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2 School of Physics and Astronomy, Southampton University, Southampton, S017 1BJ, UK
3 Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH, UK
4 Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland

Received: 14 December 2007
Published online: 27 February 2008 – c© Società Italiana di Fisica / Springer-Verlag 2008
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Abstract. We review recent progress in studying mesons within gauge/gravity duality, in the context of
adding flavour degrees of freedom to generalizations of the AdS/CFT correspondence. Our main focus is
on the “top-down approach” of considering models constructed within string theory. We explain the string-
theoretical constructions in detail, aiming at non-specialists. These give rise to a new way of describing
strongly coupled confining large-N gauge theories similar to large-N QCD. In particular, we consider
gravity dual descriptions of spontaneous chiral symmetry breaking, and compare with lattice results. A
further topic covered is the behaviour of flavour bound states in finite-temperature field theories dual to a
gravity background involving a black hole. We also describe the “bottom up” phenomenological approach
to mesons within AdS/QCD. Some previously unpublished results are also included.
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1 Introduction

String theory1 originated as a theory of hadrons in the
1960s, when it was noticed that the hadron spectra contain
Regge trajectories that can be reproduced by the proper-
ties of a rotating relativistic string. However, it was subse-
quently realized that four-dimensional string theories con-
tain unphysical modes such as tachyons and a massless
vector particle. At that time string theory was abandoned
as a theory of the strong interactions, and took a rather
different route as a promising candidate for a unified the-
ory of all four fundamental interactions including gravity,
due to the fact that it contains a graviton in its spectrum.
It was realized that a fully consistent string theory must
contain supersymmetry and live in ten space-time dimen-
sions. Frustratingly, since gravity is so weak, none of the
novel physics of string theory need appear experimentally
below energies close to the Planck scale (1019 GeV), mak-
ing the ideas of string theory difficult to test.

Since the 1970s though, our understanding of the
strong interactions has developed greatly. Quantum Chro-
modynamics (QCD) has established itself as a very suc-
cessful quantum field theory description of the strong in-

1 Some introductory texts on string theory are listed in [1–5].

teractions, and is by now very well tested experimen-
tally. The matter degrees of freedom in QCD consist of
quarks transforming in the fundamental representation of
a non-Abelian SU(3) gauge theory. Interactions are me-
diated by gauge bosons, the gluon fields, in the adjoint
of SU(3). The theory has been shown to be asymptoti-
cally free [6,7]. This means that at arbitrarily large energy
scales, or equivalently at very short distances, the quarks
become weakly interacting, whilst at long distances the
force becomes ferociously strong. The result of the strong-
interaction regime is that quarks are confined into bound
states, the hadrons. In addition, the dynamics generate
a large constituent mass for the quarks which mixes left-
and right-handed quarks, and hence breaks their chiral
symmetries.

QCD does provide a heuristic understanding for why
the hadron spectrum looks like a string spectrum. An
excited meson may be thought of as a quark and an
antiquark connected by a tube of strong-interaction flux.
Such a configuration indeed resembles a string. ’t Hooft
made an additional step towards making the connection
more concrete when he noticed that SU(N) gauge theo-
ries with a large number of colours N simplify [8]. The
leading Feynman diagrams in an expansion in N are pla-
nar diagrams. The description of a meson in this limit has
two quark lines propagating in time connected by a dense
“sheet” of gluons —it suggests the worldsheet swept out
by a string through time. An explicit understanding of the
relation remained mysterious though.

Despite the successes of both string theory and QCD,
a number of unsolved issues remain in both areas. On the
one hand, it would be desirable to find closer links be-
tween string theory and experimentally testable theories.
On the other hand, there are properties of QCD which are
still poorly understood. Despite the tremendous successes
of large-scale computer simulations (lattice gauge theory
—for introductory texts see [9–11]), in particular, the low-
energy mechanisms in QCD for confinement and chiral
symmetry breaking remain unclear conceptually. New the-
oretical input in addition to lattice gauge theory appears
to be desirable. String theory always seemed like a poten-
tial candidate to provide new insights.

These questions have recently led to new relations be-
tween modern superstring theory and QCD. These new
relations have been made possible by the second su-
perstring revolution in 1995, introducing the concept of
D branes [12–14]. D branes arose, on the one hand, as
solitonic solutions of ten-dimensional supergravity (the
low-energy effective theory of superstring theory at scales
lower than the string scale), and, on the other hand, as
hypersurfaces in the fundamental string theory on which
open strings can end. In the first of these pictures, the ex-
citations are gravitational closed-string modes sourced by
the tension of the brane. In the second, where the charged
endpoints of open strings move on the D branes, the low-
energy limit of the lightest string is a gauge theory.

This “dual” interpretation of D branes is at the
heart of the AdS/CFT correspondence (AdS: anti-de-
Sitter space, CFT: conformal field theory) put forward
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by Maldacena in 1997 [15]. In its original form, this cor-
respondence provides a map between a highly symmet-
ric, strongly coupled large-N gauge theory and a weakly
coupled supergravity theory. The gauge theory is just
the simplest (3 + 1)-dimensional theory to emerge on the
worldvolume of the most basic D3 brane configuration. A
number of N coincident D3 branes generates an SU(N)
gauge theory in the low-energy limit. N must be large
since very many D3 branes are required in order to ensure
that the dual supergravity background is weakly coupled.
Gauge invariant composite operators of the quantum field
theory are mapped to supergravity fields in the same rep-
resentation of the large symmetry group present. For this
original case, many non-trivial tests have been found. The
field theory is N = 4 large-N SU(N) gauge theory (in ad-
dition to the usual gauge fields there are 4 two-component
gauginos and 6 real adjoint scalars), whose β-function has
been shown to vanish to all orders in perturbation the-
ory, and thus is conformal even when quantized. More
precisely, the correlation functions of the quantum field
theory —which, since they involve expectation values,
are classical functions although involving Hilbert space
operators— are mapped to classical correlation functions
in supergravity.

An obvious question after the discovery of this dual-
ity was whether it could teach us about QCD, a different
strongly coupled gauge theory. To achieve a description
of QCD-like theories, it is necessary to break supersym-
metry and to remove conformal invariance, so as to ob-
tain a running coupling, as well as to introduce quark
fields. Technologies have been developed that allow all
of these required features at least to some degree. This
review will discuss these technologies, their implications
for QCD and their limitations. A main feature is that so
far, gauge/gravity dualities describe large-N field theories
only.

It was suggested very shortly after Maldacena’s origi-
nal paper to find gravity duals of less symmetric large-N
gauge theories, in particular of confining theories. A num-
ber of examples of gravity duals of quantum field theories
with less supersymmetry and running couplings have been
found. Examples include renormalization group flows ob-
tained by adding relevant operators, for instance, mass
terms for the adjoint fermions and scalars present in
N = 4 theory. These perturbations can be chosen to main-
tain some or none of the supersymmetries of the origi-
nal model. The common feature is that a strongly cou-
pled gauge theory is mapped to a weakly coupled —i.e.
solvable— classical gravity theory. Whilst this is consider-
able progress, it must be noted that the relevant operators
are essentially perturbations —since the gauge dynamics
is strongly coupled at all energy scales, one cannot com-
pletely decouple massive fields from the dynamics. The
far ultraviolet region of these theories generically displays
a large degree of supersymmetry. On the other hand, a
mass perturbation in a conformal field theory fundamen-
tally changes the dynamics, and the resulting behaviour of
these theories is very different from the conformal N = 4
theory.

Further progress has been made by adding flavour de-
grees of freedom in the fundamental representation of the
gauge group to the gravity dual description. The origi-
nal Maldacena set-up contains N (3 + 1)-dimensional D3
branes, on which open strings, which have charged end-
points, may end. This corresponds to N = 4 SU(N) gauge
theory which has only adjoint degrees of freedom. The
addition of different types of branes into the set-up in-
troduces strings stretched between the new brane and the
D3 branes —these strings have only one charge under the
SU(N) group on the D3 branes and are therefore quark
fields. The best understood example consists of a small
number, Nf , of (7 + 1)-dimensional D7 probe branes [16].
Treating them as a probe means they do not change the
background geometry or, in the gauge theory language,
that quark loop effects are suppressed in the gauge back-
ground —this corresponds to the quenched approximation
which is formally valid when Nf ≪ N 2. In the super-
gravity picture, one has AdS5 × S5 generated by the D3
branes with the D7 brane probe wrapping —for massless
quarks— an AdS5 × S3 subspace. This corresponds to a
four-dimensional N = 2 supersymmetric large-N gauge
theory with the field content of N = 4 plus a small num-
ber of fundamental hypermultiplets. It is the remaining
supersymmetry of this theory that makes a clear analysis
possible.

Strings with both ends on the flavour brane are dual
to quark-antiquark operators (they are in the adjoint of
SU(Nf )). On the gravity side of the correspondence, these
strings describe the vacuum position of the brane and its
fluctuations if perturbed. The embedding of a brane in a
geometry dual to a gauge background therefore encodes
the mass and quark bilinear condensate in the theory.
Linearized fluctuations are dual to mesonic excitations in
the gauge theory. It is possible to extract the bound-state
masses [17]. In the supersymmetric theory of D3 and D7
branes, supersymmetry forbids a quark condensate. The
meson spectrum consists of tightly bound states of a quark
and its antiquark —the mass of the bound state is smaller
than the mass of the constituent quarks’ mass by a factor
of the square root of the ’t Hooft coupling λ ≡ g2

Y MN .
On the other hand, mesons made of two quarks with dis-
tinct masses are heavier with mass of order the heavier
quark mass. The suppression of some meson masses rela-
tive to others is rather different from what is observed in
QCD. This suppression is a result of the very strong cou-
pling present in the models across a large range of energy
scales.

The next step towards QCD is to combine supersym-
metry breaking deformations of the original AdS5 × S5

background and the adding of D7 brane probes to include
quarks. In the UV, the field theory returns to the four-
dimensional N = 2 theory of [16], but the IR is QCD-
like with a running gauge coupling. This combination has

2 However, the effect of quark degrees of freedom on flavour
physics may indeed be described in the gauge/gravity dual
approximation. The prime example for this is the study of the
condensate phase diagram in the presence of a quark chemical
potential.
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been used to obtain a gravity dual description of dynami-
cal chiral symmetry breaking by a quark condensate [18].
Moreover, the associated Goldstone boson has been iden-
tified: It is obtained from the fluctuations of the probe D7
brane around its minimum energy configuration. Since in
this set-up the spontaneously broken symmetry is U(1)A,
which is non-anomalous in the limit N → ∞, the Gold-
stone boson corresponds to the η′. The ρ mass, as well as
interaction terms involving both the Goldstone field and
the ρ, can also be computed. Comparison with recent lat-
tice results [19, 20] for mρ and mπ at large N is possible
and shows good agreement, at least for small quark mass.

Several similar scenarios in which supersymmetry
breaking leads to chiral symmetry breaking have also been
found —for example a set-up of D4 and D6 branes [21], by
placing the gauge theory on an anti-de-Sitter space [22],
or introducing a background magnetic field [23].

More recently a string theory model of D4, D8 and D8
branes has been constructed in [24, 25] which realizes the
larger non-Abelian SU(Nf )×SU(Nf ) chiral symmetry of
QCD and its spontaneous breaking to SU(Nf ). The sym-

metry is broken when the D8 and D8 brane probes join to
form a continuous object. In this approach, meson masses
such as for instance of the ρ and a1 have been calculated,
with results surprisingly close to experimental measure-
ments. However, as in the D4/D6 case, in the far UV
the corresponding gauge theory runs to a five-dimensional
non-renormalizable theory.

These string theory models have inspired phenomeno-
logical approaches to QCD dubbed AdS/QCD. AdS/QCD
are a group of models that are essentially a distillation
of the key elements of the string models above relevant
to QCD phenomenology. Parameters such as the ’t Hooft
coupling and the quark mass are fitted to the QCD data,
and predictions result for the meson masses and cou-
plings. The agreement is surprisingly good (typically of
order 10%) although systematic errors are uncalculable.
Again one should stress that one would expect the results
to suffer from being at large N , from near-conformality,
from the presence of (broken) superpartners and from the
quenched approximation.

Some progress has been made towards addressing the
quenching issue. In the supersymmetric D3/D7 model, it
is possible to investigate also the case of a large num-
ber of flavours, of the same order as the number of
colours [26–30]. In this case, even in the presence of super-
symmetry the beta function is no longer zero, and there is
a Landau pole in the UV. On the gravity side, the backre-
action has to be taken into account, and the gravity dual
of the Landau pole is identified as a certain singularity.

A very fruitful area for extended gauge/gravity duali-
ties is the case of finite-temperature field theories, whose
gravity dual is given by a black-hole background [31, 32].
In this case, gauge/gravity duality is ideally suited for de-
scribing dynamical and non-equilibrium processes. This is
considered to be of particular importance for the physics
of the quark-gluon plasma as studied at the RHIC accel-
erator. At high temperature or density, mesons become
unstable and melt into the quark-gluon plasma. This phe-

nomenon is obtained in the gauge/gravity dual descrip-
tion, but is also associated with a particular first-order
phase transition [18, 33–36] which is not expected to be
present in QCD.

We thus see that the string theory gravity dual picture
of strongly coupled gauge theory is beginning to make
contact with QCD physics. Qualitatively, the pictures are
beginning to match well and in some cases quantitative
predictions are not widely off the mark. The possibilities
for this technology appear promising. In this review we
will develop each of these subjects pedagogically for the
interested but non-specialist reader.

This review is organized as follows. We begin in sect. 2
with a brief description of the AdS/CFT correspondence,
including a short summary of string theory which serves
as a reference in subsequent sections. In sect. 3 we describe
in detail how flavour degrees of freedom, i.e. quarks, may
be added to the AdS/CFT correspondence, keeping the
number of flavours Nf much smaller than the number of
colours N → ∞. In sect. 4 we move beyond this limit, the
so-called probe limit, and consider the case that Nf ∼ N .
In sect. 5 we describe mesons in further supersymmetric
geometries. In sect. 6 we consider in detail how chiral sym-
metry breaking arises in non-supersymmetric geometries.
Section 7 is devoted to the gravity dual description of field
theories at finite temperature. In sect. 8, the phenomeno-
logical AdS/QCD approach is presented, also referred to
as “bottom-up” approach. We briefly conclude in sect. 9
with general comments.

For readers unfamiliar with the subject, we recommend
reading the following sections first (in the order given): 2,
3.1, 3.2, 3.3.1, 6, 7 and 8.

2 Brief introduction to the AdS/CFT
correspondence

2.1 The basics of string theory

String theory [1–5] plays a major role in the holographic
approach to mesons in strongly coupled gauge theories as
described in this review, so we here provide a very brief
overview to remind the reader and set conventions.

The action of a relativistic string is given by the area
of the worldsheet it sweeps out in time written in Nambu-
Goto form as

S = T

∫

dτdσ
√

detP [Gab] , P [Gab] = Gµν
dXµ

dσa

dXν

dσb
.

(2.1)
Here T ≡ 1/2πα′ is the string tension; σa = (τ, σ) are the
time and space coordinates on the worldsheet; P repre-
sents the “pullback” of the metric as shown; and Gµν is
the background metric.

The action can be recast in Polyakov form by intro-
ducing a worldsheet metric hab. The action is then

S = − 1

4πα′

∫

d2σ
√
−hhab∂aX

µ∂bX
νGµν , (2.2)
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but there is also a constraint

Tab = ∂aX
µ∂bXµ − 1

2
habh

cd∂cX
µ∂dXµ = 0. (2.3)

There is sufficient symmetry such that the worldsheet met-
ric can be made flat, hab = ηab, by a conformal transfor-
mation (or more precisely by a Weyl transformation and
reparametrization of the worldsheet coordinates).

Classically, the unexcited string is massless with ex-
citations of oscillations on the string’s surface forming a
tower of states with masses in units of

√
T . The zero point

energies of these oscillations contribute a constant nega-
tive shift of this spectrum in the quantum theory. The
only known way to remove the tachyonic modes is to im-
pose supersymmetry. For this purpose, a worldsheet, two-
component real fermion is added to the action. Moreover,
in space-time, the GSO projection must be imposed to re-
move states, leaving a supersymmetric space-time theory.

The worldsheet conformal invariance (hab → eφhab) is
anomalous in the quantum theory, unless the theory lives
in 10 space-time dimensions.

Oscillations of open strings give rise to massless gauge
multiplets (multiple charges are included via Chan-Paton
factors, global charges, attached to the ends of the strings,
such that non-Abelian gauge symmetries may be real-
ized). Closed string loops have both left- and right-moving
modes, such that they naturally generate a massless field
that looks like the Lorentz product of two gauge fields,
i.e. like a graviton multiplet.

Let us briefly list the spectrum of closed string theory.
It contains the metric, GMN , the scalar dilaton Φ, and
a two-index antisymmetric tensor BMN . Moreover, the
GSO projection acts as a chiral projection on the space-
time fermions emerging from each of the left- and right-
moving modes of closed string theory. If the same chirality
is projected in each case, then one obtains type-IIA string
theory. Its bosonic field content consists of a gauge field
A1 and a three-form C3. If the chiral projections are op-
posite, then type-IIB theory results, with as bosonic field
content a scalar, a two-form C2, and a four-form C4. Both
the type-IIA and the type-IIB theories possess N = 2
supersymmetry.

Open strings can also be included into type-II string
theory, breaking the supersymmetry to N = 1. Interac-
tions can be introduced by allowing the string worldsheet
to have holes and handles. The dilaton Φ’s action mea-
sures these topology changes so that the quantity eΦ plays
the role of the theory’s coupling. When open and closed
string sectors are combined the Yang-Mills coupling from
the open string sector has g2

Y M = eΦ.
For the AdS/CFT correspondence applied to (3 + 1)-

dimensional field theories, ten-dimensional type-IIB string
theory is of central importance, and, in particular, its low-
energy limit where strings become point-like and string
theory becomes supergravity. There exists no completely
satisfactory action for the type-IIB supergravity, since it
involves an antisymmetric field C4 with self-dual field
strength F5. However, it is possible to write an action
involving both dualities of C4, and then impose the self-
duality as a supplementary field equation. In this way, one

obtains (see, for example, [37–39])

SIIB =
1

4κ2
B

∫ √
Ge−2Φ(2RG + 8∂µΦ∂

µΦ− |H3|2)

− 1

4κ2
B

∫
[√

G

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

+C4 ∧H3 ∧ F3

]

+ fermions, (2.4)

where the field strengths are defined by

F1 = dC, H3 = dB, F3 = dC2, F5 = dC4,

F̃3 = F3 − CH3, F̃5 = F5 −
1

2
A2 ∧H3 +

1

2
B ∧ F3,

(2.5)

and we have the additional self-duality condition ∗F̃5 = F̃5.

2.1.1 D branes

When open strings are included, it turns out to be con-
sistent to introduce the strings in such a way that their
end points are restricted to a subspace of the full ten di-
mensions. The resulting hyperplanes, on which the strings’
ends are confined, are called D branes [12–14]. Solitonic
solutions of the supergravity actions also exist that are
naturally sourced by these branes. In fact, D branes are
the fundamental electric and magnetic sources of many of
the supergravity antisymmetric forms.

In particular, IIA theory allows branes of even dimen-
sion that are electric and magnetic sources for A1 and C3.
IIB theory includes odd-dimension branes that are electric
and magnetic sources for the dilaton, two- and four-index
fields.

The action for a D brane is given by the Dirac-Born-
Infeld (DBI) action which is an extension of the Nambu-
Goto form for the fundamental string —one simply mini-
mizes its worldvolume. There are extra terms originating
from the role of the D branes as sources for an antisymmet-
ric (p+1)-form F , including terms of Chern-Simons type.
F is the gauge field strength tensor describing gauge fields
on the D brane and φ the dilaton. The action, in string
frame, is

SDp = −µp

∫

d(p+1)ξ e−φ

×
√

−det (P [G+ 2πα′B]ab + 2πα′Fab)

+
(2πα′)2

2
µp

∫

P [C(p+1)] ∧ F ∧ F, (2.6)

where µp = (2π)−pα′− (p+1)
2 . Here B is an external anti-

symmetric two-form which may be present in the super-
gravity background. In principle, the two-form B may also
contribute terms of Chern-Simons form, which are, how-
ever, not relevant for the examples described in detail in
this review.
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2.2 N = 4 super-Yang-Mills theory

In its original form [15], the AdS/CFT correspondence in-
volves a highly symmetric quantum field theory in (3+1)
dimensions, N = 4 SU(N) supersymmetric Yang-Mills
theory. The field content of N = 4 super-Yang-Mills the-
ory is as follows: There are a gauge field Aµ, which is a
singlet of the SU(4) global R-symmetry group, four Weyl
fermions in the 4 of SU(4), and six real scalars in the 6 of
SU(4). An important point is that due to the supersym-
metry, all these fields are in the adjoint representation of
the gauge group SU(N).

This theory naturally arises on the surface of a D3
brane in type-IIB superstring theory. Open strings gen-
erate a massless gauge field in ten dimensions. When the
open string ends are restricted to a (3 + 1)-dimensional
subspace the ten components of the gauge field naturally
break into a (3 + 1)-dimensional gauge field and 6 scalar
fields. The fermionic superpartners naturally separate to
complete the (3 + 1)-dimensional supermultiplets.

The N = 4 theory has the property that the beta
function of its unique coupling vanishes to all orders in
perturbation theory, β = 0. This implies the theory is
conformal with conformal symmetry group SO(4, 2) also
at the quantum level. Moreover, this theory has a global
SU(4) R-symmetry group. The complete superconformal
group is SU(2, 2|4), of which both SO(4, 2) and SU(4) are
bosonic subgroups.

2.3 AdS/CFT correspondence

The AdS/CFT correspondence was first suggested by Mal-
dacena in 1997 [15], using guiding principles from black-
hole physics. The string theory origin of AdS/CFT rests
in the fact that D3 branes, i.e. (3+1)-dimensional hyper-
planes in (9 + 1)-dimensional space, may be interpreted
from two different points of view —see fig. 1.

Firstly, D3 branes are hyperplanes in ten-dimensional
space on which open strings can end. In the low-energy
limit where only massless string degrees of freedom con-
tribute, these open string degrees of freedom correspond
to N = 4 super Yang-Mills theory with gauge group
U(N), where N corresponds to the number of superim-
posed D3 branes. The gauge group U(N) factorizes into
SU(N) × U(1). The U(1) factor corresponds to the mo-
tion of the center of mass of the D3 branes. The global
symmetries of the theory are the SO(4, 2) superconformal
group and the SU(4) R-symmetry (which is isomorphic to
SO(6)).

On the other hand, D3 branes are also solitonic so-
lutions of ten-dimensional type-IIB supergravity, with a
metric of the form

ds2 =

(

1+
R4

y4

)− 1
2

ηijdx
idxj+

(

1+
R4

y4

)

1
2

(dy2 +y2dΩ5
2).

(2.7)
Here

R4 = 4πgsNα
′2, (2.8)

closed string sector
AdS  x S  geometry

open string sector
large N D3
stack at bottom
of throat

5
5

Fig. 1. Schematic representation of the AdS/CFT duality. The
D3 branes warp the space into a throat whose near-horizon ge-
ometry is AdS5×S5. Asymptotically, far away from the branes
the geometry returns to flat ten-dimensional space. Open string
degrees of freedom on the D3 branes, which give rise to N = 4
SU(N) super Yang-Mills theory, are mapped to closed string
excitations in the AdS5 × S5 near-horizon geometry.

where λ = gsN = g2
Y MN is the ’t Hooft coupling, N the

number of D3 branes and α′ the inverse string tension
(α′ = l2s , ls string length). ηij is the standard (3 + 1)-
dimensional Minkowski metric and the xi are the coordi-
nates on the stack of D3 branes. ~y denotes the six spa-

tial coordinates perpendicular to the brane, y ≡
√

yMyM .
For y ≫ R this metric returns to flat (9 + 1)-dimensional
Minkowski space. On the other hand, in the near-horizon
limit y ≪ R, which is again a low-energy limit, we perform
a coordinate transformation

u ≡ R2

y
(2.9)

and obtain from (2.7)

ds2 = R2

(

1

u2
ηij dxi dxj +

du2

u2
+ dΩ5

2

)

, (2.10)

which is the metric of AdS5 × S5, with AdS5 the five-

dimensional anti-de-Sitter space ds2 = R2

u2 (ηijdx
idxj +

du2). Here R is the anti-de-Sitter radius. Anti-de-Sitter

space has negative constant curvature R = −d(d−1)
R2 , and

a boundary at u = 0.
A further ingredient is that D3 branes carry charge

that sources a four-form antisymmetric tensor field C4 in
IIB supergravity. The D3 brane supergravity solution also
therefore has a self-dual five-form field F5 = dC4, which
satisfies

∫

S5

F5 = N. (2.11)

The isometry of the space AdS5 is SO(4, 2) (it can be
constructed as a surface embedded in a (4+2)-dimensional
space). The isometry of the five sphere is SO(6). This
product group matches the maximal bosonic subgroup of
the supergroup SU(2, 2|4), which encodes the symmetries
of the N = 4 supersymmetric field theory. Note, in par-
ticular, that SO(6) ≃ SU(4), which is the R-symmetry
group of N = 4 supersymmetry. Since the global sym-
metries match it is possible to consider that these two
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theories are dual. Note that the gauge symmetry of the
gauge theory is considered a redundant symmetry that is
not manifest in any gauge invariant observable.

