnetic and gravitational form factors for arbitrary

values of the transverse momentumQ obtaining the specific formX(x) =
√

x(1− x) [4, 8]

for the longitudinal mode. For a harmonic confining potential U(z) ∼ κ4z2 the LFWF is

ψqq̄/π(x,b⊥) =
κ√
π

√

Pqq̄

√

x(1− x) e−
1

2
κ2x(1−x)b2

⊥ . (A5)

The pion distribution amplitude in the light-front formalism [11] is the integral of the

valence qq̄ light-front wavefunction

φ(x) =

∫

d2k⊥

16π3
ψqq̄/π(x,k⊥), (A6)

and satisfies the normalization condition which follows from the decay process π → µν

(NC = 3)
∫ 1

0

dxφ(x) =
fπ

2
√
3
, (A7)

where fπ = 92.4 MeV is the pion decay constant. From (A5) we find the distribution

amplitude

φ(x) =
4√
3π

√

x(1− x), (A8)

and the pion decay constant

fπ =
√

Pqq̄

√
3

8
κ. (A9)

The longitudinal mode X(x) cannot be determined from the mapping of the Hamilto-

nian equation for bound states as it decouples in the ultra relativistic limit mq → 0. [14]
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As discussed in the article, the CS mapping gives the asymptotic distribution amplitude

since the CS maps a point-like pion. The corresponding longitudinal mode in the LFWF

is X(x) =
√
6x(1− x) and

ψqq̄/π(x,b⊥) =
κ√
π

√

Pqq̄

√
6 x(1− x) e−

1

2
κ2x(1−x)b2

⊥ . (A10)

The pion decay constant in this case is

fπ =
√

Pqq̄
κ√
2π
. (A11)

The evolution of the pion distribution amplitude in logQ2 is governed by the Efremov-

Radyushkin-Brodsky-Lepage (ERBL) evolution equation [11, 34]. It can be expressed

in terms of the anomalous dimensions of the Gegenbauer polynomial projection of the

DA. If we normalize the full LFWF of the pion by 〈ψ|ψ〉 = 1, we can compute the

probability to find the pion in a given component of a Gegenbauer polynomial expansion

X(x) = x(1− x)
∑

n αnC
(3/2)
n (2x− 1). We find

Pn =
(n+ 2)(n+ 1)

4(2n+ 3)
α2
n, (A12)

where
∑

n Pn = 1. For the AdS solution X(x) =
√

x(1− x) the asymptotic component

α0 = 3π/4 and the probability to find the pion in its asymptotic state is P0 = 3π2/32 ≃
92.5%, not too far from the asymptotic result.

The asymptotic form has zero anomalous dimension. The distribution amplitude

φ(x) ∝
√

x(1− x) derived from LF holographic methods is sensitive to soft physics

1−x ∼ ΛQCD/Q
2, and has Gegenbauer polynomial components with nonzero anomalous

dimensions which are driven to zero for large values of Q2. Expanding the distribution

amplitude at any finite scale as x(1−x) times Gegenbauer polynomials, only its projection

on the lowest Gegenbauer polynomial with zero anomalous moment survives.
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