The conjecture of Maldacena consists in identifying
the two low-energy theories, i.e. N = 4 SU(N) Yang-
Mills theory, and string theory on AdS5 × S5. There are
three different versions of this conjecture, depending on
the precise form of the limits taken. The strongest form
of the conjecture states that the correspondence between
N = 4 SU(N) Yang-Mills theory, and string theory on
AdS5 × S5, is valid in general. It is not possible to test
this strongest version of the correspondence today since
it is not known how to quantize string theory on curved
space backgrounds with Ramond-Ramond flux. The sec-
ond form of the correspondence restricts the duality to the
’t Hooft limit, in which N → ∞, while λ = g2

Y MN is kept
fixed. In this case only planar diagrams contribute on the
field theory side, while the string theory on AdS5 × S5 is
restricted to the semi-classical limit in which the string
coupling gs ≡ g2

Y M goes to zero. Finally, the third form
of the correspondence specializes further to the case in
which λ is large. In this limit, strongly coupled N = 4
SU(N) Yang-Mills theory is mapped to supergravity on
AdS5 × S5; the inverse string tension α′ goes to zero. In
this paper we will be dealing with this third form of the
correspondence. Equation (2.8) implies that the AdS ra-
dius R remains finite when λ is large and fixed, N → ∞,
and α′ is small.

The gravitational side of the correspondence has an
extra non-compact direction, y, relative to the gauge the-
ory and so the correspondence is described as being holo-
graphic [40] —the contents of the (4 + 1)-dimensional
theory are encoded by the degrees of freedom in the
(3 + 1)-dimensional gauge theory. To understand what
this extra direction is in the gauge theory it is useful to
look at the action of dilatations (a subgroup of SO(2, 4)).
The action of a massless scalar in (3 + 1) dimensions is
invariant under

S =

∫

d4x(∂φ)2, x→ eαx, φ→ e−αφ, (2.12)

with α some arbitrary parameter. The power of the scal-
ing here tells us that φ has energy dimension one and x
inverse energy dimensions. On the gravitational side of
the dual this symmetry is a symmetry of the metric (note
supergravity fields do not transform) and for (2.10) to be
invariant we require

y → e−αy. (2.13)

We have learnt that the radial direction in AdS scales
like a scalar field under the gauge theory’s dilatations and
hence is an energy scale. This leads to the natural interpre-
tation that the holographic direction is a representation of
the renormalization group scale in the gauge theory.

The AdS/CFT correspondence has been developed
further in [31, 41] where a field operator map has been
established. This maps gauge invariant operators of the
N = 4 Yang-Mills theory in a particular irreducible rep-
resentation of SU(4) to supergravity fields in the same

representation. These five-dimensional supergravity fields
are obtained by Kaluza-Klein reduction of the original
ten-dimensional supergravity fields on the five-sphere S5.
Consider a scalar field in AdS with action

S =

∫

d4xdu
√−g

(

gab∂aφ∂bφ−m2φ2
)

, (2.14)

where g is the determinant of the metric. The solutions of
the equation of motion are of the form

φ(u) ∼ u4−∆φ0 + u∆〈O〉 (2.15)

with m2 = ∆(∆−4). Since the supergravity field does not
transform under the field theory dilatations and u is an
inverse mass scale, we see that φ0 and 〈O〉 carry dimension
(4−∆) and∆, respectively. Therefore, as discussed in [41],
the boundary value φ0 may be identified with the source of
the gauge theory operator O, and 〈O〉 is the vev (vacuum
expectation value) of O.

The AdS/CFT correspondence may then be stated as
follows:

〈

e
R

ddx φ0(~x)O(~x)
〉

CFT
= Zsugra

∣

∣

∣

φ(0,~x)=φ0(~x)
, (2.16)

i.e. the generating functional of particular gauge-invariant
operators in the conformal field theory coincides with the
generating functional for tree diagrams in supergravity,
with the boundary values of the supergravity fields coin-
ciding with the sources.

This suggests that the AdS/CFT correspondence may
be tested by comparing correlation functions of N = 4
quantum field theory with classical correlation functions
on AdS5. This is not possible in general for any correlation
function even in the large-N limit, since in the Malda-
cena limit, the supergravity dual describes SU(N) N = 4
super-Yang-Mills at strong coupling. However, for selected
correlation functions which satisfy non-renormalization
theorems such that they are independent of the coupling,
direct comparison is possible. This applies, in particular,
to the two- and three-point functions of 1/2 BPS opera-
tors [42,43]. These operators are annihilated by half of the
supersymmetry generators. Another beautiful test of the
AdS/CFT correspondence is the calculation of the con-
formal trace anomaly of N = 4 theory from AdS5 × S5

supergravity [44].
Let us conclude this introduction to AdS/CFT by not-

ing that up to the present day, there is no proof of the
AdS/CFT correspondence taking account of its string-
theoretical origin. However, in the weakest of its three
forms as discussed above, the huge amount of symmetry
present almost guarantees that the AdS/CFT correspon-
dence should hold. When proceeding to less symmetrical
situations below, generalized gauge/gravity dualities re-
main a conjecture though.

2.4 Holographic RG flows

A necessary ingredient for obtaining gravity duals of more
QCD-like theories than N = 4 super-Yang-Mills the-
ory is to generalize the correspondence to non-conformal
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field theories with less or no supersymmetry, which have
a renormalization group flow. In particular, to obtain
theories with a running coupling it is necessary to de-
form the five-dimensional AdS space, which has isometry
SO(4, 2) [45]. This symmetry corresponds to conformal
symmetry in the dual field theory and thus to a renormal-
ization group fixed point. The simplest way to do this is to
switch on supergravity fields in the bulk which backreact
on the metric. The analysis of a scalar field in (2.15) is
in fact only an asymptotic solution ignoring the backre-
action on the metric. If we switch on a supergravity field
the UV (small u) behaviour will be that in (2.15) —so we
can identify the deforming operator present. Generically,
in the interior of the space, the geometry will deform from
AdS indicating the loss of conformality.

The simplest example of such a deformation is the
multi-centre D3 brane solution [15, 46, 47]. These are ge-
ometries with a stack of parallel D3 branes present but
where the D3 are separated in the six-dimensional space
transverse to their worldvolume

ds2 = H−1/2dx2 +H1/2(dy2 + dΩ2
5),

C4 = H−1dx0 ∧ . . . dx3 (2.17)

with

H = 1 +
∑

D3

(

1

|y − yD3|4
)

. (2.18)

The yD3 are the positions of the D3 branes.
The function H can be expanded in terms of spher-

ical harmonics [46] on the five sphere, labelled by their
representation of SO(6), as follows:

H ≃ R4

y4

(

. . .+ αy4 + 1 +
β

y2
Y20 +

γ

y4
Y50 + . . .

)

.

(2.19)
Each of α, β, . . . is a deformation of the geometry from

AdS and has a corresponding interpretation as a defor-
mation of the gauge theory. They correspond to operator
vevs in the dual field theory, which have been determined
using the symmetries of the set-up in [48, 49]. Here we
consider the following example: β must carry field theory
energy dimension of two (to cancel that of y) and be in
the 20-dimensional representation of SO(6). There is in-
deed such an operator in the field theory, Trφ2. Similarly,
γ matches to Trφ4. Note these operator vevs are relevant
operators and are unimportant at large y (the UV), but
grow in importance into the IR (small y).

The field theory intepretation of the parameter α,
which corresponds to leaving the near-horizon limit of the
geometry, has already been found in [50–52]. Again from
the symmetries we see that it must be an R-charged sin-
glet and of dimension −4 —it corresponds to the coupling
of the interaction term GTrF 4. This is an irrelevant op-
erator whose influence is in the UV (at large y), where it
grows.

These multi-centre geometries have been explicitly
constructed as a supergravity renormalization group flow
in [53].

Other more complicated examples of holographic RG
flows exist in the literature [54–57]. Generically, the more

supersymmetry is retained the more checks of their agree-
ment with field theory exist. For example, a flow to an
N = 2 theory can be found by giving equal mass to four
of the six scalars and two of the four gauginos of the N = 4
theory [58–60]. This theory is called the N = 2∗ theory
and the induced flow of the dilaton can be matched to
the expected running coupling behaviour of the field the-
ory [61, 62]. A general field-theoretical interpretation of
holographic RG flows is given in [63,64].

Flows to N = 1 [65–67] and N = 0 theories [52,68–71]
also exist in the literature. We will introduce those which
are used below in the appropriate sections of the text.

2.5 Confinement

The confinement of quarks and gluons within hadrons is a
crucial aspect of QCD and more generically strongly cou-
pled gauge dynamics. There has been considerable work
on how the AdS/CFT correspondence incorporates con-
finement which we will briefly review here.

2.5.1 Heavy-source interaction energy

The simplest analysis is to look at the interaction energy
between two very heavy static quarks at different sepa-
rations (field theoretically this is related to the area or
perimeter law of a Wilson loop). In [72, 73] heavy quarks
were introduced into the AdS/CFT correspondence by
placing a probe (i.e. non-backreacting) D3 brane at large
radius in AdS (large y in the discussion above —the field
theory UV). Strings stretched from the probe D3 to the N
D3 at the origin are formally very massive gauge bosons
associated with the breaking of the gauge symmetry in
the pattern SU(N + 1) → SU(N) by a vev for one of the
six adjoint scalars. One can think of these strings equally
as heavy sources though since they are massive objects in
the fundamental representation of SU(N).

When one includes two such strings to represent a
quark and an antiquark there can be two possible con-
figurations —see fig. 2. Each string could lie straight in
the space between the probe and the central D3 stack.
There would then be no interaction between the quarks
(neglecting the exchange of supergravity fields). Alterna-
tively, it might be energetically favourable for the strings
to join, in which case their energy would depend on the
separation of the quarks on the boundary probe.

In pure AdS a simple computation with the Nambu-
Goto action of the string [72] determines the preferred
configuration. The strings indeed connect and one finds
that the energy of the configuration is given by

E = −4π2(2g2
Y MN)1/2

Γ (1/4)4L
(2.20)

with L the quark separation. Note that the inverse propor-
tionality to L was guaranteed here by the conformal sym-
metry of the gauge theory. One finds that as the quarks are
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Fig. 2. Three important configurations of strings connecting
sources on a probe brane. In AdS the strings from two sources
prefer to join than fall independently to r = 0. They dip further
into the space the more the quarks are separated. In a confining
geometry a blockage forces the string to lie along the blockage
and the energy scales with the separation. Finite temperature
is reproduced by a black-hole horizon —once the strings fall
in, the quarks are screened from each other.

separated further, the string connecting them dips further
into the AdS space.

Non-conformal gauge theories such as those induced
by a deformation will be described by some deformed
AdS space and the relation between energy and length
can change radically. The simplest toy understanding of
how confinement sets in is as follows. A mass gap in the
theory will be represented by a block in the space stop-
ping the supergravity fields accessing values of the radius
(the renormalization group scale) below that mass gap en-
ergy. Example blockages are divergences of the supergrav-
ity fields or the presence of branes completing the solution
below the gap radius. In these cases the string connecting
two heavy sources will behave for small separations as in
AdS but as the quarks are separated and the strings dip
deeper into the interior of the space they will eventually
hit the blockage. At this point they have little alternative
than to lie along the blockage. Now separating the sources
further simply extends the string along the blockage and
the energy must be proportional to the separation L. This
behaviour is confinement.

Another useful example is to consider the effects of
finite temperature in this system. If one heats up a gauge
theory above the scale of its mass gap one expects the
theory to deconfine. In the dual gravity description, finite
temperature is associated with the presence of a black
hole in the AdS space [31, 32]. A black hole has all the
associated thermodynamic properties (e.g., temperature
and entropy) to be dual to the equivalent properties of
the thermal bath in the field theory. The position of the
black-hole’s horizon in the radial direction again cuts off
the space at low energies corresponding to energies below
the temperature scale. Consider again the linked string
between two heavy sources as we separate them —now as
the string dips deeper into the space, it will encounter the
horizon. The string must fall into the black hole and we
are left with two disconnected strings from each source
to the horizon. We see that the quarks are screened from
each other since they can now be moved independently.

2.5.2 A discrete glueball spectrum

Another clear signal that a theory is confining is if there
is a discrete spectrum of bound states. Below we will
discuss in detail mesons in theories with quarks. Let us
briefly review here though how a discrete glueball spec-
trum emerges in a gravity dual.

We will look for glueballs associated with the gauge
field operator TrF 2 [31, 74]. In the AdS/CFT correspon-
dence TrF 2 (conformal dimension ∆ = 4) is associated
with a massless scalar (the dilaton) with an equation of
motion

∂r

√−ggrr∂rφ+
√−ggxx∂2

xφ = 0. (2.21)

We will look for glueballs as solutions of the form

φ(r, x) = φ(r)eik.x, −k2 = M2. (2.22)

In other words we are looking for pure momentum plane-
wave excitations of TrF 2. To find a discrete spectrum we
would want the solutions for φ(r) only to exist (to be nor-
malizable on the space) for discrete values of the glueball
mass M .

Generically, in a deformed geometry the metric can be
written in the form

ds5
2 = e2A(u)ηij dxi dxj + du2. (2.23)

To recover AdS one sets exp(A) = R/u. u → 0 is the UV
and u→ ∞ the IR. In a deformed geometry A will deviate
from the AdS value as one moves into the IR.

Now, if we make the transformation φ = e−3A/2ψ on
the dilaton’s equation of motion it takes the form

(−∂2
r + V (r))ψ = M2ψ, V =

3

2
A′′ +

9

4
(A′)2, (2.24)

which is a Schrödinger equation with energy M2.
In pure AdS the potential is given by V ∼ 1/u2 and

the spectrum of the Schrödinger equation is continuous
—we expect this in a conformal gauge theory. For a con-
fining geometry though we expect A(u) to diverge at large
u creating a “hard wall”, at some u = u0, as discussed in
the previous subsection. The potential in the Schrödinger
equation is now a well and we expect a discrete energy
spectrum. The glueball spectrum of a theory with a mass
gap of this type in the gravity dual is very likely to gen-
erate a discrete glueball spectrum therefore.

3 AdS/CFT with flavour

The original AdS/CFT correspondence only involves fields
in the adjoint representation of the gauge group. To gen-
eralize the correspondence to quark degrees of freedom,
which are in the fundamental representation of the gauge
group, additional ingredients are necessary. The simplest
thing is to add a new type of brane into the configura-
tion in addition to the D3 branes. The open strings with
both ends on the D3 generate the adjoint degrees of free-
dom. Strings between the D3 and the new brane have only
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Fig. 3. Schematic representation of the AdS/CFT duality with added flavour. In addition to the original AdS/CFT duality,
open string degrees of freedom representing quarks are mapped to open strings beginning and ending on the D7 probe, which
asymptotically near the boundary wrap AdS5 ×S3 inside AdS5 ×S5. For simplicity, the five sphere is not drawn in this picture.

one end on the N D3 branes and hence generate matter in
the fundamental representation. Such matter will typically
come in quark supermultiplets because of the underlying
supersymmetry of the string theory. If supersymmetry is
broken one expects the scalar squarks to become mas-
sive on the scale of the supersymmetry breaking whilst
the fermionic quarks will be kept massless by their chiral
symmetries.

If the new branes can be separated from the D3 branes
in some direction transverse to both branes, then the min-
imum length string between the two branes has non-zero
energy (length times tension) and hence the quark is mas-
sive (mq = L/2πα′).

Strings with both ends on the flavour brane are in
the adjoint of the U(Nf ) flavour symmetry of the quarks
and hence naturally describe mesonic degrees of freedom.
In string theory these states describe fluctuations of the
brane in the background geometry. Small oscillations of
the branes are therefore dual to the gauge theory mesons.

The need for separating the probe from the D3 brane
stack excludes D9 branes as probes. D3 and D5 brane
probes lead to defect field theories discussed below in
sect. 5.4, if supersymmetry is to be preserved. This leaves
D7 brane probes for adding flavour to a (3+1)-dimensional
field theory.

3.1 The D3/D7 brane intersection

The simplest way to obtain quark bilinear operators
within gauge/gravity duality is to add D7 branes [16, 27,
28]. The D7 branes are added in such a way that they ex-
tend in space-time as given in table 1, where 0 is the time
direction. We thus consider a stack of N coincident D3
branes (along 0123) which is embedded into the worldvol-
ume of Nf D7 (probe) branes (along 01234567), as shown
(on the l.h.s. of) fig. 3.

The D3/D7 brane intersection preserves 1/4 of the to-
tal amount of supersymmetry in type-IIB string theory
(corresponding to 8 supercharges) and has an SO(4) ×
SO(2) isometry in the directions transverse to the D3
branes. The SO(4) rotates in x4, x5, x6, x7, while the
SO(2) group acts on x8, x9. Note that separating the D3

Table 1. The D3/D7 brane intersection in (9+1)-dimensional
flat space.

0 1 2 3 4 5 6 7 8 9
D3 X X X X
D7 X X X X X X X X

branes from the D7 branes in the 89-direction by a dis-
tance L explicitly breaks the SO(2) group. These geomet-
rical symmetries are also realized in the dual field theory.

3.1.1 Field theory of the D3/D7 brane intersection

The field theory corresponding to this brane set-up is a
N = 2 supersymmetric U(N) gauge theory which, in addi-
tion to the degrees of freedom of N = 4 super-Yang-Mills,
contains Nf hypermultiplets in the fundamental represen-
tation of the gauge group.

This particular field theory arises as follows. The N =4
super Yang-Mills multiplet is generated by massless open
string modes on the D3 branes (3-3 strings), whereas the
N = 2 hypermultiplets descend from strings stretching
between the D3 and the D7 branes (3-7 strings), cf. fig. 3.
We take a limit in which the 7-7 strings decouple, leav-
ing a purely four-dimensional theory. This decoupling is
achieved by taking the usual large-N limit while keeping
the four-dimensional ’t Hooft coupling λ = g2

Y MN = gsN
and Nf fixed. The eight-dimensional ’t Hooft coupling λ′

for the Nf D7 branes is λ′ = λ(2πls)
4Nf/N which van-

ishes in the low-energy α′ → 0 (i.e., ls → 0) limit. The 7-7
strings therefore do not interact with the other (3-3, 3-7)
strings anymore, and the U(Nf ) gauge group on the D7
branes plays the role of a global flavour group in the four-
dimensional theory.

The Lagrangian of the N = 2 worldvolume theory can
conveniently be written down in N = 1 superspace for-
malism. Under N = 1 supersymmetry the N = 4 vector
multiplet decomposes into the vector multiplet Wα and
the three chiral superfields Φ1, Φ2, Φ3. The N = 2 fun-
damental hypermultiplets can be written in terms of the
N = 1 chiral multiplets Qr, Q̃r (r = 1, . . . , Nf ). The La-
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Table 2. Fields of the D3/D7 low-energy effective field theory and their quantum numbers under the global symmetries. Note
that U(1)B ⊂ U(Nf ).

N = 2 Components Spin SU(2)Φ × SU(2)R U(1)R ∆ U(Nf ) U(1)B

(Φ1, Φ2) X4, X5, X6, X7 0 ( 1

2
, 1

2
) 0 1 1 0

Hyper λ1, λ2
1

2
( 1

2
, 0) −1 3

2
1 0

(Φ3, Wα) XA
V = (X8, X9) 0 (0, 0) +2 1 1 0

Vector λ3, λ4
1

2
(0, 1

2
) +1 3

2
1 0

vµ 1 (0, 0) 0 1 1 0

(Q, Q̃) qm = (q, ¯̃q) 0 (0, 1

2
) 0 1 Nf +1

Fund. hyper ψi = (ψ, ψ̃†) 1

2
(0, 0) ∓1 3

2
Nf +1

grangian is thus given by

L = Im

[

τ

∫

d4θ(tr(Φ̄Ie
V ΦIe

−V ) +Q†
re

V Qr+Q̃†
re

−V Q̃r)

+τ

∫

d2θ(tr(WαWα) +W ) + c.c.

]

, (3.1)

where the superpotential W is

W = tr(εIJKΦIΦJΦK) + Q̃r(mq + Φ3)Q
r, (3.2)

and τ is the complex gauge coupling. The beta function
of this theory is β ∝ λ2Nf/N , which goes to zero for Nf

small, fixed ’t Hooft coupling λ and N → ∞, such that
the theory remains conformal in this limit.

The components of the N = 1 superfields and
their quantum numbers are summarized in table 2 (see
also [75]). We will need them for the construction of op-
erators. The SO(2) ≃ U(1) isometry corresponds to a
U(1)R R-symmetry in the field theory —note that it is
explicitly broken by a quark mass mq ∝ L. The field the-
ory has also a global SO(4) ≈ SU(2)Φ × SU(2)R symme-
try which consists of a SU(2)Φ symmetry and a N = 2
SU(2)R R-symmetry. The global symmetry SU(2)Φ ro-
tates the scalars in the adjoint hypermultiplet. There is
also a baryonic U(1)B which is a subgroup of the U(Nf )

flavour group. The fundamental superfields Qr (Q̃r) are
charged +1 (−1) under U(1)B , while the adjoint fields are
inert.

3.2 The probe brane correspondence

The simplest way to analyze the D3/D7 system is to work
in the limit where the D7 branes are treated as probes [16].
The term “brane probe” [14] refers to the fact that only a
very small number of D7 branes is added, while the num-
ber of D3 branes, N , which also determines the rank of
the gauge group SU(N), goes to infinity. In this limit we
neglect the backreaction of the D7 branes on the geome-
try. Naively, it seems peculiar to treat the large brane as
the probe but here one is working in the N → ∞ limit
so the D3 branes can dominate. The limit is clearest on
the field theory side: the geometry represents the gauge
configuration in which the quarks move. If we neglect the

D7 effects we are simply dropping quark loops from the
gauge background which is simply quenching the gauge
theory. In sect. 4.1 we will discuss the D3/D7 brane con-

figuration for finite
Nf

N including the backreaction of the
flavour branes.

On the supergravity side of the duality, the N =4 de-
grees of freedomare described by supergravity on AdS5×S5

as before. However, in addition, there are new degrees of
freedom corresponding to the D7 brane probe within the
ten-dimensional curved space. The low-energy degrees of
freedom of this brane are described by the Dirac-Born-
Infeld action as described below. These correspond to open
string fluctuations on the D7 probe. It turns out, as we
will show shortly, that the minimum action configuration
for the D7 brane probe corresponds to a probe configu-
ration which asymptotically near the boundary wraps an
AdS5 × S3 subspace of AdS5 × S5.

As shown in fig. 3, the new duality conjectured in [16]
is an open-open string duality, as opposed to the original
AdS/CFT correspondence which is an open-closed string
duality. The duality states that, in addition to the original
AdS/CFT duality, gauge invariant field theory operators
involving fundamental fields are mapped to fluctuations of
the D7 brane probe inside AdS5 × S5. This is also shown
in fig. 3.

Let us determine the D7 embedding explicitly. The dy-
namics of the D7 brane probe is described by the combined
Dirac-Born-Infeld and Chern-Simons actions,

SD7 = −µ7

∫

d8ξ
√

−det (P [G]ab + 2πα′Fab)

+
(2πα′)2

2
µ7

∫

P [C(4)] ∧ F ∧ F . (3.3)

µ7 = [(2π)7gsα
′4]−1 is the D7 brane tension and P de-

notes the pullback of a bulk field to the worldvolume of
the brane. Fab is the world-volume field strength. The D7

brane action also contains a fermionic term Sf
D7 which will

be discussed in sect. 3.3.2.
If we write the AdS5 × S5 metric in the form

ds2 =
r2

R2
ηij dxi dxj +

R2

r2
(dρ2 + ρ2dΩ2

3 + dw2
5 + dw2

6),

(3.4)
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with ρ2 = w2
1 + . . . + w2

4, r
2 = ρ2 + w2

5 + w2
6, then the

action for a static D7 embedding (with Fab zero on its
worldvolume) is given up to angular factors from (3.3) by

SD7 = −µ7

∫

d8ξ ρ3
√

1 + ẇ2
5 + ẇ2

6 , (3.5)

where a dot indicates a ρ derivative (e.g. ẇ5 ≡ ∂ρw5).
The ground-state configuration of the D7 brane then cor-
responds to the solution of the equation of motion

d

dρ

[

ρ3

√

1 + ẇ2
5 + ẇ2

6

dw

dρ

]

= 0, (3.6)

where w denotes either w5 or w6. Clearly, the action is
minimized by w5, w6 being any arbitrary constant. The D7
brane probe therefore lies flat in the space. The choice of
the position in the (w5, w6)-plane corresponds to choosing
the quark mass in the gauge theory action. That w5, w6

is constant at all values of ρ is a statement of the non-
renormalization of the mass. The coordinate ρ is a holo-
graphic radial direction of the background AdS space and
therefore corresponds to the renormalization group scale.
The non-renormalization of the mass is an expected char-
acteristic of supersymmetric gauge theories.

In general, the equations of motion have asymptotic
(ρ→ ∞) solutions of the form

w = L+
c

ρ2
+ . . . (3.7)

L corresponds to the quark mass as discussed. In agree-
ment with the AdS/CFT result (2.15), the extra param-
eter c must correspond to the vev of an operator with
the same symmetries as the mass and of dimension three
(since ρ carries energy dimension). c is therefore a mea-
sure of the quark condensate (q̄LqR; more formally it cor-
responds to ∂L/∂m, which includes scalar squark terms,
but we assume that the squarks have zero vev here). More-
over, note that solutions with non-zero c are not regular
in AdS space and these solutions are excluded. This cor-
responds to a vev for this operator being forbidden by
supersymmetry —it is an F-term of a chiral superfield3.
A detailed discussion of relation between the asymptotic
behaviour (2.15) and (3.7) was given in [76] in the context
of “holographic renormalization” [77].

A particularly interesting feature arises if the D7 brane
probe is separated from the stack of D3 branes in either
the w5 or w6 directions, where the indices refer to the co-
ordinates given in (3.4). This corresponds to giving a mass
to the fundamental hypermultiplet. In this case the radius
of the S3 becomes a function of the radial coordinate r in
AdS5. At a radial distance from the deep interior of the
AdS space given by the hypermultiplet mass, the radius of
the S3 shrinks to zero. From a five-dimensional AdS point

3 Formq 6= 0, consider the termmqψψ̃ which is the F-term of
mqQQ̃. Supersymmetry is broken, if c = 〈ψψ̃〉 6= 0. Vice versa,
if supersymmetry is preserved, then c = 0 and the embedding
profile must be flat.

S 3

AdS 5

r

D7

r=L

Fig. 4. Gravity dual in the presence of a fundamental hyper-
multiplet with finite mass m. The D7 brane probe is shown
in blue. In this case, the radius of the S3 wrapped by the D7
brane probe becomes a function of the AdS radial direction
r. At r = L, the radius of the S3 shrinks to zero, and the
D7 probe does not extend any further into the interior of AdS
space. (Figure by Zachary Guralnik, from [18].)

of view, the D7 brane probe seems to “end” at this value
of the AdS radial coordinate, as shown in fig. 4.

This can be seen as follows. According to [17], the in-
duced metric on the D7 brane worldvolume is

ds2 =
ρ2 + L2

R2
ηij dxi dxj +

R2

ρ2 + L2
dρ2 +

R2ρ2

ρ2 + L2
dΩ3

2 ,

(3.8)
where ρ2 = r2−L2 and Ω3 are spherical coordinates in the
4567-space. For ρ → ∞, this is the metric of AdS5 × S3.
When ρ = 0 (i.e., r2 = L2), the radius of the S3 shrinks
to zero.

The scalar mode with dimension ∆ = 3 (i.e., super-
gravity mass M2

sugra = ∆(∆ − 4) = −3) maps to the

fermion bilinear ψ̃ψ in the dual field theory. This mode
corresponds to an imaginary AdS mass. However, this
mass is above the Breitenlohner-Freedman bound [78, 79]
for AdS5 (M2

BF = −4) and thus guarantees stability. For
this it is important that the D7 branes do not carry any
net charge from the five-dimensional point of view, since
they wrap a topologically trivial cycle with zero flux.

3.3 D7 brane fluctuations and mesons in N = 2 theory

The fluctuations of the D7 brane give rise to the mesons
and we can determine their masses. This is similar to pre-
viously studied supergravity fluctuations which give rise
to glueball masses [74].

3.3.1 Scalar field fluctuations (spin 0)

As an example, we discuss the fluctuation modes and me-
son masses for the scalar fields, following the discussion
of [17].

The directions transverse to the D7 brane are chosen
to be w5 and w6, and the embedding is as follows:

w5 = 0 + δw5, w6 = L+ δw6, (3.9)
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S

transverse
fluctuations

wrapping
D7 brane

S
S3
3

5

Fig. 5. Fluctuations of the S3 wrapped by the D7 probe inside
S5. These modes give rise to the meson masses.

where δw5 and δw6 are the transverse scalar fluctuations
shown in fig. 5. To calculate the spectra of the worldvol-
ume fields it is sufficient to work to quadratic order. For
the scalars, the relevant part of the Lagrangian density is

L ≃ −µ7

√

−det gab

(

1 +
1

2

R2

r2
gcd∂cΦ∂dΦ

)

. (3.10)

Here, Φ is used to denote either (real) fluctuation, δw5,6,
and gab is the induced metric on the D7 worldvolume as
given by (3.8). In spherical coordinates with r2 = ρ2 +L2

the equation of motion becomes

∂a

(

ρ3ǫ3
ρ2 + L2

gab∂bΦ

)

= 0. (3.11)

ǫ3 is the metric on the unit sphere spanned by (ρ,Ω3).
The equation of motion can be expanded as

R4

(ρ2 + L2)2
∂µ∂µΦ+

1

ρ3
∂ρ(ρ

3∂ρΦ)+
1

ρ2
∇i∇iΦ = 0, (3.12)

where ∇i is the covariant derivative on the three-sphere.
Using separation of variables, an ansatz for the modes may
be written as

Φ = φ(ρ)eik·xYℓ(S3), (3.13)

where Yℓ(S3) are the scalar spherical harmonics on S3,
which satisfy

∇i∇iYℓ = −ℓ(ℓ+ 2)Yℓ. (3.14)

The meson masses are defined by M2 = −k2 for the wave
vector k introduced in (3.13).

Then eq. (3.12) gives rise to an equation for φ(ρ) that,
with the redefinitions

̺ =
ρ

L
, M̄2 = −k

2R4

L2
, (3.15)

becomes

∂2
̺φ+

3

̺
∂̺φ+

(

M̄2

(1 + ̺2)2
− ℓ(ℓ+ 2)

̺2

)

φ = 0. (3.16)

This equation may be solved in terms of a hypergeometric
function. Imposing normalizability, the solution is

φ(ρ) =
ρℓ

(ρ2 + L2)n+ℓ+1
F (−(n+ ℓ+1),−n; ℓ+2;−ρ2/L2)

(3.17)

with
M̄2 = 4(n+ ℓ+ 1)(n+ ℓ+ 2). (3.18)

Using this, and M2 = −k2 = M̄2L2/R4, the four-
dimensional mass spectrum of scalar mesons is given by

Ms(n, ℓ) =
2L

R2

√

(n+ ℓ+ 1)(n+ ℓ+ 2) . (3.19)

Normalizability of the modes results in a discrete spec-
trum with a mass scale set by L, the position of the D7
brane.

3.3.2 Fermionic fluctuations (spin 1
2 )

The spectrum of fermionic fluctuations of the D7 brane
has been studied in [80,81]. These fluctuations are dual to
so-called “mesino” operators which are the fermionic su-
perpartners of the mesons. Typical mesino operators with
conformal dimension ∆ = 5

2 and ∆ = 9
2 are F ∼ ψ̄q and

G ∼ ψ̄λψ, where ψ (q) is a quark (squark) and λ an ad-
joint fermion. The precise form of these operators is given
in sect. 3.3.4.

The dual fluctuations have spin 1
2 and are described by

the fermionic part of the D7 brane action, that is the su-
persymmetric completion of the Dirac-Born-Infeld action.
This action is given in an explicit form by [82]

Sf
D7 =

τD7

2

∫

d8ξ
√

−det gΨ̄P−Γ
A

×
(

DA +
1

8

i

2 · 5!
FNPQRSΓ

NPQRSΓA

)

Ψ. (3.20)

Here ξA are the worldvolume coordinates (A = 0, . . . , 7)
which, in static gauge, will be identified with the space-
time coordinates t, x1, . . . , x7. The field Ψ is the ten-
dimensional positive chirality Majorana-Weyl spinor of
type-IIB string theory and ΓA is the pullback of the ten-
dimensional gamma matrix ΓM (M,N, . . . = 0, . . . , 9),
ΓA = ΓM∂Ax

M . The integration goes over the world-
volume of the D7 brane which wraps a submanifold of
AdS5 × S5 which asymptotes to AdS5 × S3. The spinor
Ψ = Ψ(xM , θm) depends on the coordinates xM of AdS5

and the three angles θm = (θ1, θ2, θ3) of the three-sphere
S3. The operator P− is a κ-symmetry projector ensuring
κ-symmetry invariance of the action. The action SD7 =

Sb
D7 + Sf

D7 with Sb
D7 and Sf

D7 given by (3.3) and (3.20) is
therefore invariant under supersymmetries corresponding
to any bulk Killing spinor.

We must now evaluate the five-form FNPQRS as well as
the curved-space-time covariant derivative DM on AdS5×
S5 [80, 81]. This will give a Dirac-type equation which
will then be transformed into a second-order differential
equation. The fluctuations are assumed to be of plane-
wave type, Ψ(x, ρ) = ψℓ,±(ρ)eikµxµ

χ±
ℓ , where ψℓ,± and

χ±
ℓ are spinors on AdS5 and S5, respectively4. M2 = −k2

4 The ± signs refer to the eigenvalues of the spinor spherical
harmonics on S3, λR = ±(ℓ+ 3

2
).
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is again interpreted as the mass of the dual operator. After
a somewhat lengthy calculation, which we do not present
here, one obtains [80]5

[

∂2
ρ +

3

ρ

(

1 +
ρ2

r2

)

∂ρ +
M2R4

r4
− 3

4

ρ2

r4

+
1

r2
(7 − 2mℓR+ (2mℓR− 1)γρ)

− 1

ρ2

(

(mℓR−1)2 − 3

4
+ (mℓR−1)γρ

)]

ψℓ,±(ρ) = 0

(ℓ ≥ 0), (3.21)

where r2 = ρ2 + L2, and the distance L is proportional to
the quark mass mq, L = 2πα′mq. mℓR represents one of
the masses

mℓ,+R = 5
2 + ℓ, mℓ,−R = −( 1

2 + ℓ). (3.22)

The spin- 1
2 operators dual to the fluctuations ψℓ,± will

be denoted by Gℓ
α and Fℓ

α. The mass-dimension relation
for spin-1

2 fields, |m| = ∆ − 2, determines the conformal
dimensions of these operators:

∆G = 9
2 + ℓ, ∆F = 5

2 + ℓ (ℓ ≥ 0). (3.23)

We must also ensure that the operators Gℓ
α and Fℓ

α have
the same SO(4) and U(1)R quantum numbers as the fluc-
tuations. For instance, the spinorial spherical harmonics
on S3 transform in the ( ℓ+1

2 , ℓ
2 ) and ( ℓ

2 ,
ℓ+1
2 ) of SO(4) =

SU(2)×SU(2), while the U(1)R charge is +1. These prop-
erties uniquely fix the structure of Gℓ

α and Fℓ
α. Their ex-

plicit form is given in sect. 3.3.4.
The fluctuation equation (3.21) can now be solved in

terms of hypergeometric functions. For instance, for the
fluctuations ψℓ,+ the solution is given by [80]

ψℓ,+ = u+ ̺
ℓ+1(1 + ̺2)−

1
2 (2λ+ 3

2 )

×F (−λ, ℓ− λ+ 2, ℓ+ 3,−̺2)

+u−̺
ℓ
(

1 + ̺2
)− 1

2 (2λ+ 3
2 )

×F (−λ− 1, ℓ− λ+ 2, ℓ+ 2,−̺2), (3.24)

where we rescaled ̺ = ρ
L , M̄2 = M2R4

L2 , and defined λ by

M̄2 = 4λ(λ + 1). The spinors satisfy γρu± = ±u± and

u− =
γµkµ

k2 u+.
In order for the solution to be well behaved at large

radii, ̺→ ∞, the solution is subjected to the quantization
condition

−n = ℓ− λ+ 2. (3.25)

Solving this for M̄2, we obtain the fluctuation masses

M̄2
G = 4(n+ ℓ+ 2)(n+ ℓ+ 3), (3.26)

which is the spectrum of the operators Gℓ
α. The spectrum

of Fℓ
α is obtained in a similar way by solving the equations

of motion for ψℓ,−.

5 For overlapping D3/D7 branes (L = 0) this equation re-
duces to that found in [81].

3.3.3 Gauge field fluctuations (spin 1)

The fluctuations of the D7 worldvolume gauge field AM

(M = 0, . . . , 7) give rise to three further mass spectra de-
noted by MI,±,MII and MIII in [17]. These spectra are
generated by plane-wave fluctuations of the components
Ai (along the S3), Aµ (along x0,...,3) and Aρ (along the
radial direction ρ) of the eight-dimensional worldvolume
gauge field AM = (Aµ, Aρ, Ai). Details on the computa-
tion of these spectra can be found in [17].

3.3.4 Fluctuation-operator matching

So far we discussed the mass spectra of open string fluctu-
ations on the D7 branes. In order to interpret these spectra
as those of meson-like operators, we must map the fluctu-
ations to the corresponding meson operators in the dual
field theory. In the following we construct these operators
and assign them to the corresponding open string fluctu-
ations.

As was first found in [17], the complete set of D7 brane
fluctuations fits into a series of massive gauge supermul-
tiplets of the N = 2 supersymmetry algebra. These mul-
tiplets contain 16(ℓ+ 1) states with the masses

M2 =
4L2

R4
(n+ ℓ+ 1)(n+ ℓ+ 2) (n, ℓ > 0). (3.27)

Since the supercharges commute with the generators of
the global group SU(2)Φ, the SU(2)Φ quantum number ℓ

2
is the same for all fluctuations in a supermultiplet.

All D7 brane fluctuations and their quantum num-
bers are listed in table 3. The notation of the fluctu-
ations and their mass spectra is the same as in [17].
The numbers (jΦ, jR)q label a representation of SO(4) ≈
SU(2)Φ × SU(2)R, and q is the U(1)R charge. In order
to count the number of states in a multiplet we must take
into account the degeneracy in the SU(2)R quantum num-
ber, i.e. we count the degrees of freedom of a particular
massive fluctuation and multiply it with (2jR + 1). Then,
the number of bosonic components in a multiplet is

1(2( ℓ
2+1)+1)+(2+3+1)(2 ℓ

2+1)+1(2( ℓ
2−1)+1) = 8(ℓ+1).

(3.28)
Of course, this agrees with the number of fermionic com-
ponents,

4(2 ℓ+1
2 + 1) + 4(2 ℓ−1

2 + 1) = 8(ℓ+ 1), (3.29)

giving altogether 16(ℓ+ 1) states.
We now assign operators to the D7 brane fluctuations

appearing in table 3. Note that the masses are above the
Breitenlohner-Freedman bound [78, 79] and thus admissi-
ble, even if their square is negative. Open strings are dual
to composite operators with fundamental fields at their
ends: scalars qm = (q, ¯̃q)T and spinors ψi = (ψ, ψ̃†)T . We
will refer to these operators as mesons and their super-
partners as mesinos. We must ensure that the operators
have the same quantum numbers (i.e., spin, global sym-
metries, etc.) as the corresponding fluctuations. Also, the
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Table 3. Field content of the N = 2 supermultiplets in the D3/D7 theory.

Fluctuation d.o.f. (jΦ, jR)q 5d mass Spectrum Op. ∆

Mesons 1 scalar 1 ( ℓ
2
, ℓ

2
+ 1)0 m2 = −4 MI,−(n, ℓ+ 1) (ℓ ≥ 0) CIℓ 2

(bosons) 2 scalars 2 ( ℓ
2
, ℓ

2
)2 m2 = −3 Ms(n, ℓ) (ℓ ≥ 0) MAℓ

s 3

1 scalar 1 ( ℓ
2
, ℓ

2
)0 m2 = −3 MIII(n, ℓ) (ℓ ≥ 1) J 5ℓ 3

1 vector 3 ( ℓ
2
, ℓ

2
)0 m2 = 0 MII(n, ℓ) (ℓ ≥ 0) J µℓ 3

1 scalar 1 ( ℓ
2
, ℓ

2
− 1)0 m2 = 0 MI,+(n, ℓ− 1) (ℓ ≥ 2) – 4

Mesinos 1 Dirac 4 ( ℓ
2
, ℓ+1

2
)1 |m| = 1

2
MF (n, ℓ) (ℓ ≥ 0) Fℓ

α
5

2

(fermions) 1 Dirac 4 ( ℓ
2
, ℓ−1

2
)1 |m| = 5

2
MG(n, ℓ− 1) (ℓ ≥ 1) Gℓ

α
9

2

five-dimensional mass of a fluctuation and the conformal
dimension of the dual operator must satisfy a particular
relation depending on the spin, e.g., m2 = ∆(∆ − 4) for
scalars.

Let us construct gauge invariant operators for the
bosonic fluctuations [17, 75, 81]. First, there is a scalar in
the ( ℓ

2 ,
ℓ
2 + 1)0 with 5d mass m2 = −4 + ℓ ≥ m2

BF
6 which

corresponds to the ∆ = ℓ+ 2 chiral primaries

CIℓ = q̄mσI
mnX

ℓqn. (3.30)

Here the Pauli matrices σI
mn (I = 1, 2, 3) transform in

the triplet representation of SU(2)R, while qm, ψi and
Xℓ have the SO(4) quantum numbers (0, 1

2 ), (0, 0) and

( ℓ
2 ,

ℓ
2 ), respectively. Xℓ denotes the symmetric, traceless

operator insertionX{i1 · · ·Xiℓ} of ℓ adjoint scalarsXi (i =
4, 5, 6, 7). This operator insertion generates operators with
higher angular momentum ℓ.

Then, there are 2 scalars in the ( ℓ
2 ,

ℓ
2 )2 which we are

dual to the scalar meson operators

MAℓ
s = ψ̄iσ

A
ijX

ℓψj + q̄mXA
V X

ℓqm (i,m = 1, 2) (3.31)

which have conformal dimensions ∆ = ℓ+3. Here XA
V de-

notes the vector (X8, X9) and σA = (σ1, σ2) is a doublet
of Pauli matrices. Both XA

V and σA transform in the 2 of

U(1)R. The operators MAℓ
s thus transform in the ( ℓ

2 ,
ℓ
2 )

of SO(4) and are charged +2 under U(1)R.
Next, there is a vector in the ( ℓ

2 ,
ℓ
2 )0 associated with

the ∆ = ℓ+ 3 operator

J µℓ = ψ̄α
i γ

µ
αβX

ℓψβ
i + iq̄mXℓDµqm − iD̄µq̄mXℓqm

(µ = 0, 1, 2, 3) (3.32)

which we identify as the U(Nf ) flavour current.

Finally, there is a (pseudo-)scalar in the ( ℓ
2 ,

ℓ
2 )0 dual

to J 5ℓ−1 = ψ̄α
i γ

5
αβX

ℓ−1ψβ
i + . . . (ℓ ≥ 1) and a scalar in

the ( ℓ
2 ,

ℓ
2 + 1)0 (ℓ ≥ 2) which corresponds to a higher

descendant of CIℓ. These operators do not appear in the
lowest (ℓ = 0) multiplet.

We now turn to the fermionic fluctuations [81]. These
fluctuations are dual to so-called mesino operators, the

6 The lowest fluctuation has negative mass squared, m2 =
−4, saturating the Breitenlohner-Freedman bound, m2

BF =
−d2/4 = −4 (d = 4).

superpartners of the meson-like operators studied above.
There are two types of spin- 1

2 fluctuations with quantum

numbers ( ℓ
2 ,

ℓ+1
2 )1 and ( ℓ

2 ,
ℓ−1
2 )1. These correspond to the

mesino operators

Fℓ
α = q̄Xℓψ̃†

α + ψ̃αX
ℓq, (3.33)

Gℓ−1
α = ψ̄iσ

B
ijλαCX

ℓ−1ψj + q̄mXB
V λαCX

ℓ−1qm,

(A,B,C = 1, 2), (3.34)

which have the conformal dimensions ∆ = 5
2 + ℓ (ℓ ≥ 0)

and ∆ = 7
2 +ℓ (ℓ ≥ 1), respectively. As their bosonic part-

ners, mesinos have fundamental fields at their ends. The
spinors λαA (A = 1, 2) have the SO(4) quantum numbers
( 1
2 , 0) and belong to the adjoint hypermultiplets (Φ1, Φ2).

3.3.5 Interactions

Form factors for the interactions between the mesons can
be computed from higher-order terms in the DBI action.
For example, if we consider Nf D7 branes then there are
DBI terms of the form

S ∼
∫

d8x
√−ggabgµνfabcAa

µA
b
α∂νA

c
β , (3.35)

where fabc is a structure constant for the flavour group.
Aα are the scalar fields discussed above and Aµ describe
the vector mesons. If we substitute in the solutions for the
meson mass eigenstates we have found above and integrate
over the four directions of the D7 transverse to the D3 we
are left with the effective interaction between two scalars
and a vector meson. Equally, one could replace Aµ by its
non-normalizable solution giving the coupling of the two
scalars to a flavour gauge boson.

These form factors are explicitly computed for the
N = 2 theory in [75] (see also [83]). There the form fac-
tors are also Fourier transformed to position space to give
an estimate of the effective size of the mesons. The typi-
cal dimension is given by the inverse of the meson’s mass
√

g2
Y MN/mq [75, 84].

3.3.6 Mesons on the Coulomb branch

The N = 4 gauge theory has a large moduli space on
which the six adjoint scalars have mutually commuting
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vacuum expectation values. This corresponds in the grav-
ity dual to separating the D3 branes in the six trans-
verse directions to their world volume as discussed above
in sect. 2.4 —the gravity dual is a multi-centre solu-
tion (2.17). D7 brane probes continue to lie flat in these ge-
ometries since the H factors of the metric cancel from the
DBI action. The adjoint vev should generate a quark mass
through the Yukawa term in the superpotential Q̃AQ.
Mesonic fluctuations for some sample geometries have
been computed in [85] and indeed for massless quarks the
mesons have masses proportional to the vacuum expecta-
tion value of the scalars.

3.4 Holographic heavy-light mesons

We have seen that meson states made of a quark and its
antiquark are described by the open string modes on the
surface of a D7 brane in a D3 brane background. We can
introduce two quarks with different masses by including
two D7 branes with different separations (in the w5 or w6

directions) from the D3 branes as shown in fig. 6. The
strings stretched between the two D7 branes carry the
flavour quantum numbers of each of the two branes and
therefore they have the correct symmetries to holograph-
ically describe the heavy-light meson operators.

In AdS the preferred static configuration for these
strings is to lie stretched straight between the D7 branes
at constant ρ as if they were in flat space [87]. This can
be easily seen from the Nambu-Goto action of the strings,

Sstring = T

∫

d2σ

√

detGMN
dXM

dσa

dXN

dσb
. (3.36)

For a static string the determinant is given by the product
of the Gtt and Gw5w5

metric components. In AdS this
product cancels to give unity and the action is that in flat
space with the straight string minimizing the action. For
the moment we will concentrate on this configuration and
assume we can give the string some small centre of mass
motion without it bending.

As the separation between the two D7 branes is in-
creased the 77′ strings grow and naively one expects these
states to have a mass given by the product of their length
and tension. This immediately provides an apparent con-
fusion —the mass of the supergravity state is holograph-
ically related to the dimension of the operator it is de-
scribing in the field theory. Why should the bi-fermionic
heavy-light operator’s dimension be changing as we in-
crease one quark’s mass? To resolve this confusion it is
helpful to look at the Polyakov form of the action for the
string.

We use the gauge-fixed Polyakov string action

SP = −T
2

∫

dσdτGµν(−ẊµẊν +X ′µX ′ν), (3.37)

so we must also impose the constraint equations

GµνẊ
µX ′ν = 0, Gµν(ẊµẊν +X ′µX ′ν) = 0. (3.38)

D3

Heavy quark
D7’ brane

Light quark
D7 brane

LL

HH

HL

Fig. 6. The brane configuration including both a heavy and a
light quark. The 77 and 7′7′ strings are holographically dual to
light-light and heavy-heavy mesons, respectively. Heavy-light
mesons are holographically described by strings between the
two D7 branes —we work in the semi-classical limit where those
strings are stretched tight. From [86].

For the configuration we are considering and for a diago-
nal metric the first constraint vanishes (ẇ5 = 0). In flat
space the second equation, after integration over σ gives
the familiar E2 − p2 = L2T 2 energy momentum relation
for the centre-of-mass motion with L the length of the
string.

In AdS the x‖ and ρ directions are distinct and we
must be careful. Integrating the metric over σ gives

SP = −TL
2

∫

dτ
[

−G̃xxẋ
2 − G̃wwẇ

2
i + G̃ww

]

, (3.39)

where

G̃xx =
1

L

∫ L

0

dσGxx =
1

R2

(

ρ2 +
1

3
L2

)

,

G̃ww =
1

L

∫ L

0

dσGww =
R2

ρL
arctan(L/ρ). (3.40)

These are essentially averages of the metric components
along the stretched string’s length.

The constraint, when integrated over σ, gives

G̃xxp2
x + G̃wwp2

w + T 2L2G̃ww = 0, (3.41)

where px
α ≡ δL/δẋα, pw

i ≡ δL/δẇi. Note that (3.41) is
a simple modification of the usual E2 − p2 = m2 with the
effective mass depending on the ρ position of the string.
If we expand for large ρ we obtain

p2
x +

ρ4

R4
p2

w + L2T 2 = 0. (3.42)

The form of this equation is transparent in terms of
the dilatations in the field theory —x is a length whilst w
have energy dimensions. The factor of ρ4 is clearly neces-
sary. We can now see that for motion in the ρ-direction at
large ρ (the UV of the field theory) the string mass is effec-
tively zero no matter the length of the string —the “holo-
graphic” mass determining the operator dimensions is zero
independent of the string length. On the other hand, for
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motion in the x-directions the state has a large mass if the
string is long and this will be reflected by the meson mass
becoming degenerate with the quark mass at large quark
mass. Note this behaviour should be compared with the
meson mass made of the heavy quark and its antiquark
—that state is lighter with the mass suppressed at large
’t Hooft coupling by

√
λ.

We have assumed above that the straight string can be
boosted from rest in the ρ-direction. In fact there are not
solutions of this form. We know of no studies of moving
strings but presumably the string bends. We will continue
to work here in the straight string approximation —this
is presumably reasonable for short strings or slow moving
strings.

3.4.1 Semi-classical action for heavy-light states

The classical analysis above of the heavy-light strings of
course misses much of the quantum theory —in particular
the unexcited string is the tachyon which is not part of
the theory and the lightest state is the spin-one gauge
field. What we can learn from (3.39) above is that the
centre of mass of the string state has the standard action
of a particle in a curved space-time although with metric
factors averaged over its length. We expect an action in
10d of the form

S =
1

(2π)9α′5

∫

d10x

√

−det G̃10e
−φ

×
(−1

4
G̃MN G̃KLFMKFLK +M2G̃MNA

MAN

)

. (3.43)

The ends of these string though are tied to D7 branes
so we must T-dualize the action twice —the A8,9 com-
ponents of the gauge field become two scalars, φa, with
action

S =
1

(2π)9α′5

∫

d2x

√

−det G̃8−9

∫

d8xe−φ

√

−det G̃0−7

×
(

G̃mnG̃ww∂mφ
a∂nφ

a +M2φa2
)

. (3.44)

The two-dimensional integral simply gives an overall fac-
tor of (2πR)2. One must also re-write the dilaton in terms
of the dilaton of the T-dual theory (one equates the string
coupling of the two theories as described in [14,88])
—e−φ9 = e−φ7α′/R2. We have

S =
1

(2π)7α′4

∫

d8xe−φ

√

−det G̃0−7

×
(

G̃mnG̃ww∂mφ
a∂nφ

a +M2φa2
)

. (3.45)

The kinetic term of this action takes the form of the
lowest-order expansion of the DBI action for a D7 brane
except with metric factors averaged over the w5-direction.
In the limit of very small D7 separation the metric factors
simply become those on the D7 branes’ worldvolumes and
these states form part of the non-Abelian DBI action. In

Fig. 7. The masses MHL of the meson and its excited states
for the AdS background. The ratio MHL/mH , with mH the
heavy quark mass (the light quark is taken to be massless),
is plotted against the square root of the ’t Hooft coupling λ.
We observe that in the large λ limit, MHL/mH behaves as
1 + const/

√
λ+ O(λ−1). From [86].

addition there is a mass term for the string —in the semi-
classical limit of a very long string, one has

M = LTG̃ww (3.46)

to be consistent with (3.41).
The heavy-light mesons and their radially excited part-

ners are then described by the holographic equation of
motion

∂ρ

√

−det G̃0−7∂ρφ+

√

−det G̃0−7G̃wwG̃
xx∂2

xφ

−
√

−det G̃0−7G̃
2
wwLTφ = 0, (3.47)

with solutions of the form φ(x, ρ) = f(r)eik.x, −k2 = M2

as usual. A plot of the solutions from [86] is shown in fig. 7
—the meson masses divided by the heavy-quark mass are
plotted as a function of the ’t Hooft coupling. Note that
at large ’t Hooft coupling, the meson mass is just that of
the heavy quark (or long string) as expected.

3.4.2 Heavy-light mesons from non-Abelian DBI action

A different approach to the holographic description of
heavy-light mesons has been proposed in [89]. Again in
this case, two D7 brane probes are embedded at dif-
ferent positions into the ten-dimensional gravity back-
ground. Now, however, these two branes are described by
a non-Abelian Dirac-Born-Infeld action. In this action, the
worldvolume fields are assigned to U(Nf ) matrix-valued
functions for Nf D7 branes. We choose Nf = 2. The em-
bedding configuration of the two D7 branes is determined
by the diagonal components of the scalar fields. The corre-
sponding equation of motion is solved by the profile func-
tions of two separated branes, one of which corresponds to
the heavy and one to the light quark. The quark masses
are given by the boundary values of the two embedded
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branes. The fluctuations of the diagonal elements of the
2 × 2 flavour matrices correspond to the light-light and
heavy-heavy mesons, respectively. On the other hand, the
off-diagonal components of the fluctuations of the fields
on the branes are identified with the heavy-light mesons.

Embeddings

The starting point is the non-Abelian Dirac-Born-Infeld
action in curved space proposed by Myers in [88]. This
action describes the dynamics of Nf Dp branes in a back-
ground with metric Gmn and is given by

SNf
= −τp

∫

dp+1ξe−φ

×STr
(

√

−det(P [Grs +Gra(Q−1 − δ)abGsb] + T−1Frs)

×
√

detQa
b

)

, (3.48)

where the matrix Qa
b is defined by

Qa
b = δa

b + iT [Xa, Xc]Gcb, T−1 = 2πα′, (3.49)

and Xa are the coordinates transverse to the stack
of branes, which now take values in a U(Nf ) alge-
bra. The symbol STr denotes the symmetrized trace
STr(A1, . . . , An) ≡ 1

n! Tr(A1 . . . An + all permutations)
and is needed to avoid the ambiguity of the ordering of
the expansion of all fields in the DBI action.

This non-Abelian DBI action is now used to find the
embedding of Nf probe D7 branes in different gravity
backgrounds. The embedding profiles correspond to the
classical solutions for the scalar fields in the D7 brane ac-
tion. In our case, the scalar fields Xa are U(Nf ) matrix-
valued functions, which makes it difficult to obtain a gen-
eral form of the profile functions. In order to simplify the
problem, we use the diagonal ansatz

Xa = diag(wa
1 , · · · , wa

Nf
), (3.50)

thereby setting all off-diagonal components to zero. Here
each of the functions wa

i corresponds to one of the Nf D7
branes.

The quark mass for each flavour is given by the asymp-
totic value of wa

i in the ultraviolet limit. They are the inte-
gration constants and given by hand as parameters of the
theory. The equations of motion for the wa

i are obtained
from the action

SNf
= τ7

∫

d8ξ e−ΦSTr

(

√

−det(Grs +Gab∂rwa
i ∂swb

i )

)

= τ7

∫

d8ξ e−Φ

Nf
∑

i=1

√

−det(Grs +Gab∂rwa
i ∂swb

i ) ,

(3.51)

which is eq. (3.48) for the embedding (3.50) and p=7. The
essential point is here that for the diagonal ansatz (3.50),
we obtain Nf decoupled equations of motion for the wa

i ,
such that the embeddings of each of the probe branes is

independent of the other. In other words, for diagonal em-
beddings the non-Abelian DBI action reduces to the sum
of Nf Abelian DBI actions.

Fluctuations

We now consider the scalar and vector meson spectra ob-
tained by considering the fluctuations about the back-
ground given. At this stage, we restrict to the case of
Nf = 2 flavours or two D7 branes such that the scalar
and vector fields in the non-Abelian DBI action are rep-
resented by (2× 2)-matrices. For the classical embedding,
we choose the diagonal configuration given by

X̄8 = 0, X̄9 =

(

w1 0
0 w2

)

. (3.52)

In terms of the Pauli matrices

τ0 =
1

2

(

1 0
0 1

)

, τ1 =
1

2

(

0 1
1 0

)

,

τ2 =
1

2

(

0 −i
i 0

)

, τ3 =
1

2

(

1 0
0 −1

)

, (3.53)

X̄9 can be rewritten as

X̄9 = wτ0 + vτ3, w1 = (w + v)/2, w2 = (w − v)/2,
(3.54)

where v = w1−w2. The asymptotic boundary values of w1

and w2 correspond to the heavy and light quark masses,
respectively. When v = 0, the two branes are at the same
place, w1 = w2 = w, corresponding to a U(2) flavour
symmetry. For v 6= 0 this flavour symmetry is explicitly
broken.

The scalar and gauge field fluctuations are taken to be
of the form (a = 8, 9)

X9 = X̄9 + φ9, X8 = φ8, (3.55)

φa = φa
0τ

0 + φa
i τ

i, Ar = Ar
0τ

0 +Ar
i τ

i, (3.56)

and can be written as

φa =

(

φa
+ φa

12

φa
21 φ

a
−

)

, (3.57)

similarly Ar. The diagonal elements φa
± = φa

0±φa
3 describe

fluctuations of each brane and are dual to the heavy-heavy
and light-light mesons. On the other hand, the off-diagonal
elements φa

12 = φa
1 − iφa

2 and φa
21 = φa

1 + iφa
2 correspond to

fluctuations of strings stretched between the two branes
and are dual to the heavy-light mesons. The mass of this
last type of fluctuations will depend on v. A similar struc-
ture emerges also for gauge field fluctuations Ar.

These meson mass spectra are obtained by solving the
linearized equation of motions for the field fluctuations.
For the AdS5 × S5 background, the heavy-light meson
masses are obtained from
(

∂2
ρ +

3

ρ
∂ρ − l(l + 2)

ρ2
+
M2 − v2

2

×
(

(

R2

ρ2 + w2
1

)2

+

(

R2

ρ2 + w2
2

)2
))

φ = 0. (3.58)
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Fig. 8. Meson masses for non-zero q. The red and blue curves
show MHL, MHH for λ = 34, q = 1 (top) and q = 5 (bot-
tom). The grey curves show the corresponding meson masses
for q = 0. The presence of q increases the HL meson masses.
The lambda dependence remains unchanged. From [89].

For w1 = w2 = w, we get v = 0 and the equation reduces
to the one given by Kruczenski et al. [17] which can be
solved analytically, as described in sect. 3.16 above.

A central point is that the λ-dependence of the heavy-
light meson mass obtained from the non-Abelian DBI ac-
tion, as described here, coincides with the one obtained us-
ing the Polyakov action approach discussed in sect. 3.4.1
above. A finite contribution to the mass remains in the
limit of λ→ ∞. This contribution corresponds to the min-
imum energy of a classical string connecting two separated
D7 branes, and thus is equivalent to the mass obtained
from the Polyakov action.

In general, (3.58) must be solved numerically. However,
for a heavy-light meson with a very heavy quark, w2 ≫
w1, the term in (3.58) involving w2 is much smaller than
the one involving w1 and may be neglected. In this case,
the heavy-light meson mass is found to be

M2
HL =

16w2
1

R4
+

v2

(2πα′)2
= 16π

m2
L

λ
+(mH−mL)2, (3.59)

where we reintroduced the string tension T = 1/(2πα′)
(which was set to one above) and defined the quark masses
mL,H = w1,2/(2πα

′) as the distances w1,2 in units of T .
Equation (3.59) implies that the mass of HL mesons has
two different contributions. The first term proportional to
m2

L√
λ

has the same dependence on the ’t Hooft coupling as in

the single flavour case [17]. The second term is dominant
at large ’t Hooft coupling (λ→ ∞), where the mass of the

Fig. 9. a) Numerical plots of the energy E(L) for HL mesons
(A), LL mesons (B) and HH mesons (C). The circle at the
endpoint of the curve (A) shows a finite string energy E at
length L = 0. Here we set q = 5 and R = 1, and the brane
positions are taken at rmax1 = 10 and rmax2 = 15, respectively.
b) Schematic plot of the Wilson loop. Figure from [89].

HL mesons is approximated by the second term,

MHL ≈ v

2πα′ = mH −mL. (3.60)

In this strong-coupling regime, the heavy-light meson
mass depends solely on the difference of the two quark
masses. This is consistent with the result obtained in [86],
discussed in sect. 3.4.1 above.

This λ-dependence persists if instead of the AdS5×S5

background, we consider a deformed gravity background
as introduced in sect. 2.4 above. As an example, we con-
sider the D3 + D(−1) gravity background of [90]. This is
an example of a dilaton flow background, in which the
dilaton has a non-trivial profile. The field theory dual to
this background is a confining N = 1 supersymmetric
theory, in which a condensate q ≡ π2〈F 2〉 is switched on.
The background in string frame is given by a non-trivial
dilaton Φ and axion χ [90],

ds210 = eΦ/2

(

r2

R2
A2(r)ηµνdxµdxν +

R2

r2
dr2 +R2dΩ2

5

)

,

(3.61)
where

A = 1, eΦ = 1 +
q

r4
, χ = −e−Φ + χ0. (3.62)
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In this case, there is only a N = 1 supersymmetry remain-
ing for the background with D7 brane probes embedded.
Therefore, vector and scalar mesons are no longer degen-
erate, as shown in fig. 8. For large heavy quark masses,
supersymmetry and thus the meson mass degeneracy are
restored.

It is instructive to compare the λ-dependence of the
meson spectra with the λ-dependence of the tension. For
a classical string stretched between the two D7 brane
probes, the string tension is independent of λ, in agree-
ment with the heavy-light meson mass result found both
in the Polyakov and in the non-Abelian DBI approach.
For heavy-light mesons, this tension contributes to the
meson mass even if the distance L between the quark and
anti-quark in the four-dimensional boundary space is zero,
in which case it contributes E = mH − mL to the Wil-
son line energy, see fig. 9. For the heavy-heavy and light-
light mesons, the string tension scales as m2

q/
√
λ for small

L [17, 91]. At large L, when the dual gauge theory is in
the quark confinement phase, there is a long-range linear
potential for all the mesons considered.

3.5 Mesons with large spin (J ≫ 1)

So far we discussed mesons with spin 0 and 1 (and mesinos
with spin 1

2 ). The calculation of the spectrum of mesons
with higher four-dimensional spin J would require the
quantization of open strings on the D7 branes, which is
difficult. However, meson operators with large spin have
small anomalous dimensions and quantum corrections are
negligible [92]. Large spin mesons therefore have a dual
description in terms of a classical rotating string. In the
following we show how Regge trajectories in the N = 2
theory of the D3/D7 system can be computed by means
of a semi-classical string computation.

Following [17, 92], we consider a classical open string
which rotates in an AdS5 × S5 background and ends on a
probe D7 brane. This string is dual to a meson with large
spin J in the N = 2 theory located on the D3/D7 inter-
section. We start from the classical Nambu-Goto action in
the form

S = −Ts

∫

dτdσ

√

(Ẋ ·X ′)2 − Ẋ2X ′2 , (3.63)

where dots and primes denote differentiation with respect
to τ and σ, respectively. The scalar product is taken using
the AdS5 × S5 metric. We parameterize the AdS5 metric
as

ds2 =
R2

z2

(

−dt2 + du2 + u2dϕ2 + dx2
3 + dz2

)

, (3.64)

where u and ϕ are the coordinates of the plane of rotation
x1-x2. The string has length 2u0 and stretches from −u0

to +u0 along the u-direction. The end points of the string
are attached to a probe D7 brane located a distance zR

in the radial direction. An example of a spinning string is
shown in fig. 10.

boundary
z=0

zR

z=∞

z0

Fig. 10. Example of a string profile z(u).

An appropriate ansatz for a string rotating with con-
stant angular velocity ω is

t = τ, ϕ = ωτ, u = u(σ), z = z(σ). (3.65)

With this ansatz the Nambu-Goto Lagrangian takes the
form (Ts = 1)

L = −R
2

z2

√

(1 − ω2u2)(u′2 + z′2) . (3.66)

It is convenient to use the rescaled coordinates

ũ = ωu, z̃ = ωz. (3.67)

In these coordinates, the energy and the angular momen-
tum of the spinning string are given by

E =

∫

dσ

(

ω
∂L
∂ω

− L
)

=

∫

dσ
ω

E
R2

z̃2

√

ũ′2 + z̃′2 , (3.68)

J =

∫

dσ
∂L
∂ω

=

∫

dσ
ũ2

E
R2

z̃2

√

ũ′2 + z̃′2 , (3.69)

where we defined E =
√

1 − ũ2.
In the gauge ũ = σ, we find the following equation of

motion for z̃(ũ):

z̃′′

1 + z̃′2
− ũ

E z̃
′ +

2

z̃
= 0. (3.70)

The solutions of this equation provide the embedding pro-
files z̃(ũ) of the spinning string.

Equation (3.70) is a nonlinear differential equation
of second order which requires two boundary conditions.
These can be obtained from the usual open string bound-
ary terms

∂L
∂ũ′

δũ

∣

∣

∣

∣

σ=0,π

=
∂L
∂z̃′

δz̃

∣

∣

∣

∣

σ=0,π

= 0 (3.71)

for strings ending on a probe D7 brane at z̃ = z̃R = const.
Such strings have a Neumann boundary condition in the
ũ-direction and a Dirichlet boundary condition in the
z̃-direction, i.e. δũ|σ=0,π is arbitrary, whereas δz̃|σ=0,π =0.
The latter condition holds, if we set z̃(±ũ0) = z̃R = const.
The remaining condition ∂L/∂ũ′|σ=0,π = 0 is satisfied, if
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Fig. 11. Numerical Chew-Frautschi plot. The horizontal line
(dashed) corresponds to the rest mass of the quark-antiquark
pair.

ũ′|σ=0,π = 0. Using the gauge z̃ = σ, we see that this
corresponds to ∂z̃/∂ũ|ũ=±ũ0

→ ∞ which means that the
string ends orthogonally on the D7 brane at z̃R. In actual
computations of the string profile, the orthogonality con-
dition is inexpedient. We therefore use the fact that the
solutions are symmetric around ũ = 0, where they have
their only maximum, and impose the boundary condition
z̃′(0) = 0.

The Regge trajectories E(J) can now be obtained as
follows. We first solve the equation of motion (3.70) for
the string profile z̃(ũ) by integrating (3.70) from −ũ0 to
+ũ0. In the shooting technique, we set z̃(0) = z̃0 = const,

z̃′(0) = 0 such that z̃(±R̃0) = z̃R. This yields the string
length u0 = ũ0/ω as the location at which z̃′(ũ0) → ∞. A
typical profile is shown in fig. 10. Then, substituting the
profiles z̃(ũ) ≡ 0 into eqs. (3.68) and (3.69), we determine
the energy E(ω) and the angular momentum J(ω) of the
spinning string for various values of the angular velocity
ω. The Regge trajectory then corresponds to a curve in
the (

√
J,E)-plane parameterized by ω, as shown in fig. 11.

The N = 2 theory we consider is not confining and we
therefore expect some deviations from the linear Regge
behaviour of QCD. We observe that for small spin J the
meson mass approximately follows a linear Regge trajec-
tory, whereas for large J the energy E(J) asymptotes to
the rest mass energy. This can be understood from the be-
haviour of the string length as a function of the spin. At
small spin values the length of the string is much smaller
than the scale of the space, and the string is effectively
rotating in flat space leading to a linear Regge behaviour.
At large spin the string is larger than the size of the space.
Here the string rotates very slowly and the energy is that
of particles moving in a Coulomb potential [17]. The bind-
ing energy of the quark-antiquark pair thus vanishes at
large spin values and E(J) asymptotes to the rest mass
E = 2m.

Analysis of high-spin mesons with constituent quarks
with different masses can be found in [93]. In these cases
with more than one D7 brane at different positions high-
spin mesons can decay. If the string in fig. 10 dips suffi-
ciently far into the interior of the space that it meets a
second D7 brane then the string can split into two seg-

ments between the two different branes. The rate for this
process has been computed in [94,95].

3.6 The squark sector from instantons on the D7
probe

Since the original configuration of [16] is supersymmetric,
in addition to the fundamental fermion bilinear there is
also a squark (scalar) present in the D3/D7 system. For
two coincident D7 branes, the vev of this squark bilinear
has been shown to be dual to the radius of an SU(2) in-
stanton on the D7 brane probe [96–98]. The vector meson
spectrum for this background has been calculated in [99].
For the part of the Higgs branch dual to a single instanton,
the spectrum is computed as a function of the instanton
size. It turns out that the zero-size and infinite-size lim-
its are equivalent modulo a singular gauge transforma-
tion: In the dual large-N gauge theory, this is an equiva-
lence between the spectrum of the SU(N) theory and the
SU(N − 1) theory obtained by taking the Higgs vev to
infinity. The spectral flow between these limits leads to
a non-trivial re-arrangement of the mass eigenstates and
global charges. In particular, the flow takes vector mesons
in the (0, 0) representation of the global SU(2)L×SU(2)R

symmetry, which is unbroken at the origin of moduli space,
to vector mesons in the representation (1, 1).

For the field theory given by (3.1) with (3.2), on the
Higgs branch the vector multiplet moduli φ3 vanish, while
qi and q̃i have non-zero expectation values. Here, the
lower-case letters denote the scalar components of the cor-
responding superfields. There are also mixed Coulomb-
Higgs vacua, for which both qi, q̃i and φ3 have non-zero
expectation values.

For non-zero m and vanishing φ3, the fundamental hy-
permultiplets are massive and there is no Higgs branch.
However, there is a mixed Coulomb-Higgs branch when φ3

has an expectation value such that some components of
the hypermultiplets are massless. An example of a point
on a mixed Coulomb-Higgs branch is given by a diago-
nal φ3 for which all but the last k entries on the diagonal
are vanishing, with the last k entries equal to −m. In this
case, the F-flatness equations q̃i(φ3 +m) = (φ3 +m)qi = 0
permit fundamental hypermultiplet expectation values in
which only the last k entries of qi and q̃i are non-zero.

On the supergravity side, the effective action describ-
ing D7 branes in a curved background is given by (3.3).
Since we need to consider at least two flavours (two D7s)
in order to have a Higgs branch, we have to consider the
non-Abelian version of (3.3).

At leading order in α′, field strengths which are self-
dual with respect to the flat four-dimensional metric
ds2 =

∑4
m=1 dymdym solve the corresponding equations

of motion, due to a conspiracy between the Chern-Simons
and DBI terms. Here the ym denote the 4567-directions
wrapped by the D7 brane probe. Inserting the explicit
AdS background values for the metric and Ramond-
Ramond four-form into the action (3.3), with non-trivial
field strengths only in the 4567-directions labelled by ym,
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gives

S =
µ7(2πα

′)2

4

∫

d4xd4y H(r)−1

×
(

−1

2
ǫmnrsFmnFrs + FmnFmn

)

=

µ7(2πα
′)2

2

∫

d4xd4y H(r)−1F 2
− ,

(3.72)

to leading order in α′, where r2 = ymym + (2πα′m)2 and
F−

mn = 1
2 (Fmn − 1

2ǫmnrsFrs). Field strengths F−
mn = 0,

which are self-dual with respect to the flat metric dymdym,
manifestly solve the equations of motion. These solutions
correspond to points on the Higgs branch of the dual
N = 2 theory. Strictly speaking, this is a point on the
mixed Coulomb-Higgs branch if m 6= 0. In order to ne-
glect the backreaction due to dissolved D3 branes, we are
considering a portion of the moduli space for which the
instanton number k is fixed in the large-N limit.

In [100], it was found that the instanton is also a solu-
tion of the action to all orders in α′.

The AdS/CFT dictionary for the Higgs branch is ob-
tained by considering the symmetries in both field theory
and supergravity as usual. On both sides, for m 6= 0 there
is a SO(2, 4)×SU(2)L×SU(2)R×U(1)R×SU(2)f symme-
try, where SU(2)f stands for the flavour symmetry present
if two coincident D7 branes are considered. We focus on
that part of the Higgs branch, or mixed Coulomb-Higgs
branch, which is dual to a single instanton centered at the
origin ym = 0. The instanton, in “singular gauge,” is given
by

Aµ = 0, Am =
2Λ2σ̄nmyn

y2(y2 + Λ2)
, (3.73)

where Λ is the instanton size, and

σ̄mn ≡ 1

4
(σ̄mσn − σ̄nσm), σm ≡ (i~τ , 12×2),

σmn ≡ 1

4
(σmσ̄n − σnσ̄m), σ̄m ≡ σ†

m = (−i~τ , 12×2).

(3.74)

with ~τ being the three Pauli matrices. We choose sin-
gular gauge, as opposed to the regular gauge in which
An = 2σmny

m/(y2 +Λ2), because of the improved asymp-
totic behaviour at large y. The instanton (3.73) breaks the
symmetries to

G = SO(1, 3)×SU(2)L×diag(SU(2)R×SU(2)f ), (3.75)

and corresponds to a point on the Higgs branch

qiα = v εiα, v =
Λ

2πα′ , (3.76)

where qiα are scalar components of the fundamental hy-
permultiplets, labelled by a SU(2)f index i = 1, 2, and
a SU(2)R index α = 1, 2. All the broken symmetries are
restored in the ultraviolet (large r), where the theory be-
comes conformal.

Fig. 12. Meson masses as a function of the Higgs vev,
from [99]. Each dotted line represents a regular solution of
the equation of motion, corresponding to a vector multiplet of
mesons. The vertical axis is

√
λM/m, where M is the meson

mass, λ the ’t Hooft coupling and m the quark mass. The hori-
zontal axis is v/m where v = Λ/2πα′ is the Higgs VEV. In the
limits of zero and infinite instanton size (Higgs vev), one recov-
ers the spectrum (gray horizontal lines) obtained analytically
in the absence of an instanton background by [17].

The simplest non-Abelian ansatz for fluctuations Aµ

about the instanton background is given by

Aµ
(a) = ξµ(k)f(y)eikµxµτa, y2 ≡ ymym, (3.77)

which is a singlet under SU(2)L and a triplet under
diag(SU(2)R × SU(2)f ). τa are the three Pauli matrices.
With this ansatz, the vector meson masses are obtained
in direct analogy to the method presented in sect. 3.3.1
above. The result for the vector meson masses is shown
in fig. 12, where the meson masses in the presence of the
instanton are shown as dotted lines, while the full hor-
izontal lines correspond to the meson spectrum without
an instanton found in [17], discussed above in sect. 3.3.1.
We see that the spectrum is shifted by two levels when
moving from zero to infinite instanton size. This may be
understood as follows. In singular gauge, the infinite-size
instanton is given by

An = 2
σ̄mny

m

y2
. (3.78)

By virtue of the singular gauge transformation

U = σmym/|y|, (3.79)

An may be set to zero, which allows for direct compari-
son with the meson spectrum of [17]. However, performing
the same singular gauge transformation on the fluctua-
tions (3.77), we obtain fluctuations in a higher spherical
harmonic ℓ = 2 on S3. The fact that ℓ = 2 is in exact
agreement with the level shift observed in fig. 12.

The instanton ansatz has also been used for studying
the Higgs potential in gravity duals with less supersym-
metry [101, 102]. In particular, it has been used to show
with gauge/gravity dual methods that an isospin chemical
potential leads to instabilities in supersymmetric theories,
in agreement with field theory results [103].
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3.7 Summary

We have introduced quarks into the AdS/CFT correspon-
dence, in the quenched limit Nf ≪ N , by including probe
D7 branes. By “quenched” we mean that there are no
quark loops contributing to the gauge propagators. The
gauge theory resulting from adding D7 probes has N = 2
supersymmetry. The D3 and D7 branes can be separated
in two directions and the separation gives a mass to the
quarks. Fluctuations of the D7 brane in these two direc-
tions are dual to scalar and pseudo-scalar mesons. A gauge
field on the D7 worldvolume is dual to the vector mesons
of the gauge theory.

We have been able to compute a number of meson
masses in this strongly coupled supersymmetric model. If
the quark mass is zero, the theory is conformal and there
are no bound states. When the quark mass, mq = L/2πα′,
is none zero the masses of mesons made from a single
quark flavour are generically given by

M ∼ 2L

R2
n ∼ 2mq n

√

g2
Y MN

, (3.80)

where we have used (2.8) and n is the radial excitation
number of the meson.

These mesons are very tightly bound —their mass is
suppressed relative to the mass of the quarks they are
made of by the ’t Hooft coupling which is formally infinite.
Note also that these states do not show Regge behaviour
(M ∼ √

n). We will discuss the relation of these results to
QCD later in sect. 8 on AdS/QCD.

We have also looked at highly spinning strings and
strings that are dual to heavy-light mesons. In each case
these strings are extended and a semi-classical approxima-
tion can be used. These mesons have masses of order the
quark mass of their contents (i.e. not suppressed by the
’t Hooft coupling). This separation in masses of different
states is rather unlike QCD.

4 Beyond the probe approximation
(backreaction)

The computations of quark and meson behaviour reviewed
so far has been restricted to the probe brane approxima-
tion or, equivalently in the gauge theory, the quenched
approximation. A significant limitation of the probe ap-
proximation is that the number of flavours must be much
smaller than the number of colours, Nf ≪ N . Similarly
to the quenched approximation in (lattice) gauge theory,
the probe approximation ignores the effects of the cre-
ation and annihilation of virtual quark-antiquark pairs on
the gauge degrees of freedom. An obvious consequence of
quenching is that potentially interesting quark contribu-
tions to the theory’s β-function are lost. An unquenched
computation, in which N and Nf are of the same order,
requires that we go beyond the probe approximation. Vir-
tual quark loops can be taken into account by including
the backreaction of the flavour branes. In this section we

discuss the simplest supersymmetric example of a super-
gravity solution which involves the backreaction of the
flavour brane on the supergravity geometry. These com-
putations are much harder than the probe computations
and progress in more QCD-like theories is so far limited.

4.1 Fully localized D3/D7 brane intersection

As an example we consider the fully-localized D3/D7 in-
tersection in flat space which has been constructed in a
series of papers [26,27,29,30]. Before discussing the corre-
sponding supergravity solution, we will review the D3/D7
worldvolume field theory at finite Nf/N , where, as in
sect. 3, N and Nf are the number of D3 and D7 branes,
respectively.

4.1.1 The N = 2 field theory at finite Nf/N

Many aspects of the N = 2 field theory located on the
D3/D7 brane intersection have already been discussed in
sect. 3.1.1. The main difference from the quenched theory
in the probe limit is that the theory has a positive one-

loop beta function proportional to βλ
N=2 ∼ λ2 Nf

N [30, 75],
i.e. it is not conformal. Since the theory is N = 2 su-
persymmetric, this is the exact (all-order) perturbative
beta function —possible non-perturbative instanton con-
tributions are ignored here. Note that the beta function

vanishes in the conformal (probe) limit
Nf

N → 0 and the
gauge coupling is constant, in agreement with the discus-

sion in sect. 3. For finite values of the quotient
Nf

N , the

perturbative gauge coupling α = g2
Y M/4π is given by

α(Q2) =
1

β0 log
Λ2

L

Q2

with Λ2
L = µ2e1/(α(µ2)β0) , (4.1)

where Q2 is the energy scale, µ2 a reference scale and β0 =
Nf/4π. The gauge coupling has logarithmic behaviour and
runs into an ultraviolet Landau pole at the scale ΛL.

Another interesting feature of the N = 2 theory, not
present in the probe limit, is the chiral (or axial) anomaly.
In the chiral limit mq → 0, the classical N = 2 theory fea-
tures a chiral U(1)R symmetry corresponding to SO(2)
rotations in X8,9. At the quantum level, this symmetry is
explicitly broken by the chiral anomaly which is propor-
tional to

Nf

N TrF ∧ F. (4.2)

The anomaly-free (unbroken) subgroup of U(1)R is there-
fore the discrete group Z2Nf . This symmetry rotates the

fundamental spinors as ψ → e−iπ/Nfψ, ψ̃ → e−iπ/Nf ψ̃,
while the scalar X = X8 + iX9 of the (adjoint) gauge
multiplet transforms as X → ei2π/NfX.

In sect. 4.1.2 we will discuss the dual supergravity de-
scription of the perturbative field theory ignoring instan-
ton effects. The breaking of U(1)R to Z2Nf will not be
visible in this solution. We will however come back to the
chiral anomaly and its realization in the D3/D7 system in
sect. 4.1.3.
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4.1.2 The D3/D7 supergravity solution

We will see that the running gauge coupling α(Q2) and
the non-trivial theta angle θY M of the N = 2 theory can
be recovered from the fully-localized D3/D7 intersection7.
For simplicity, we will work in the case of massless quarks
—the D7 branes are at the origin in the (w5, w6)-plane.
The D3/D7 supergravity solution is given by

ds210 = h−1/2 ηµνdxµdxν

+h1/2
(

dρ2+ρ2dΩ2
3 +e−φ(dw2+w2dθ2)

)

, (4.3)

where the (near-core) warp factor h = h(ρ,w) is8

h(ρ,w) = 1 +
R4

(ρ2 + e−φw2)2
, (4.4)

with R4 = 4πgsNα
′2. The axion χ and dilaton φ are given

by

χ(θ) =
Nf

2π
θ, e−φ(w) = β0 log

w2
Λ

w2
, (4.5)

where we choose the integration constant wΛ to be

w2
Λ = w2

0 e
1/(gsβ0), β0 =

Nf

4π
. (4.6)

Here xµ parameterizes the directions along the D3 branes
(0123), while ρ is the radial direction in the four-plane
transverse to the D3 branes, but along the D7 branes
(4567) and w, θ are the radial and angular direction in the
two-plane transverse to the D7 branes. The background
also contains the Ramond-Ramond four-form potential of
the D3 brane solution. It has been shown in [27, 29] that
this background preserves eight supercharges. For Nf = 0,
the background reduces to that of a stack of N D3 branes
(note here that eφ = gs and rescale w2 → w2gs). For
N = 0, the background is that of Nf D7 branes.

Let us consider the case N = 0 in more detail. Then,
the warp factor becomes one, h = 1, and we recover the
D7 brane solution in the so-called weak-coupling approxi-
mation. Here the complete D7 brane dilaton profile [104]
(shown as a dashed curve in fig. 13a) is approximated by
the logarithmic profile (4.5) (solid curve in fig. 13a) at
small radii w. Extrapolation of the logarithmic behaviour
to larger values of w shows an apparent dilaton divergence
at the scale wΛ.

This perfectly reflects the perturbative aspects of the
dual N = 2 field theory, as can be seen as follows. Com-
paring (4.5) with (4.1), shows an intriguing similarity be-
tween the weak-coupling dilaton profile and the pertur-
bative gauge coupling [29, 30]. In fact, let us assume that

7 In a fully-localized brane solution the branes are located at
a fix location in the transverse direction. One should compare
this to a solution in which branes are “smeared” over some
directions.

8 For simplicity, we restrict to the near-core region of the
D3/D7 intersection (small values of w). The near-core approx-
imation corresponds to the IR region of the dual field theory.
The full warp factor is known in terms of a uniformly converg-
ing series expansion [30].
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Fig. 13. a) The logarithmic (solid curve) and the full regular
(dashed curve) dilaton profile (for Nf = 12, gs = 0.1, θ =
π/Nf ). The regular profile approaches eφ = 2/

√
3 (i.e. τ =

j−1(0) [104]) at w → ∞. b) Dilaton (red curve) and curvature
Rs(w) (blue curve) (for Nf = N = 50, gs = 0.1).

the w-direction in the background corresponds to the en-
ergy scale Q in the N = 2 theory, Q = w/(2πα′), and set
µ = w0/(2πα

′). If we then identify

α(Q2) = g2
Y M (Q2)/4π = eφ(w),

α(µ2) = g2
Y M (µ2)/4π = gs, (4.7)

we observe that there is a direct correspondence between
the running of the gauge coupling (4.1) and the logarith-
mic dilaton profile (4.5). Moreover, the string coupling
gs = eφ(w0) is fixed at w0, not at infinity. This corresponds
to fixing the gauge coupling g2

Y M (µ2) at some reference
scale µ. The above identification implies in particular that
the UV Landau pole at ΛL (gY M → ∞) is mapped to the
dilaton divergence at wΛ, ΛL = wΛ/(2πα

′2). Of course,
here we map one pathology to another: The perturbative
field theory becomes strongly coupled at the Landau pole
ΛL, while the supergravity solution breaks down at some
distance wΛ. In principle, both sides must be cured at
these scales. This issue will be addressed in sect. 4.1.3.

We also find that the Yang-Mills theta angle θY M is re-
flected by a non-trivial axion profile χ in the supergravity

background, χ = θY M

2π =
θNf

2π .
In order to obtain a supergravity theory dual to the

N = 2 field theory, we consider the background (4.3) at
large ’t Hooft coupling λ and fixed Nf/N . In this limit
(λ ≫ 1), we may drop the “1” in the warp factor h(ρ,w)
and the D3 branes are replaced by their near-horizon ge-
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ometry. Note that the D7 branes do not disappear; open
strings ending on the D7 branes are kept in this limit
as signaled by the curvature singularity at the location
w = 0 of the D7 branes. (This singularity might be re-
solved within classical string theory by α′ corrections.)

The background is a good supergravity solution in the
regime of small effective string coupling and small cur-
vature, eφ ≪ 1 and α′Rs ≪ 1. The first requirement is
satisfied for radii w ≪ wΛ corresponding to energies much
below the Landau pole. The curvature measured in string
units is α′Rs ∼

√

e−φ/N [27] and diverges for w → 0.
However, at the (infrared) cut-off w0(∝ µ) the curvature
becomes

α′Rs ∼
√

1

4π

Nf

N
log

w2
0

w2
+

1

gsN

w=w0=
1√
λ
, (4.8)

which is small in the large ’t Hooft coupling limit. The
background is thus a valid supergravity solution in the
regime w0 ≤ w ≪ wΛ (corresponding to energies µ ≤
Q ≪ ΛL in the field theory). Figure 13b shows a plot of
the scalar curvature and the dilaton in this regime.

There are some subtleties to this construction which
have been addressed at length in [30]. First, the dilaton
diverges at wΛ and one might worry about the absence of
a true boundary at w → ∞. Note, however, that mass-
less open string states (related to the field theory) pre-
cisely map into massless closed string states (generating
supergravity) [30], i.e. there is no mixing with massive
states. The gauge/gravity duality therefore works even
without a true boundary. Second, since the D7 branes are
codimension-two branes, there are uncancelled tadpoles in
the string background. Tadpole divergences usually corre-
spond to gauge anomalies and indicate an inconsistency
in the theory. However, as it was found first in [105], log-
arithmic tadpoles do not correspond to gauge anomalies,
but reflect the fact that the dual gauge theory is not con-
formally invariant. In fact, such tadpoles provide the cor-
rect one-loop running of the gauge coupling. Third, the
full D7 brane geometry contains an asymptotic deficit an-
gle of 2πNf/12 which restricts the number of flavours to
Nf ≤ 12 (Nf = 24) [104]. However, the background (4.3)
is a valid supergravity solution for any Nf , which corre-
sponds to the fact that there is no restriction on Nf in
the perturbative field theory. So, as long as we stay on the
supergravity level and we do not want to extend (4.3) to
a full string theory solution, we may use it for any Nf .

In summary, one finds that at large ’t Hooft coupling λ
and fixedNf/N the D3/D7 solution (4.3) perfectly reflects
the perturbative aspects of the dual N = 2 field theory at
low energies, such as the ultra-violet Landau pole and the
non-trivial theta angle.

4.1.3 Non-perturbative completion and U(1)R chiral
anomaly

The supergravity background discussed in the previous
section describes only the perturbative regime of the N =2
theory. In the strong-coupling regime the gauge coupling is
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Fig. 14. Axion (blue dotted lines) and dilaton (red solid lines)
for different values of θ (Nf = 12).

0

50

100

150

200

0

50

100

150
200
0

0.5

1

0

20

bumps

Fig. 15. “Bowl with bumps”: D7 brane profile exp(φ(w, θ))
(for Nf = 12 flavours). Only the first quadrant is shown.

corrected by instanton contributions which may cure the
ultra-violet Landau pole of the perturbative field theory.
We now investigate to what extent a D3/D7 intersection
including the full axion-dilaton of the D7 branes could
represent an ultra-violet completion of the perturbative
field theory, at least for Nf ≤ 12 (Nf = 24). We will refer
to this intersection as the complete D3/D7 intersection as
opposed to its logarithmic approximation discussed above.

The full axion-dilaton of the D7 branes is a solution
to j(τ) = (wΛ/w)e−iθ, where τ = χ + ie−φ and j(τ)
is the modular j-function. Some solutions are plotted in
fig. 14 which shows the profiles eφ(w) and χ(w) for differ-
ent values of the angular direction θ. At small radii w the
dilaton has logarithmic behaviour and is independent of
θ. In the strong-coupling region at the scale wΛ the full
D7 brane dilaton deviates from its logarithmic approxi-
mation. The profile also becomes dependent on θ leading
to Nf equally distributed “bumps” at the angles 2πk/Nf

(k = 1, . . . , Nf ), as shown in fig. 15. Asymptotically, the
dilaton approaches the constant value 1/ sin(2π/3) ≈ 1.15.

It is interesting to observe that the profile is invari-
ant under rotations of 2π/Nf . This is a direct conse-
quence of the chiral anomaly which breaks the chiral
U(1)R symmetry down to Z2Nf

. (Recall that the complex

transverse direction parameterized by X = weiθ rotates
under Z2Nf

as X → ei2π/NfX.) The chiral anomaly is
a non-perturbative effect and can therefore not be seen
in the logarithmic approximation. The full axion-dilaton
profile of the D7 branes, however, nicely demonstrates this
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anomaly. This is an important consistency check of the
complete D3/D7 intersection as a UV completion of the
perturbative N = 2 theory. Note that so far we only dis-
cussed the axion-dilaton, but not the metric of the com-
plete D3/D7 system. It is believed that in this case the
warp factor h(ρ,w) appearing in the metric ansatz (4.3)
can only be computed numerically, which we will not do
here.

4.1.4 Meson computation

A full computation of the mesonic spectrum of a back-
reacted solution is hard since one would need to look at
fluctuations of the full geometry. Instead we will return to
probe methods. We will embed a probe D7 brane into the
backreacted geometry and study the scalar meson spec-
trum of the probe. This will at least provide some insight
into the effects of flavour on the meson spectrum.

Firstly, we must check that it is possible to embed a
probe D7 brane in the backreacted D3/D7 geometry (4.3).
The D7 action takes the usual Dirac-Born-Infeld form (in
Einstein frame), with a coupling to the field C8 which is
dual to the dilaton. We find

S ∼
∫

dρeφρ3

(

√

1 + e−φ(∂ρw)2 − 1

)

. (4.9)

Note that the factors of h cancel. The cancellation be-
tween the leading DBI term and the Wess-Zumino term
is the usual cancellation that occurs for a D7 probe in the
geometry of a stack of many D7 branes. This action is
clearly minimized when ∂ρw = 0 when the action is zero
(one can also explicitly solve the equation of motion). The
D7 probe therefore lies flat in the geometry just as in the
usual probe computation —the value of w the probe is
placed at determines the quark mass.

If the quarks are all massless then the N = 2 gauge
theory is conformal. We will therefore consider the case
of Nf backreacted (unquenched) quark flavours and a sin-
gle quenched massive flavour. The scalar meson masses
are given by fluctuations of the probe in the w-directions
about its position d. The Lagrangian for such linearized
fluctuations is given by

L =
1

2
ρ3eφ(d)

(

R4

(ρ2 + e−φ(d)d2)2
(∂xφ)2 + (∂ρφ)2

)

.

(4.10)
Up to an overall constant this is just the Lagrangian from
the probe computation (3.12) but with

d→ d

(

β0 ln
w2

Λ

d2

)

1
2

. (4.11)

The meson spectrum is therefore, replacing d = 2πα′mq

with mq the quark mass,

M2 =
8π

gsN

(

β0 ln
Λ2

m2
q

)

m2
q(n+ 1)(n+ 2). (4.12)

By eq. (4.7) the meson mass M is proportional to

gY M (µ2)

gY M (m2
q)
< 1. (4.13)

The effect of unquenching the quarks is just to replace the
gauge coupling g2

Y M = 4πgs with the appropriate renor-
malized value at the scale of the quark mass.

5 More supersymmetric mesons

There has been considerable work on including quark
fields into gravity duals of gauge theories with less (but
none zero) supersymmetry. Typically, these geometries are
more complicated than AdS so even probe computations
are hard work. We will be brief in our review of this work
having spent considerable time on the simplest N = 2
theory and wishing to proceed to models with dynamical
chiral symmetry breaking in the spirit of QCD. This sec-
tion is intended as a guide to references for those who wish
to pursue them.

5.1 Klebanov’s duals

Klebanov, with a variety of collaborators, has studied
models in which D3 branes and fractional D3 are placed
on a conifold singularity [106–110]. A variety of N = 1
gauge theories with a product gauge group structure of
the form SU(N) × SU(M) can be realized. The adjoint
fields of the naive SU(N + M) group on the D3 branes
divide into adjoints of the sub-groups plus bi-fundamental
fields. These theories display a chain of Seiberg dualities
before developing a mass gap in the IR (corresponding to
a deformation of the conifold).

D7 brane probes were first introduced into this the-
ory in a supersymmetry preserving fashion adding extra
massive quark supermultiplets in [111]. The meson spec-
trum was computed and displays a mass gap for the vec-
tor, scalar and pseudo-scalar mesons (see also [112, 113]).
A more complete set of probe embeddings were found
in [114].

A perturbative analysis of the backreaction due to
the introduction of D7 branes in [115] found evidence of
Seiberg duality [116] in these theories.

Impressively, fully backreacted solutions for D7 branes
in the SU(N) × SU(N) theory were constructed in [117].
Many of the symmetry properties of the theory were repro-
duced and the running gauge coupling correctly matches
gauge theory expectations. These methods were extended
to the general SU(N) × SU(M) theory in [118]. Again
symmetry properties and the running gauge coupling of
the field theory were correctly reproduced on the grav-
ity side. Seiberg’s duality is also manifest in the solutions.
These techniques were also used to find embeddings in the
geometry AdS5 × Labc in [119].

5.2 B fields in the background: Polchinski-Strassler
dual

Interesting features arise if an antisymmetric two-form
(which enters the supergravity theory as described in
sect. 2.1) is turned on. The two-form enters the probe DBI
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action as in eq. (3.3). A prime example is the Polchinski-
Strassler background [67], in which aB field, together with
a non-trivial C2, is switched on in the six directions per-
pendicular to the boundary of AdS5. The supersymmetry
representation of B is chosen such that the B field is dual
to mass terms for the adjoint chiral multiplets in the dual
N = 4 gauge theory. In the supergravity picture, the D3
branes are polarized into D5 branes by virtue of the Myers
effect [88]. The supergravity solution is only known as a
perturbative expansion as one moves into the interior of
the space, towards the IR of the field theory.

The embedding of D7 branes into this background for
the so-called N = 2∗ and N = 1∗ theories, with a massive
hypermultiplet and an equal mass for the three chiral mul-
tiplets, respectively, has been considered in [120] and [121].
This requires the explicit construction of the deformed
gravity background to second order in the masses. For the
N = 2∗ case, it was shown in [120] that the meson mass
obtained from the D7 probe brane fluctuations receives a
contribution from the adjoint scalar quark mass, such that
there is a mass gap. Recently [122], the embedding of a D7
brane probe into the Lunin-Maldacena background [123]
was considered, which is dual to a N = 1 supersymmetric
marginal deformation of N = 4 super Yang-Mills theory.
Here, a Zeeman-like spitting of the mass spectrum is ob-
served.

5.3 Maldacena-Nuñez dual

The Maldacena-Nuñez background [124,125] is dual to an
N = 1 theory on the worldvolume of a D5 brane wrapped
on a 2-sphere and therefore describes a relative of N = 1
Yang-Mills theory with additional Kaluza-Klein modes.
The dual encodes the condensation of gauginos and the
N discrete vacua of the theory.

Probe D5 branes have been used to introduce matter
fields into this theory with N = 1 supersymmetry pre-
served in [126, 127]. The scalar and vector meson masses
were computed numerically in [127] and are both compat-
ible with the formula

Mn,l =
√

m2(r∗, λ)n2 + l2,

m(r∗, λ) =
π

2Λ
+ r2∗

(

0.23

Λ
+

0.53

Λ3

)

, (5.1)

where n is the radial excitation number, l the R-charge,
r∗ is a measure of the quark mass and Λ is the strong-
coupling scale of the underlying Yang-Mills theory.

A solution for the backreacted version of this theory
has been found in [128]. The geometry encodes many of
the properties of the theory including confinement and a
running coupling.

Quarks and mesons are also investigated in an alter-
native N = 2 wrapped D5 brane theory in [129].

5.4 Defect theories

Probe techniques similar to those we have described for
mesons have been used in gravity duals to include mat-

ter fields in the fundamental representation in gauge the-
ories on defects, i.e. on subspaces in (2 + 1) or (1 + 1)
dimensions. The first such examples, in the N = 4 theory,
were explored in [130–134]. Closed-form expressions for
the masses of lower-dimension supersymmetric mesons in
D3-D5 and D3-D3 systems were found in [135,136]. Other
examples are in [137–140]. A backreacted D2-D6 system,
in which both the adjoint and the fundamental degrees of
freedom live in (2 + 1) dimensions, can be found in [141],
and further analysis is in [142].

5.5 Non-commutativity

Quarks have been introduced into non-commutative gauge
theories using probe techniques in [143].

6 Chiral symmetry breaking

In the sections above we have introduced quarks into
the basic AdS/CFT correspondence. These supersymmet-
ric theories display bound mesonic spectra but, unlike in
QCD, become conformal theories in the limit where the
quark masses vanish. In QCD there is a dynamical mass
generation mechanism (chiral symmetry breaking) that
ensures the bound states remain massive as the quark
masses fall to zero. In addition there are a special set
of bound states, the pions, that are anomalously light
because they are the (pseudo-)Goldstone bosons of the
symmetry breaking. A gravity dual must capture these
crucial pieces of dynamics if it is to describe QCD suc-
cessfully —we describe a number of string constructions
that achieve these goals in this section. In each case there
is a very appealing geometric realization of the symmetry
breaking providing a pleasing intuitive picture.

6.1 Chiral symmetry breaking in field theory

We begin with a brief summary of chiral symmetry break-
ing in gauge theory, in order to compare with the gravity
description below. Consider the Lagrangian of massless
QCD,

LQCD|m=0 = −1

4
F a

µνF
aµν + ψ̄L/DψL + ψ̄R/DψR, (6.1)

ψL and ψR are the chiral projections of the Dirac spinor
ψ. In the massless case, the left-handed and right-handed
fields have separate invariances under flavour symmetry.
For the case of three flavours u, d, s we have

ψL → exp(−iθL · λ)ψL, ψR → exp(−iθR · λ)ψR, (6.2)

where λa, a = 1, . . . , 8 are the SU(3) Gell-Mann matrices.
These transformations may also be expressed as vector
and axial-vector transformations,

ψ → exp(−iθV · λ)ψ, ψ → exp(−iθA · λγ5)ψ (6.3)
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with θV = (θL + θR)/2, θA = (θL − θR)/2. The La-
grangian (6.1) is thus invariant under SU(3)L × SU(3)R

or SU(3)V × SU(3)A.
One might have expected a U(3)L × U(3)R global

symmetry. It turns out that in QCD U(1)A is anoma-
lous [144, 145], and thus not present in the quantum the-
ory —gauge configurations with non-trivial winding num-
ber make ∂µJ

µ
U(1)A

6= 0 through the “triangle” quark loop

graph. The only exception is when Nf ≪ N when the tri-
angle graph becomes suppressed in a 1/N expansion. The
U(Nf )A symmetry is thus present at large N . The vector
U(1) is the baryon number symmetry and is a spectator
to the symmetry breaking.

This chiral symmetry may be broken explicitly if a
mass term is present in the Lagrangian,

Lm = −mψ̄ψ. (6.4)

There is another spontaneous breaking of chiral sym-
metry in QCD though —the strong dynamics triggers the
formation of a vev for the operator

〈ψ̄ψ〉 = 〈ψ̄LψR〉 + h.c. 6= 0. (6.5)

In both symmetry-breaking cases, the flavour symme-
try is broken down to a single vector SU(3)V factor,

SU(3) × SU(3) → SU(3)V . (6.6)

Goldstone’s theorem though tells us that for a sponta-
neously broken symmetry 8 massless Goldstone bosons are
expected, one for each broken generator. In QCD these are
quark bound states, the π±, π0,K±,K0, K̄0 and the η. In
the large-N limit where the U(1)A symmetry is restored
the η′ joins these particles as a Goldstone boson.

A low-energy effective action for the Goldstone modes,
which are lighter than all other QCD bound states, may
be written (see for example [146]). The usual formulation
is to write the Goldstone fields, πa, as part of a field

U = ei2πaλa/fπ , (6.7)

where fπ is the pion decay constant. U transforms un-
der the underlying chiral symmetries as L†UR and its vev
(the 3 × 3 unit matrix) breaks this symmetry to the di-
agonal. The effective Lagrangian can be constructed as a
derivative expansion with leading term

L = f2
π Tr ∂µU†∂µU + . . . . (6.8)

If a small explicit breaking by a quark mass term is
present, the Goldstone bosons acquire mass to become
pseudo-Goldstone bosons. Since the 3 × 3 mass matrix
transforms under the (now spurious) chiral symmetries as
L†MqR we can add a term to the low-energy action

∆L = ν3 TrM†
qU, (6.9)

where ν3 is some dimension-3 coefficient that measures
the size of the quark condensate and must be fitted phe-
nomenologically. This term generates a mass for the Gold-
stones with M2

π ∼Mq.

We will see below how this symmetry breaking is real-
ized in gravity duals. In the first examples, we will make
use of the large-N limit of the AdS/CFT correspondence
and realize the breaking of a simple U(1)A symmetry, un-
der which ψL and ψR transform as

ψL → eiαψL, ψR → e−iαψR. (6.10)

The associated Goldstone boson has the quantum num-
bers of the η′ particle although its behaviour is more akin
to the pions. We will also describe a model that can realise
the full non-Abelian chiral symmetry-breaking pattern as
seen in QCD.

6.2 D7 probes in non-supersymmetric backgrounds

To see chiral symmetry breaking in the pattern of QCD in
the AdS/CFT correspondence it is necessary to break su-
persymmetry completely. The operator ψ̄ψ is the F-term
of a composite chiral superfield Q̃Q —its vev would break
supersymmetry and so it would not be expected to be
non-zero in a supersymmetric theory’s ground state.

So far we have encountered two different generaliza-
tions of the AdS/CFT correspondence: On the one hand,
the deformation of the AdS5 × S5 space, described in
sect. 2.4, leads to holographic RG flows which, in partic-
ular cases, flow to confining gauge theories. On the other
hand, we have discussed the addition of flavour arising
from the addition of D7 brane probes in sect. 3. The idea is
now to combine these two generalizations of the AdS/CFT
correspondence and to add D7 brane probes to deformed
gravity backgrounds. As we discuss below, and first shown
in [18], this leads to a dual gravity description of chiral
symmetry breaking and Goldstone bosons.

6.2.1 Constable-Myers background

A prototype example for a confining gravity background in
which supersymmetry is completely broken is the metric
constructed by Constable and Myers in [52]. This back-
ground is an example of a dilaton flow (see also [69]), in
which the dilaton —which is constant for the supergrav-
ity background dual to N = 4 super Yang-Mills— has a
non-trivial profile, i.e. depends on the radial coordinate in
deformed AdS space. At the supergravity level one simply
searches for a solution of the IIB equations of motion with
the dilaton switched on. More physical but also more com-
plicated examples could be considered but this geometry
provides an easy starting point. We will interpret the flow
in terms of the field theory shortly9.

We choose a convenient coordinate system for the grav-
ity background of Constable and Myers [52] such that in

9 Other very similar examples of chiral symmetry breaking
by embedding D7 brane probes into different dilaton-flow ge-
ometries have been found, for instance, in [91,147] and [148].
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Einstein frame, the geometry is given by

ds2 = H−1/2

(

w4 + b4

w4 − b4

)δ/4 3
∑

j=0

dx2
j

+H1/2

(

w4+b4

w4−b4
)(2−δ)/4

w4−b4
w4

6
∑

i=1

dw2
i , (6.11)

where b is the scale of the geometry that determines the
size of the deformation (δ = R4/(2b4) with R the AdS
radius) and

H =

(

w4 + b4

w4 − b4

)δ

− 1, w2 =
6
∑

i=1

wi
2. (6.12)

In this coordinate system, the dilaton and four-form are,
with ∆2 + δ2 = 10,

e2φ =e2φ0

(

w4 + b4

w4 − b4

)∆

, C(4) = −1

4
H−1dt∧dx∧dy∧dz.

(6.13)
This geometry returns to AdS5 ×S5 in the UV as may be
seen by explicitly expanding at large w.

The field theory dual is therefore the N = 4 super
Yang-Mills theory in the far UV. In the IR it is deformed
by the parameter b which sets the conformal symmetry
breaking scale —it will determine the scale equivalent to
ΛQCD in the gauge theory

Λb =
b

2πα′ . (6.14)

The SO(6) symmetry of the geometry is unbroken so
the equivalent deformation in the gauge theory must not
break the R-symmetry. We also see that b enters with
the radial direction in AdS w and b4 must therefore corre-
spond to an operator of dimension four. There is a natural
dimension-four R-chargeless operator in the field theory
which is TrF 2. This is a geometry therefore describing
the N = 4 gauge theory with a source forcing it off its
supersymmetric vacuum. Note that TrF 2 is the F-term of
a composite operator of the product of two chiral super-
fields fields W and hence a vev for the operator clearly
breaks supersymmetry.

Note that the running of the dilaton in the gauge the-
ory corresponds to a running coupling. Indeed the dilaton
and geometry blow up at the scale Λb consistent with the
interpretation of that scale with ΛQCD. On the gravity
side singularities ought to be identified with a source —in
this non-supersymmetric case this identification is unclear
but one might imagine that the D3 branes of the geometry
have moved out from the origin to b and complete the ge-
ometry. We will escape resolving this issue below because
the D7 branes we will embed will not penetrate as far in
as b.

This field theory of course has extra adjoint degrees of
freedom as compared to QCD. However, it has been shown
to be confining by calculating the Wilson loop, which has

an area law. We will therefore take it as a model for a
confining SU(N) theory at large N .

The next step is to add quarks [18, 149]. We will use
an embedded probe D7 brane as discussed in sect. 3.
The D7 brane will be embedded, in the static gauge,
with worldvolume coordinates identified with x0,1,2,3 and
w1,2,3,4. Transverse fluctuations will be parameterized by
w5 and w6 —it is convenient to define a coordinate ρ such
that

∑4
i=1 dw2

i = dρ2 + ρ2dΩ2
3 and the radial coordinate

is given by w2 = ρ2 + w5
2 + w6

2.
In the field theory we have introduced N = 2 quark

hypermultiplets with the usual superpotential coupling to
the N = 4 fields which is Q̃ΦQ. Note there is a U(1)R

symmetry under which Q and Q̃ have charge 0 (their
fermionic components have charge −1) and Φ has charge
+2. This symmetry is analogous to U(1)A in that a vev for
the fermionic quark bilinear ψ̄ψ will break the symmetry.
Geometrically, this symmetry corresponds to rotations in
the (w5, w6)-plane. With the supersymmetry breaking in-
duced by b4 in the geometry, we expect the scalar quarks
in the hypermultiplets to become massive (that the mod-
uli space is lifted and the scalar vevs pinned at zero was
checked in [102]).

The Constable-Myers background is convenient for em-
bedding a D7 brane probe since it preserves SO(6) sym-
metry. The embedding functions determining the mini-
mum energy configuration of the D7 probe are functions
of ρ only, i.e. essentially of the energy scale. As alluded to
above the D7 brane probes giving rise to chiral symmetry
breaking are embedded in a perfectly regular way avoiding
the naked singularity in the IR at b.

The Dirac-Born-Infeld action of the D7 brane probe in
the Constable-Myers background takes the form

SD7 = −T7R
4

∫

d8ξ ǫ3 e
φG(ρ,w5, w6)

×
(

1 + gabg55∂aw5∂bw5 + gabg66∂aw6∂bw6

)1/2

, (6.15)

where

G(ρ,w5, w6) =

ρ3 ((ρ2 + w2
5 + w2

6)
2 + b4)((ρ2 + w2

5 + w2
6)

2 − b4)

(ρ2 + w2
5 + w2

6)
4

.

Here we have rescaled w and b in units of R as in [150]
so that factors of R only occur as an overall factor on the
embedding Lagrangian. Note that the factors of α′ cancel
between R4 and T7 leaving the free energy proportional
to 1/gs —in the usual ’t Hooft limit (N → ∞ with gsN
fixed) the free energy grows as N as one would expect.

From these equations we derive the corresponding
equation of motion. We look for classical solutions of the
form w6 = w6(ρ), w5 = 0. The equation of motion reads

d

dρ

[

eφG(ρ,w6)
√

1 + (∂ρw6)2
(∂ρw6)

]

−
√

1 + (∂ρw6)2
d

dw6

[

eφG(ρ,w6)
]

= 0. (6.16)



110 The European Physical Journal A

ω
6

Singularity

ρ

Good

Bad

Ugly

Fig. 16. Different possibilities for solutions of the D7 brane
equations of motion. The semicircles are lines of constant r,
which should be interpreted as a scale in the dual Yang-Mills
theory. The “Bad” curve cannot be interpreted as an RG flow.
The other curves have an RG flow interpretation, however the
infrared (small r) region of the “Ugly” curve is outside the
range of validity of supergravity. Figure from [18].

The last term in the above is a potential-like term that is
evaluated to be

d

dw6

[

eφG(ρ,w6)
]

=
4b4ρ3w6

(ρ2 + w2
6)

5

(

(ρ2 + w2
6)

2 + b4

(ρ2 + w2
6)

2 − b4

)∆/2

×(2b4 −∆(ρ2 + w2
6)

2). (6.17)

Numerically, we find solutions with the asymptotic be-
haviour w6 ∼ m + c/ρ2. The identification of these con-
stants as field theory operators requires a coordinate
transformation because the scalar kinetic term is not of
the usual canonical AdS form. Transforming to coordi-
nates [16] in which the kinetic term has canonical form,
we see that m has dimension 1 and c has dimension 3.
These coefficients are then identified with the quark mass
mq and condensate 〈ψ̄ψ〉, respectively, in agreement with
the usual AdS/CFT dictionary obtained from the asymp-
totic boundary behaviour (2.15).

Due to the singularity in the background, we have to
impose a regularity constraint on the brane embedding,
which amounts to a boundary condition for the equation of
motion determining the embedding. This is illustrated in
fig. 16. Brane embeddings reaching the singularity are ex-
cluded since they enter a region of strong curvature where
the supergravity approximation is no longer valid. In ad-
dition, embeddings which intersect the circles of constant
energy twice cannot be interpreted as a RG flows and
thus are unphysical. A boundary condition which selects
the physical embeddings is to require the first derivative
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Fig. 17. Regular solutions in the Constable-Myers back-
ground. From [18].
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m3.5 4.0

Fig. 18. A plot of the condensate parameter c vs. quark mass
m for the regular solutions of the equation of motion in the
Constable-Myers background. c and m are given in units set
by the length scale b. From [18].

of the embedding functions to vanish at ρ = 0. In the pic-
ture of the Karch/Katz RG flow discussed in sect. 3.2, this
amounts to requiring the (now deformed) S3 to shrink to
zero at this point.

We now calculate the embedding functions for the
D7 brane probe by solving the equations of motion ob-
tained from the DBI action (6.15). The numerical result
is displayed in fig. 17. For each of these embeddings we
fix two boundary conditions, as required for solving a
second-order differential equation: For regularity, we re-
quire the first derivative of the embedding to vanish at
ρ = 0. Secondly, the absolute value of the embedding func-
tion w at the boundary ρ→ ∞ fixes the value of the quark
mass in units of the scale b. The condensate c ≡ 〈ψ̄ψ〉 in
units of b may then be read off from the asymptotic be-
haviour of the embedding at ρ→ ∞, where the embedding
behaves as

w ∼ m+
c

ρ2
. (6.18)

We see an interesting screening effect in fig. 17: The reg-
ular solutions appear to be repelled by the singularity,
rather than just being straight lines as in the supersym-
metric case. This can be related to spontaneous chiral
symmetry breaking by a quark condensate: In fact, as is
seen from figs. 17 and 18, there is a regular embedding
with non-zero condensate even for m → 0. This corre-
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Fig. 19. Masses of the lowest-lying meson masses for fluctu-
ations about the D7 brane embedding in radial and angular
direction, as a function of the quark mass. The angular fluc-
tuation mode gives rise to a (pseudo-)Goldstone mode. Since
the spontaneously broken symmetry is U(1)A, the Goldstone
boson may be interpreted as the η′, which is a Goldstone boson
of this symmetry in SU(N) gauge theory for N → ∞. Figure
provided by J. Große.

sponds exactly to spontaneous chiral symmetry breaking
by a quark condensate! Moreover, at large m we have
c ∼ 1/m, as expected from field theory. Notice also the
finite distance on the w-axis between the singularity and
the embedding with m→ 0.

Remember that the D7 and D3 branes can in fact
be separated in the full (w5, w6)-plane and therefore a
D7 brane lying on the axis of that plane asymptotically
(so the bare mass of the quark is zero and there is a good
U(1)A symmetry in the UV) is deflected out onto any
point on a circle in the plane. That circle represents the
vacuum manifold of the breaking of the U(1) symmetry
—we see a completely geometric realization of the sym-
metry breaking.

6.2.2 Goldstone boson

Since there is spontaneous symmetry breaking for m→ 0,
we expect a Goldstone boson analogous to the η′, in
the meson spectrum. Clearly, fluctuations in the angu-
lar direction in the (w5, w6)-plane (i.e. along the vac-
uum manifold) will generate these massless states. Solving
the supergravity equation of motion for D7 probe brane
fluctuations in the two directions transverse to probe,
(δw5 = f(r) sin(k · x), δw6 = h(r) sin(k · x)) around the
D7 brane probe embedding shown in fig. 18, the meson
masses are given by M2 = −k2. There are indeed two
distinct mesons (see fig. 19): One is massive for every m,
and corresponds to fluctuations in the radial transverse
direction, the other, corresponding to the U(1) symmetric
fluctuation, is massless for m = 0 and is thus a Goldstone
boson. It may be identified with the η′, which becomes
a U(1)A Goldstone boson for N → ∞. At finite N , pure
stringy corrections will give the η′ a non-zero mass in the
gravity picture, similarly to instantons in the field theory
dual [151,152].
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Fig. 20. A plot of mρ vs. m2
π in the Constable-Myers back-

ground on top (we thank Andrew Tedder for generating this
plot). Lattice data [20] (quenched and at finite spacing) for the
same quantity is also shown at the bottom.

Another important property of the model of [18] is
the small quark mass behaviour of the meson mass, pro-
portional to the square root of m, thus satisfying the
Gell-Mann–Oakes–Renner relation [153] of chiral QCD.
Also the linear asymptotics for large m correctly repro-
duce the field theory results. In [149] the scaling of the
Goldstone’s mass with the (small) quark mass was deter-
mined to be

M2
π

Λ2
b

= 2.75

√

π

gsN

mq

Λb
. (6.19)

6.2.3 Vector mesons

The vector mesons in the model are, as in the basic D7
brane embeddings, described by the gauge fields in the
DBI action describing the D7 branes. Again solutions of
the form Aµ = g(ρ) sin(k ·x)ǫµ provide the masses of the ρ
and its radially excited states [149]. The n = 0, unexcited,
state has mass

M2
ρ

Λ2
b

= 2.16

√

π

gsN
. (6.20)

As expected it is massive, reflecting the dynamical gener-
ation of a quark mass.

In fig. 20 we plot the dependence of the rho meson mass
on the pion mass squared in this model, in dimensionless
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units fixed by the choice of the supergravity scale b. The
rho mass as a function of the pion mass squared has re-
cently also been computed for large N within lattice gauge
theory [19, 20], and a direct comparison of gauge/gravity
and lattice results is possible. In the lattice computations,
the scale is set by the lattice spacing a. We choose our
units such as to be able to compare directly with the
lattice results of [20], which are shown at the bottom of
fig. 20. In units such that the offset at mπ = 0 coincides
with [20], we find a linear dependence of the rho mass on
the pion mass squared, with slope 0.57.

For the lattice results of [20], the simulations are per-
formed in the quenched approximation. This is appropri-
ate for the large-N limit, if not for smaller N . The lattice
data of [20] is preliminary and at a fixed, finite lattice
spacing. Nevertheless, it is striking that not only does the
lattice data display the same linearity as the gauge/gravity
model, but also the slope in the large-N limit is 0.52 and
therefore is very close to the gauge/gravity dual result.
The fact that the numbers agree at the level of the first
digit is surprising. We will see in the sections that follow
that generically AdS-meson predictions match QCD data
better than one would naively expect. For large values of
the quark mass, we expect mρ ∝ mπ due to the onset of
supersymmetry.

6.3 Gauge theory in AdS4 space

Another clean example of a gravity dual description of
chiral symmetry breaking has been provided in [22]. There
the duality is adapted to look at the N = 4 gauge theory in
a four-dimensional anti-de-Sitter space. The gravity dual
provided in [22] has a constant dilaton and is given by

ds210 =

{

r2

R2
A2
(

−dt2 + a(t)2γ(x)2(dxi)2
)

+
R2

r2
dr2

+R2dΩ2
5

}

, (6.21)

A = 1 +
(r0
r

)2

, a(t) =
R2

2r0
sin
(

2
r0
R2

t
)

,

γ(x) =
1

1 − xixi/(4r̃20)
, (6.22)

where R =
√
Λ/2 = (4πN)1/4 and r̃0 is an arbitrary scale

factor which sets the 4d cosmological constant

λ = −4
r20
R4

. (6.23)

The presence of a cosmological constant breaks both
conformal invariance and supersymmetry.

Quarks are included in the geometry through probe D7
branes. The computation follows those already seen and
we display the embeddings in fig. 21. Chiral symmetry
breaking is clearly manifest.

The meson spectra associated with fluctuations of the
D7 brane in the w5, w6-directions have also been computed
and are shown in fig. 22. There is a pion mode, whose
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Fig. 21. D7 brane embeddings in the geometry with an AdS4

subspace showing chiral symmetry breaking. Figure provided
by K. Ghoroku.
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Fig. 22. Plot of the scalar (m8) and pseudo-scalar (m9) masses
vs. the quark mass mq for l = n = 0, r0 = 1.0 and R = 1 in
the AdS4 theory [22]. Plots provided by K. Ghoroku.

mass fits the expected Gell-Mann–Oakes–Renner relation
for small quark mass, and a massive sigma mode.

D7 embeddings have also been studied when the gauge
theory lives in de-Sitter space [154, 155] but there is no
spontaneous chiral symmetry breaking in that case (the
behaviour is like that of the N = 4 gauge theory at finite
temperature described in sect. 7).

6.4 Chiral symmetry breaking in the D4/D6 system

A similar model based on a D4 brane background, in
which one of the space directions wrapped by the D4
branes is compactified on a circle, was studied in [21].
There the flavour degrees of freedom are provided by D6
brane probes. Spontaneous chiral symmetry breaking of
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the U(1)A symmetry is seen in this model too. It has the
advantage of not displaying a singularity in the interior
of the curved space. On the other hand, the dual gauge
theory becomes five-dimensional in the UV.

The authors of [21] consider the D4/D6 system with
the branes oriented as described by the following array:

0 1 2 3 4 5 6 7 8 9
N D4 X X X X X
Nf D6 X X X X X X X

The D4 and the D6 branes may be separated from each
other along the 89-directions. On the gauge theory side
one has a supersymmetric, five-dimensional SU(N) gauge
theory coupled to a four-dimensional defect. The entire
system is invariant under eight supercharges, i.e. there is
N = 2 supersymmetry in four-dimensional language. The
degrees of freedom localized on the defect are Nf hyper-
multiplets in the fundamental representation of SU(N),
which arise from the open strings connecting the D4 and
the D6 branes. Each hypermultiplet consists of two Weyl
fermions of opposite chiralities, ψL and ψR, and two com-
plex scalars.

Identifying the 4-direction with period 2π/MKK , and
with anti-periodic boundary conditions for the D4 brane
fermions, breaks all of the supersymmetries and renders
the theory effectively four-dimensional at energies E ≪
MKK . Further, the adjoint fermions and scalars become
massive. Now, the bare mass of each hypermultiplet, mq,
is proportional to the distance between the corresponding
D6 brane and the D4 branes. Even if these bare masses are
zero, we expect loop effects to induce a mass for the scalars
in the fundamental representation. Generation of a mass
for the fundamental fermions is, however, forbidden by the
chiral U(1)A symmetry. At low energies, one is therefore
left with a four-dimensional SU(N) gauge theory coupled
to Nf flavours of fundamental quark.

6.4.1 D4 brane background

The type-IIA supergravity background dual to N D4
branes compactified on a circle with anti-periodic bound-
ary conditions for the fermions takes the form

ds2 =

(

U

R

)3/2
(

ηµν dxµdxν + f(U)dτ2
)

+

(

R

U

)3/2
dU2

f(U)
+R3/2U1/2 dΩ2

4 , (6.24)

eφ = gs

(

U

R

)3/4

, F4 =
N

V4
ε4 , f(U) = 1 − U3

KK

U3
.

(6.25)

The coordinates xµ = {x0, . . . , x3} parameterize the four
non-compact directions along the D4 branes whereas τ pa-
rameterizes the circular 4-direction on which the branes
are compactified. dΩ2

4 and ε4 are the SO(5)-invariant line
element and volume form on a unit four-sphere, respec-
tively, and V4 = 8π2/3 is its volume. U has dimensions of

length and may be thought of as a radial coordinate in the
56789-directions transverse to the D4 branes. To avoid a
conical singularity at U = UKK , τ must be identified with
period

δτ =
4π

3

R3/2

U
1/2
KK

. (6.26)

This supergravity solution above is regular everywhere
and is completely specified by the string coupling con-
stant, gs, the number of D4 branes N , and the constant
UKK . The remaining parameter, R, similar to the AdS
radius, is given in terms of these quantities and the string
length, ℓs, by

R3 = πgsN ℓ3s . (6.27)

The SU(N) field theory dual to (6.24), (6.25) is defined by
the compactification scale, MKK , below which the theory
is effectively four-dimensional, and the four-dimensional
coupling constant at the compactification scale, gY M .
These are related to the string parameters by

MKK =
3

2

U
1/2
KK

R3/2
=

3

2
√
π

U
1/2
KK

(gsN)
1/2
ℓ
3/2
s

g2
Y M = 3

√
π

(

gsUKK

Nℓs

)1/2

. (6.28)

The string length cancels in any calculation of a physical
quantity in the field theory. For example, the QCD string
tension is

σ =
1

2πℓ2s

√

−GttGxx

∣

∣

∣

U=UKK

=

1

2πℓ2s

(

UKK

R

)3/2

=
2

27π
g2

Y MNcM
2
KK . (6.29)

6.4.2 Probe D6 branes

Flavour degrees of freedom are introduced into this model
by adding D6 brane probes. Asymptotically (as U → ∞),
the D6 brane is embedded as described by (6.4). The anal-
ysis is simplified by introducing isotropic coordinates in
the 56789-directions. A new radial coordinate ρ is related
to U by

U(ρ) =

(

ρ3/2 +
U3

KK

4ρ3/2

)2/3

. (6.30)

Moreover, five coordinates ~z = (z5, . . . , z9) are introduced,
such that ρ = |~z | and d~z · d~z = dρ2 + ρ2dΩ2

4. In terms of
these coordinates the metric (6.24) becomes

ds2 =

(

U

R

)3/2
(

ηµν dxµdxν + f(U)dτ2
)

+K(ρ)d~z · d~z ,
(6.31)

where

K(ρ) ≡ R3/2U1/2

ρ2
. (6.32)

Here U is now thought of as a function of ρ. Finally,
to exploit the symmetries of the D6 brane embedding,
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it is useful to introduce spherical coordinates λ,Ω2 for the
z5,6,7-space and polar coordinates r, φ for the z8,9-space.
The final form of the D4 brane metric is then

ds2 =

(

U

R

)3/2
(

ηµν dxµdxν + f(U)dτ2
)

+K(ρ)

×
(

dλ2 + λ2 dΩ2
2 + dr2 + r2 dφ2

)

, (6.33)

where ρ2 = λ2 + r2. In these coordinates the D6 brane
embedding takes a simple form, using xµ, λ and Ω2 as
worldvolume coordinates (or ξa, a = 1, . . . , 6 collectively).
The D6 brane’s position in the 89-plane is specified as
r = r(λ), φ = φ0, where φ0 is a constant. Note that λ
is the only variable on which r is allowed to depend, by
translational and rotational symmetry in the 0123- and
567-directions, respectively. Embeddings with τ = const
correspond to a single D6 brane localized in the circle
direction.

With this ansatz for the embedding, the induced met-
ric on the D6 brane, gab, takes the form

ds2(g) =

(

U

R

)3/2

ηµν dxµdxν +K(ρ)

×
[(

1 + ṙ2
)

dλ2 + λ2 dΩ2
2

]

, (6.34)

where ṙ ≡ ∂λr. The D6 brane action becomes

SD6 = − 1

(2π)6ℓ7s

∫

d7ξ e−φ
√

−det g =

−TD6

∫

d7ξ
√
h

(

1 +
U3

KK

4ρ3

)2

λ2
√

1 + ṙ2 , (6.35)

where TD6 = 2π/gs(2πℓs)
7 is the six-brane tension and h

is the determinant of the metric on the round unit two-
sphere. The equation of motion for r(λ) is

d

dλ

[

(

1 +
U3

KK

4ρ3

)2

λ2 ṙ√
1 + ṙ2

]

=

−3

2

U3
KK

ρ5

(

1 +
U3

KK

4ρ3

)

λ2 r
√

1 + ṙ2 . (6.36)

Note that r(λ) = r0, where r0 is a constant, is a solution in
the supersymmetric limit (UKK = 0), as in [16, 17]. This
implies that there is no force on the D6 brane, regardless of
its position in the 89-plane. The solution with r0 = 0 pre-
serves the U(1)A rotational symmetry in the 89-directions.
If UKK 6= 0, the force on the D6 brane no longer vanishes
and causes it to bend, as dictated by the equation of mo-
tion above. In this case the U(1)A symmetry is broken. In
particular, there is spontaneous symmetry breaking by a
quark condensate, exactly in the same way as described in
sect. 6.2.1 above for the D3/D7 system. Moreover, exactly
as described in 6.2.2, there is a pseudo-Goldstone mode
similar to the η′. Mesons with large spin in this model are
studied in the spirit of sect. 3.5 in [93, 156] and their de-
cays are analyzed in [157]. Heavy-light mesons have been
analyzed in [158].

For the case of multiple flavours, Nf > 1, the authors
of [21] present a holographic version of the Vafa-Witten
theorem [159], which states that the U(Nf ) flavour sym-
metry cannot be spontaneously broken if mq > 0. In the
holographic description this is realized by the fact that
the Nf D6 branes must be coincident in order to mini-
mize their energy.

A novel feature of [21] is that there is a discussion of the
case when both D6 and D6 brane probes are present. This
leads to a defect field theory in which the fundamental
degrees of freedom are confined to a (2 + 1)-dimensional
subspace. Nevertheless, this is an important step towards
the physical model described in the next section.

6.5 Non-Abelian chiral symmetries

The holographic models we have reviewed to date are
intrinsically supersymmetric gauge theories in the ultra-
violet. This gives more control but means only that a
U(1)A chiral symmetry can be realized because of cou-
plings between the quarks and the adjoint, scalar su-
perpartner of the gluons (there is a superpotential term

Q̃ΦQ). To realize a more realistic non-Abelian chiral
symmetry requires an analysis of an intrinsically non-
supersymmetric brane configuration —Sakai and Sugi-
moto [24,25] have provided such a candidate.

The gauge degrees of freedom are provided, as in the
model of sect. 6.4, by a D4 brane with one direction
wrapped on a circle. Quarks are included by including sep-
arated D8 branes and anti-D8 branes. These D8 branes fill
the whole space except one direction which is taken to be
the circular direction. The model is displayed in fig. 23
—the compactified direction is x4.

The D4-D8 (D8) strings generate chiral (anti-chiral)
quark fields in the gauge theory [24]. The two U(Nf ) gauge

symmetries on the surfaces of the D8 and D8 branes are
interpreted as the chiral non-Abelian flavour symmetries.

We should stress that the model describes a five-
dimensional theory with chiral quarks living on defects
in the UV. The compactified dimension renders a four-
dimensional IR but we will not be able to drive the com-
pactification scale smaller than the typical scale of the
strong dynamics as one would like. Hopefully some uni-
versal features of this class of model can teach us about
the four-dimensional gauge theory though.

We will see that the key feature of this model, when
we take the strong coupling limit to render a gravity dual,
is chiral symmetry breaking. In particular the D8 and D8
branes will prefer to join into a single curved D8 brane as
shown in fig. 23. There is only one surviving SU(N) gauge
symmetry corresponding to the chiral symmetries being
broken to the vector. Furthermore there is a minimum
D4-D8 separation so the quark strings stretched between
them have some minimal dynamically determined mass.

6.5.1 Gravitational background (D4-D8-D8)

We can now consider the holographic dual of this
D4-D8-D8 system by taking the near horizon limit of the
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Fig. 23. Sketch of the underlying D4-D8-D8 brane construction and the chiral symmetry-breaking embeddings in the gravity
dual.

geometry of a large-N D4 brane stack wrapped on a circle
(note α′ corrections to the metric are considered in [160]).
We have

ds2 =
( u

R

)
3
2 (

dx2
4 + f(u)dτ2

)

+

(

R

u

)
3
2
(

du2

f(u)
+ u2dΩ2

4

)

(6.37)
with f(u) ≡ 1−(uKK

u )3. Note here u is the holographic di-
rection. There is a non-zero four-form flux (not important

for this discussion) and a dilaton e−φ = gs(
u
R )−

3
4 .

Note the coordinate τ is periodic with the period given

by δτ = 4π
3

R
3
2

u
1
2
KK

forming a S1 which is wrapped by the

D4 branes. This compactification is necessary in order to
make the space-time smooth and complete. There is a
horizon at u = uKK (where the radius of the S1 → 0)
which means the coordinate u is restricted to the range
[uKK ,∞]. This scale represents the mass gap of the pure
glue theory and the block to smaller u shows the theory
is confining.

We will change variables to the radial coordinate z,
where 1 + z2 = ( u

uKK
)3, so the geometry becomes

ds2 =
(uKK

R

)
3
2

(

√

1+z2dx2
4 +

z2

√
1 + z2

dτ2

)

+

(

R

uKK

)
3
2

×u2
KK

(

4

9
(1 + z2)−

5
6 dz2 + (1 + z2)

1
6 dΩ2

4

)

. (6.38)

6.5.2 Probe D8 branes

As usual finding the full backreacted geometry when
D8 branes are introduced is difficult so we will work in
the probe limit corresponding to quenching in the gauge
theory —a good approximation when Nf ≪ N . The back-
reaction has been addressed as an expansion in the num-
ber of D8 branes in [161] and the probe embeddings below
remain stable.

We can find the embeddings of a probe D8 brane in
the above background. These form a family of curves in
the (z, τ)-plane which we parameterize as τ(z). The Dirac-
Born-Infeld (DBI) action for the embedding is

SDBI =

∫

D8

d8ζ e−φ
√

−det[P(gab)] . (6.39)
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Fig. 24. Some regular D8 brane embeddings in the (z, τ)-
plane. We have set R = 1 and uKK = 1 for the numerical
plot.

This gives

SDBI = Vol(S4)

∫

d4x

∫

dz
2

3
gsu

5
KK

(

R

uKK

)
3
2

(1+z2)
2
3

×
√

1 +
9

4u2
KK

(uKK

R

)3

z2(1 + z2)
1
3 τ ′(z)2 . (6.40)

One finds that the extremal configurations τ(z) for the
D8 obey

τ ′(z) =
2

3

(

R

uKK

)
3
2

× J
√

u6
KKg

2
sz

4(1 + z2)2 − J2u−2
KKz

2(1 + z2)
1
3

. (6.41)

Here J = gsu
4
KKz0(1 + z2

0)
5
6 is chosen effectively to

make the gradient infinite at z = z0. This point is the point
of closest approach of the D8 to the horizon at u = uKK .

This gives us a one-parameter family of embeddings
where choosing a particular value of z0 specifies one par-
ticular curve. Some examples are shown in fig. 24 for z0
increasing in factors of

√
10. Note the curve for z0 = 0

consists of two horizontal pieces at τ = ±π
3

R
3
2

u
1
2
KK

plus a

vertical piece at z = 0 connecting the two. The vertical
piece lies on the horizon.
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The large z (UV) asymptotic behaviour of the solu-
tions takes the form

τ = α− β

z3
(6.42)

with α, β free parameters.

6.5.3 The pion

For the moment let us restrict to discussing the β = 0 solu-
tion (we will return to the other embeddings in sect. 6.5.5).
For this solution the D8 and D8 lie at anti-podal points
on the circle until the connection along the horizon at
u = uKK . This configuration is interpreted as the theory
with massless quarks and chiral symmetry breaking on the
same scale as the mass gap of the glue. The chiral sym-
metry breaking should imply the existence of a Goldstone
boson —in the one flavour case this will be the equiva-
lent of the η′ in QCD although since we are at large N
the anomaly is suppressed and the η′ behaves more like a
pion.

If chiral symmetry is broken there should be a vac-
uum manifold with different points corresponding to the
different possible phases on the quark condensate. In [24]
the phase of the quark condensate was identified with the
value of the gauge field Az living on the D8 worldvolume.
To identify the vacuum manifold we should find back-
ground solutions (that is, independent of the x4 coordi-
nates) for Az(z, x4) which correspond to different global
choices of the phase π. Az is described by the DBI action
including a U(1) gauge field, which at low energy has the
Lagrangian density on the D8 worldvolume

L = e−φ
√

−det[P(gab)]

(

−1 − 1

4
F abFab

)

. (6.43)

For the massless D8 brane embedding we can take

τ(z) = ± δτ
4 which evaluates to ±π

3
R

3
2

u
1
2
KK

. Physically, the

vertical part of the D8 brane in this case can be neglected
because it lies along the horizon where points separated in
τ are degenerate. Working on the upper branch of the D8

brane (τ(z) = +π
3

R
3
2

u
1
2
KK

) the action then takes the simple

form (neglecting the volume factor coming from the four-
sphere angular coordinates —we are working with states
of zero spin on the S4 here)

S =
1

2

∫ ∞

0

dz

∫

d4x
(

e−φ√−ggzzg11
)

×
(

−(∂0Az)
2 + (∂1Az)

2 + (∂2Az)
2 + (∂3Az)

2
)

. (6.44)

It is apparent that F ab and hence the action vanishes
if Az is the only non-zero field and if it is only a function
of z. Any function of z is allowed. This is an artifact of
gauge freedom in the model and one should pick a gauge.
For example, one could gauge fix by including a term

δL =
1

ξ
e−φ

√

−det[P(gab)] (∇aA
a − κ(z))

2
, (6.45)

where κ(z) is any arbitrary function. Writing Az(z, x4) ≡
g(z)π(x4), there is sufficient freedom to pick any func-
tional form of g(z). We will follow the choice of Sakai and
Sugimoto and pick

g(z) =
C

1 + z2
. (6.46)

The solution contains the arbitrary multiplicative fac-
tor C since the action is only quadratic in Az. The freedom
to pick the constant C in this solution is the freedom to
move on the vacuum manifold.

We can now identify the pion field. It should corre-
spond to space-time (xµ) dependent fluctuations around
the vacuum manifold. In other words we look at solutions
of the form

Az(z, x) = π(x4) ×
2√
3π

1

1 + z2
. (6.47)

Substituting this into the action (6.44) we find a canon-
ically normalized kinetic term for a massless field,

S =

∫

d4x
1

2
(∂µπ)2. (6.48)

This is the pion —the Goldstone mode of the chi-
ral symmetry breaking. The non-Abelian partners of this
state are discussed in [162]. Note that interchanging the
D8 and D8 branes corresponds to interchanging left- and
right-handed quarks and is therefore a manifestation of
parity in the model. This state has negative parity and is
hence a pseudo-scalar.

6.5.4 Meson spectrum and interactions

Fluctuations of the D8 branes about the embeddings
discussed correspond to mesons of the gauge theory.
Generically, one looks for solutions of the linearized
field equations coming from the DBI action of the form
f(u)eikx. Even and odd functions f(r) describe even- and
odd-parity states.

Fluctuations of the vector field in the DBI action gen-
erate vector and axial vector mesons (note that the links
to the ideas of a hidden local symmetry in QCD are made
in [163]). In addition there is a scalar field correspond-
ing to fluctuations of the embedding. If we restrict these
fluctuations to the trivial harmonic of the four-sphere on
the D8 transverse to the x-directions, we obtain QCD-like
states. It is important to realize there are additional states
with higher harmonics that effectively have R-charge in-
dicating that there are light non-degenerate “superpart-
ners” of the QCD fields in the field theory. There are,
in addition, fermionic fields in the DBI action that would
describe mesinos if supersymmetry were restored [164]. Fi-
nally, there are also Kaluza-Klein modes of the glueballs
and gluino balls from the gauge sector. The typical scale
for the masses of all of these bound states is

MKK =
3

2

U
1/2
KK

R3/2
, R3/2 =

√

πgsNl3s . (6.49)
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Note that as in previous examples, the mesons are
tightly bound in the limit gsN → ∞, and hence rather
un-QCD-like. The values of the masses for states that can
be mapped to QCD have been computed in [24,25]. They
find

mρ 0.67 MKK , ma1
1.58 MKK ,

m∗
ρ 1.89 MKK , ma∗

1
2.11 MKK ,

m∗∗
ρ 2.21 MKK .

The interactions between mesons can also be computed
by inserting the functions f(r) back into the DBI action
and integrating over the four non-spatial directions on the
D8. Some example values are

f2
π =

1

54π4
g2

Y MN2M2
KK ,

gρρρ = 0.45
(6π)3/2

gY MN
,

gρππ = 0.42

√

216π3

g2
Y MN2

.

If one forces this model onto the QCD spectrum by fit-
ting the scale MKK and g2

Y MN , then these results match
the data at the 20–30% level.

Purely pionic interaction terms exist as well which re-
produce a Skyrme style model of baryons. There has been
considerable interest in the baryonic sector of the model
recently —see the papers [165–172]. See also the work on
introducing a Fermi surface at high density [173,174].

6.5.5 Non–anti-podal embeddings

Finally, we return to the non–anti-podal embeddings of
fig. 24. Clearly, these embeddings have a larger D4-D8
separation and hence a larger quark mass —there re-
mains debate in the literature about whether this mass
is a hard mass [175] or entirely dynamically gener-
ated [138,176,177].

The configurations differ in their asymptotic positions
of the D8 branes. Perturbatively, the configuration of a D8
and D8 on a circle is not generically stable due to their
attraction and they would be expected to join, suggest-
ing chiral symmetry breaking is present at weak coupling.
Fluctuations of the D8s in the UV though correspond to
strings with both ends on one D8 and are hence dual to op-
erators in the adjoint of the U(Nf ) chiral flavour symme-
tries. For example, they could correspond to the coupling
and source of a (possibly higher dimension) operator of the
form q̄Lγ

µDµqL. Clearly dialing this coupling in the UV
Lagrangian would enhance the gluon exchange diagram
between quarks and might well increase the dynamically
generated mass. On the other hand, if the true parameter
that is being changed is the quark mass then dynamically
that could feed through to set a different value for the
same operator’s coupling and vev. The change in position
of the D8 may be an indirect signal of the presence of a
quark mass.

One would think that the difference between hard and
explicit chiral symmetry breaking should be evident from
the existence, or otherwise, of a flat direction in the po-
tential. For all of these configurations the gauge freedom
discussed in sect. 6.5.3 above remains, so the analysis there
shows there is a flat direction. However, in the full string
construction the quark mass is a field vev and there should
be a larger spurious symmetry of the form

ql → eiαqL, qR → e−iαqR, m→ e−2iαm. (6.50)

If the flat direction corresponds to this symmetry then
fluctuations in this direction are not physical modes in
the gauge theory in which the phase of the mass is fixed.

Another approach taken has been to include an explicit
tachyonic mode connecting the D8 and D8 in [178–180].
This field should directly describe the quark mass and con-
densate and its vacuum solution does indeed set the shape
of the linked D8-D8 pair. The precise tachyon potential is
not known though.

In practice for the spectrum (the pion apart) it is not
too important whether the mass is dynamical or hard.
All the meson masses rise as the D8s are brought closer
together asymptotically.

An alternative attempt to introduce a quark mass by
the introduction of an instanton on the D8 worldvolume
can be found in [181].

6.6 More chiral symmetry breaking

A number of other examples of holographic chiral sym-
metry breaking exist in the literature. In [150] probe
D7 branes were numerically embedded in the non-
supersymmetric Yang-Mills∗ deformation [71] of the N =
4 theory providing evidence for chiral symmetry breaking.
Quarks have also been added to the beta-deformed N = 4
theory in [122] —chiral symmetry breaking is again ob-
served. It appears to be generically true that breaking
supersymmetry in gravity duals leads to chiral symmetry
breaking.

Attempts have been made to construct gravitational
duals of QCD in non-critical string theories. These grav-
ity theories in less than ten dimensions risk the presence of
order-one curvature and so are not completely controlled.
Nevertheless, the AdS6 Schwarzschild black hole [182] is a
possible candidate and shows confining behaviour. In [183]
quarks are introduced in the spirit of sect. 6.5 above via
both a D4-D4 and D5-D5. Chiral symmetry breaking is ob-
served in the pattern of the Sakai-Sugimoto model and the
vector meson masses have been computed. A non-critical
D3-D4-D4 configuration is discussed in [184] and again
displays chiral symmetry breaking.

6.7 Summary

We have reviewed a number of holographic descriptions
of chiral symmetry breaking. Quarks are introduced via
probe branes in non-supersymmetric geometries. In each
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case, the repulsion of the core geometry acting on the
probes causes the spontaneous symmetry breaking, which
appears as a manifest breaking of a symmetry in the ge-
ometrical set-up. The quarks acquire a dynamical mass
resulting in a non-zero vector meson mass even at zero
quark mass. Goldstone bosons of the symmetry breaking
play the role of the pions of QCD. These are all crucial dy-
namical results in view of holographically describing QCD.

7 Mesons at finite temperature

In previous sections we have focused on strongly coupled
gauge theories at zero temperature. Considerable progress
has also been made on understanding the thermal prop-
erties of gauge theories using holography.

The gravitational dual of placing the N = 4 gauge
theory at finite temperature is to replace the AdS space
with an AdS-Schwarzschild black hole [31, 32]. The black
hole has all the correct thermodynamic properties to de-
scribe the thermodynamics of the gauge theory. Further,
the horizon cuts off the holographic radial direction corre-
sponding to cutting off energy scales below that of the
temperature in the field theory. In the infinite volume
limit, the free energy of the black-hole solutions is lower
than that of AdS with a compact time direction for any
temperature. If the spatial directions of the theory are also
compact, the transition between AdS space and the AdS-
Schwarzschild black hole can be shifted to higher tem-
peratures of order the inverse compactification scale. This
gravitational tunnelling transition was first described by
Hawking and Page [185]. Witten has interpreted it, within
the gauge-gravity duality, as the dual of the deconfinement
transition. The free energy of AdS scales as order one rel-
ative to the black-hole geometry’s free energy which scales
as N2 —the high-temperature phase has deconfined glu-
ons (and superpartners).

A considerable amount of work has been done on the
holographic description of the transport properties of the
quark-gluon plasma. Amongst these is the famous ratio of
shear viscosity to volume density of entropy which takes
the value ~/4πkB [186]. This corresponds to the “fluid”
with the lowest-known value of this ratio. There has been
considerable interest in this quantity, since the value of
this ratio deduced from RHIC heavy-ion collisions sug-
gests that the quark-gluon plasma is an almost perfect
fluid of this type [187].

Here we will constrain ourselves to reviewing results
on the thermal properties of mesons using the AdS/CFT
correspondence [18,34–36].

7.1 First-order phase transition in the quark-gluon
plasma

An interesting new first-order phase transition has been
found which occurs as the temperature increases and
passes through the meson’s mass scale. At this scale
the meson disassociates, or melts, into the background
plasma. This is an additional transition at energy scales

above the deconfinement scale. The sharp transition is
probably a consequence of being at large N and is not
believed to be present in QCD on the basis of lattice re-
sults [188–190]. Nevertheless, the gauge/gravity dual de-
scription does allow the study of meson melting.

7.1.1 AdS-Schwarzschild solution

The high temperature, deconfined, phase of the N = 4
gauge theory is described by the AdS-Schwarzschild solu-
tion, given by

ds2 =
K(r)

R2
dτ2 +R2 dr2

K(r)
+
r2

R2
d~x 2 +R2dΩ2

5 , (7.1)

where

K(r) = r2 − r4H
r2

. (7.2)

Asymptotically for r ≫ rH , the black-hole solution ap-
proaches AdS5×S5 whose radius is related to the ’t Hooft
coupling of the dual gauge theory by R4 = 4πλα′2. This
space-time is smooth and complete if τ is periodic with pe-
riod πrH . Note that the S1 parameterized by τ collapses
at the horizon r = rH . The fact that the geometry “ends”
at r = rH is responsible for the existence of an area law
for the Wilson loop and a mass gap in the dual field theory
(see [32]). For convenience, in the numerical work below
we shall set both R and rH equal to 1.

The temperature of the field theory corresponds to the
Hawking temperature of the black hole which is given by
the radius of the horizon, T = rH/(R

2π). At finite tem-
perature the fermions have anti-periodic boundary con-
ditions in the Euclidean time direction [32] and super-
symmetry is broken. The black hole solution thus de-
scribes a strongly interacting quark-gluon plasma which
is non-supersymmetric and non-conformal. It is therefore
believed that, despite the presence of other fields not con-
tained in QCD, this plasma shares some properties with
the quark-gluon plasma of QCD.

As in the previous sections, we now introduce a D7
brane into this background, which corresponds to the ad-
dition of matter in the fundamental representation. The
dual field theory is the N = 2 gauge theory discussed in
sect. 3.1.1, but now at finite temperature.

7.1.2 Embedding of a D7 brane

To embed a D7 brane in the AdS black-hole background
it is useful to recast the metric (7.1) to a form with an
explicit flat 6-plane. To this end, we change variables from
r to w, such that

dw

w
≡ rdr

(r4 − r4H)1/2
, (7.3)

which is solved by

2w2 = r2 +
√

r4 − r4H . (7.4)
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The metric is then

ds2 =

(

w2 +
w4

H

w2

)

d~x 2 +
(w4 − w4

H)2

w2(w4 + w4
H)

dt2

+
1

w2

(

6
∑

i=1

dw2
i

)

, (7.5)

where
√

2wH = rH ,
∑

i dw2
i = dw2 + w2dΩ2

5 , which,
for reasons of convenience, will also be written as dρ2 +
ρ2dΩ2

3 + dw2
5 + dw2

6, where dΩ2
3 is the unit three-sphere

metric. The AdS black-hole geometry asymptotically ap-
proaches AdS5 × S5 at large w. Here the background be-
comes supersymmetric, and the D7 embedding should ap-
proach the constant solutions w6 = m = const, w5 = 0
found in sect. 3. To take into account the deformation,
we will consider a more general ansatz for the embedding
of the form w6 = w6(ρ), w5 = 0, with the function w6(ρ)
to be determined numerically. The DBI action for the or-
thogonal directions w5, w6 is

SD7 = −µ7

∫

d8ξ ǫ3 G(ρ,w5, w6)

×
(

1 +
gab

(ρ2 + w2
5 + w2

6)
∂aw5∂bw5

+
gab

(ρ2 + w2
5 + w2

6)
∂aw6∂bw6

)1/2

, (7.6)

where the determinant of the metric is given by

G(ρ,w5, w6) =

√

gttg3
xxρ

6

(ρ2 + w2
5 + w2

6)
4

= ρ3 ((ρ2 + w2
5 + w2

6)
2 + w4

H)((ρ2 + w2
5 + w2

6)
2 − w4

H)

(ρ2 + w2
5 + w2

6)
4

.

(7.7)

With the ansatz w5 = 0 and w6 = w6(ρ), the equation
of motion becomes

d

dρ






G(ρ,w6)

√

√

√

√

1

1 +
(

dw6

dρ

)2

dw6

dρ







−
√

1 +

(

dw6

dρ

)2
8w8

Hρ
3w6

(ρ2 + w2
6)

5
= 0. (7.8)

The solutions of this equation determine the induced met-
ric on the D7 brane which is given by

ds2 =

(

w̃2 +
w4

H

w̃2

)

d~x 2 +
(w̃4 − w4

H)2

w̃2(w̃4 + w4
H)

dt2

+
1 + (∂ρw6)

2

w̃2
dρ2 +

ρ2

w̃2
dΩ2

3 , (7.9)

with w̃2 = ρ2 + w2
6(ρ). The D7 brane metric becomes

AdS5 × S3 for ρ≫ wH ,m.
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Fig. 25. Two classes of regular solutions in the AdS black-hole
background. The quark mass mq is the parameter m in units
of Λ ≡ wH

2πα′ : mq = mΛ. We set Λ = wH = 1.

7.1.3 First-order phase transition at finite temperature

We now compute the explicit D7 brane solutions. The UV
asymptotic (large ρ) solution, where the geometry returns
to AdS5 × S5, is of the form

w6(ρ) ∼ m+
c

ρ2
. (7.10)

The parametersm and c have the interpretation as a quark
mass and bilinear quark condensate 〈ψ̄ψ〉, respectively, as
discussed in sect. 6. These parameters can be taken as
the boundary conditions for the second-order differential
equation (7.8), which are solved using a numerical shoot-
ing technique. Of course the physical solutions should not
have arbitrary m and c. For a given value of m, c is fixed
by requiring regularity throughout the space.

The numerical solutions are illustrated in fig. 25 for
several choices ofm. We choose units such that the horizon
is represented as a quarter circle with radius wH = 1.

As can be seen from the figure, there are two qual-
itatively different D7 brane embeddings. At large quark
masses the D7 brane tension is stronger than the at-
tractive force of the black hole. The D7 brane ends at
a point outside the horizon, ρ = 0, w6 ≥ wH , at which
the S3 wrapped by the D7 brane collapses (see (7.9)).
Such a D7 brane solution is called a Minkowski embed-
ding. They behave very similarly to the supersymmetric
solutions in AdS5 × S5. As the mass decreases, there ex-
ists a critical value of the mass m = mcrit ≈ 0.92 such
that w6(ρ = 0) = wH . For smaller masses the D7 brane is
forced to fall into the black-hole horizon, i.e. the D7 brane
ends at the horizon w = wH at which the S1 of the black-
hole geometry collapses. This is a so-called black-hole em-
bedding.

From a geometrical point of view the two classes of em-
beddings differ by their topology: The D7 topology is R3×
B4×S1 for Minkowski and R3×S3×B2 for black-hole so-
lutions. The appearance of a change in the topology of the
embedding atmcrit points to a phase transition in the dual
field theory at exactly this critical value of the quark mass.

In fact, this embedding behaviour is a specific exam-
ple of the more general problem of embedding a brane of
arbitrary dimension in a black-hole geometry, as studied
in [191]. Expanding the embedding equation near the hori-
zon, it was shown that the equations have a self-similarity



120 The European Physical Journal A

0 1 2 3 4

T M

0.5

0.4

0.3

0.2

0.1

0

I

T/M

I/N

0.762 0.764 0.766 0.768 0.77 0.772 0.774

T M

0.0325

0.032

0.0315

0.031

0.0305

0.03

0.0295

0.029

I

T/M

I/N

0 1 2 3 4

T M

0.25

0.2

0.15

0.1

0.05

0

c

T/M

C

0.762 0.764 0.766 0.768 0.77 0.772

T M

0.09

0.08

0.07

0.06

0.05

c

A

B

T/M

C
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which implies that for a given range of m, there are an
infinite number of embeddings.

The dependence of the condensate on the mass is illus-
trated in fig. 26. At m = 0 the condensate c is zero (the
brane lies flat), so there is no chiral symmetry breaking in
this gauge theory. As m increases, the condensate c ini-
tially increases and then decreases again. At sufficiently
large m, the condensate becomes negligible, which is to
be expected as the D7 brane ends in the region where the
deformation of AdS is small. Recall that there is no con-
densate in the Yang-Mills theory with unbroken N = 2
supersymmetry described by D7 branes in un-deformed
AdS. Once supersymmetry is broken by the temperature
and the chiral symmetry is broken by the quark mass,
it would be surprising if a condensate were not present
though.

Since the D7 brane topology changes as mcrit is
crossed, one might expect a phase transition to occur at
this point. Zooming in aroundmcrit, we see in fig. 26 that c
is multi-valued around the critical mass mcrit as expected.
This means that for a given quark mass in the regime
1.295 ≤ m ≤ 1.308 there exist both Minkowski and black-
hole embeddings. These solutions have the same quark
mass m but a different value of the quark condensate c.

The c vs. 1/m plot can also be considered as a plot
of the condensate c vs. the temperature, since all dimen-
sionful quantities are normalized by the temperature by
setting rH = 1. For this we keep the quark mass m fixed
and vary the horizon wH ∼ T . Then, for small temper-
atures we recover the Minkowski embeddings, while for
high temperatures we have black-hole embeddings. Heat-
ing up the system from zero temperature, we eventually

reach a critical temperature Tcrit at which further sup-
ply of external energy does not increase the temperature
of the system. It rather leads to the formation of a quark
condensate. The jump in the quark condensate shows that
the phase transition is discontinuous and thus of first or-
der. The phase transition occurs in the deconfined phase
of the field theory at a temperature Tcrit > Tdeconf .

7.2 Mesons in the AdS black-hole background

The true physical nature of the phase transition corre-
sponding to the D7 branes switching from a Minkowski to
a black-hole embedding is revealed through the behaviour
of the mesons.

In the Minkowski phase, (i.e. when the D7 brane probe
does not reach the black-hole horizon) the meson spec-
trum is similar to that in the zero-temperature theory.
One can study perturbations of the D7 brane about the
background embedding of the form f(r)e−iwt, w2 = M2

corresponding to stationary mesons. Requiring regularity
for f(r) determines the allowed meson masses M . Plots
(taken from [34]) of the masses of the mesons associated
with angular fluctuations in the (w5, w6)-plane and radial
fluctuations in that plane are shown in fig. 27. As the mass
approaches the critical value of m the meson masses fall
and the lowest radial mode becomes tachyonic.

If we now move to the other side of the transition, in
the black-hole phase, when the D7 brane probe terminates
on the horizon, the mesons become unstable and decay. In
this case, there are no regular mesonic fluctuations with
real masses. Instead the black hole supports quasi-normal
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modes —fluctuations of the D7 that are purely infalling
waves at the horizon. The mass that is extracted from
these solutions is complex. The interpretation is that the
mesons are not stable in the thermal plasma, and “melt”
into it with a characteristic decay width given by the imag-
inary part of the quasi-normal eigenfrequency.

This is nicely described in [192]. An ansatz for D7
fluctuations of the form f(ρ)e−(iωt+k.x) is again used. For
the quasi-normal modes, the frequency ω develops a nega-
tive imaginary part, which provides a damping and corre-
sponds to the decay width of the meson. The quasi-normal
modes are eigenmodes with infalling boundary condition
at the black-hole horizon.

In [192] the spectrum of scalar fluctuations of the D7
brane around its minimal-energy embedding was analyzed
for a range of quark masses for fluctuations with zero
spatial momentum. We linearize the equation of motion
obtained from the DBI action for fluctuations of the D7
brane around the equilibrium configuration.

Consider embedding the D7 on the three-sphere within
the five-sphere parameterized as

dΩ2
5 = dθ2 + sin2 θdψ2 + cos2 θdΩ2

3 . (7.11)

In the special case of zero quark mass the D7 embedding
is trivial, lying at θ = 0 for all r.

We consider fluctuations of the embedding in the
θ-direction of the form θ(r)e−iωt+ik·x. Expanding the DBI
action to quadratic order in θ leads to the eigenvalue equa-

tion in the variable z ≡ rH

r ,

θ′′ − 3 + z2

z(1 − z4)
θ′ +

3

z2(1 − z4)
θ +

Ω2

(1 − z4)2
θ

− k2

(1 − z4)
θ = 0, (7.12)

whereΩ = ωR2/rH . In the UV (asymptotically AdS) limit
(z → 0) the solution is a linear combination of z1 and z3.
The latter is the normalizable mode and corresponds to a
field theory quark bilinear via the AdS/CFT dictionary.

In the IR (near-horizon) limit (z → 1) the solution

is a linear combination of (1 − z)+
i Ω
4 and (1 − z)−

i Ω
4 .

The solution with the negative exponent corresponds to a
purely infalling wave.

In this case the eigenvalue problem can be solved us-
ing a method known in the GR literature as Leaver’s
method [193] to obtain the quasi-normal spectrum for
k = 0 (fig. 28).

For a non-zero quark mass the D7 embeddings are
only known numerically and the analysis is much more
involved. We need the solution to behave like a purely
ingoing wave at the horizon and to be normalizable at
infinity. The technique is to perform numerical integra-
tion of purely ingoing solutions outward from the hori-
zon surface and normalizable solutions inward from in-
finity and attempt to match them smoothly at an inter-
mediate value of the radial coordinate. This matching is
only possible for a discrete set of frequencies which are
the quasi-normal frequencies. An interesting picture is ob-
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Fig. 28. The lowest quasi-normal modes for mq = 0 on the
upper plot and the three lowest quasi-normal modes for in-
creasing mq on the lower plot. The black points on the lower
plot show the limiting values for mq = 0.

tained for the temperature dependence of quasi-normal
modes, shown in fig. 28. As the embedding approaches the
critical embedding the imaginary part of the quasi-normal
frequencies is becoming smaller as one would expect —we
are moving closer to the mesons being stable. The evolu-
tion of the quasi-normal modes at large T into the stable
mesons at small T has been explicitly followed through
the computation of the theory’s spectral function in [194].

Computations involving semi-classical strings in the
D3-D7 system have also been made. The properties of
heavy-light mesons at finite temperature are determined
in [195]. A long D3-D7 string describes a heavy decon-
fined quark and the energy loss and wake produced by
such a string dragged through the plasma has been stud-
ied in [196–199].

Thus, the main physical characteristic of the phase
transition is the mesons melting into the background
thermal plasma. Note that since the temperature T =
rH/(R

2π) with R = λα
′2 and the transition occurs when

m ∼ rH , the temperature scale of the transition is

Tc ∼ mq(2πα
′)√

λα′π
∼ 2mq√

λ
. (7.13)

The transition occurs at a temperature of roughly the me-
son mass.

7.3 More thermodynamics

The thermal transitions in the D3/D7 system compactified
on an S3 has been studied in [200]. The meson spectra in
the presence of a black hole, whose radius is growing with
time, have been computed in [201].
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finite baryon density: the quark chemical potential µq divided
by the quark mass is plotted vs. the temperature T divided by
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√
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region with vanishing baryon density and the white region with
finite baryon density. The multi-valued region at the lower tip
of the transition line is not resolved here. The curves are lines
of equal baryon density. The curve for the critical density d̃∗ =
0.00315 displays where the first-order phase transition between
two black-hole embeddings disappears. Figure by M. Kaminski
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In the presence of a finite quark or isospin density, in-
troduced through a vev for the time component of the
gauge field on the probe brane, the structure of the phase
diagram becomes more involved. In particular, there are
unstable regions in the phase diagrams. Studies of fi-
nite chemical potential and finite density effects for D7
brane probes in the AdS-Schwarzschild background may
be found in [101,202–210].

We also note that equivalent phase transitions to those
above occur in the D4/D6 system of sect. 6.4 (see [21] for
the details and [35] for related work).

Considerable work has also been done on the Sakai-
Sugimoto model (see sect. 6.5 above) at finite tempera-
ture. That model also displays a first-order meson melt-
ing transition as described in [195, 211]. Additional finite
density studies can be found in [173, 174, 212–217]. As an
example we consider here spectral functions at finite tem-
perature and the quark chemical potential as discussed
in [209]. The phase diagram was found in [202,205] and is
displayed in fig. 29. In the grey-shaded area, the baryon
density nB is zero, the first-order phase transition be-
tween Minkowski and black-hole embeddings occurs. In
the white area, the baryon density is non-zero. In this
region, only black-hole embeddings are stable. Lines of
constant baryon density are displayed in colour. For small
non-zero values of the baryon density, a first-order tran-
sition between two black-hole embeddings occurs, which
disappears above a critical value for the quark density
given by d̃∗ ≡ 25/2nB/(Nf

√
λT 3) = 0.00315, with nB the

baryon density. Moreover, there is a multi-valued region
at the bottom of the separation line between the grey-
shaded and the white region, which is not resolved here.
According to the phase diagram, within the black-hole
phase (i.e. in the white region) for fixed quark mass, there
is a temperature-dominated region for large temperatures
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to the far right, and a potential-dominated region for small
temperatures to the left. In the two regions, the spec-
tral functions show a qualitatively different behaviour. We
consider the spectral functions for the current-current cor-
relator coupling to the gauge field on the D7 brane. The
result is displayed in fig. 30. In the temperature-dominated
region, the spectral function, i.e. the imaginary part of the
retarded Green function, displays very broad peaks cor-
responding to unstable vector mesons. This is shown in
the upper plot of the figure. In the potential-dominated
region however, the peaks become very narrow and their
location coincides exactly with the supersymmetric meson
spectrum discussed earlier in sect. 3.19 (by supersymme-
try, the scalar and vector spectra coincide).

A further interesting point is that the location of the
peaks first moves to lower frequencies when the temper-
ature is decreased until they reach a minimum. When
decreasing the temperature further, the peaks move the
larger frequencies again, while becoming narrower. This
corresponds to a movement of the poles similar to the one
displayed in fig. 28.

7.4 Mesons from D7 branes with external B fields

Supersymmetric versions of embeddings in backgrounds
with B field have been presented above in sect. 5.2. There
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Fig. 31. Embedding function L as a function of the radial coor-
dinate ρ for D7 branes embedded in the black-hole background
with external magnetic fields, for different values of the nor-
malized (dimensionless) external field B̃. Increasing values of
B̃ for fixed T show the repulsive nature of the magnetic B field,
which is switched on in two spatial directions parallel to the
boundary. We see that for large enough B̃, the black-hole phase
is never reached, and spontaneous chiral symmetry breaking
occurs. From [219].

are also interesting effects in non-supersymmetric back-
grounds with B fields.

A Zeeman splitting is observed if a pure gauge-external
B field is turned on in two spatial directions parallel to the
AdS boundary [23, 218]. Such a B field breaks supersym-
metry completely. As shown in [23,218], it induces sponta-
neous chiral symmetry breaking and Goldstone bosons by
virtue of a similar mechanism as discussed in sect. 6 above.

As discussed in sect. 7.1, there is no spontaneous chi-
ral symmetry breaking in the finite-temperature field the-
ory dual of the AdS-Schwarzschild black-hole background.
However, if a B field of the form of [23] of sufficient
strength is switched on, the chiral symmetry-breaking
mechanism induced by this B field dominates and is
present even in the black-hole background [219,220]. This
is shown in fig. 31.

With an external electric field, i.e. a B field turned on
in the temporal and one spatial direction parallel to the
boundary, a meson mass shift similar to the Stark effect
arises [219]. In this case, there is an attraction of the D7
brane probes towards the origin and no chiral symmetry
breaking occurs [219,221].

7.5 Summary

We have seen that the AdS/CFT correspondence implies
the existence of a novel thermal phase transition in theo-
ries with quarks. As the temperature passes through the
scale of the meson mass, there is a first-order phase tran-
sition with a small jump in the value of the quark con-
densate. The mesons of the theory melt into the thermal
bath at this scale. Note that this transition is distinct
from the deconfinement transition of the glue-fields. Lat-
tice calculations [188–190] do not reveal such a first-order
transition in QCD, so it is probably that it is an artifact
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of the large-N regime. Meson melting does occur in QCD
though and it is promising that we have a theoretical tool
to address that process. The mesons of this theory are
tightly bound and so harder to dissociate than those in
QCD —heavy-heavy mesons in QCD are not expected to
survive to as high a temperature as their mass scale as we
see here.

8 AdS/QCD

Inspired by holography a number of authors have pro-
posed phenomenological models of QCD generically called
AdS/QCD. These models consist of a gauge theory in a
curved space (usually AdS) with the field content picked
to holographically match to certain QCD bound states
and operators. This sort of modelling is necessarily a leap
in the dark. From the string theory side one might expect
that as one approached QCD from the theories at infinite
’t Hooft coupling, string corrections would become large
—one should be working in a string theory and not in
a field theory. Nevertheless, the string models described
above contain confinement and chiral symmetry breaking
and the ratio of meson masses do appear to match the
QCD values to a few 10% (the absolute values do not
match unless one extrapolates to order-one ’t Hooft cou-
pling —in the string models these states are tightly bound
with mass ∼ mq/

√

g2
Y MN). It is therefore interesting to

try model building in the spirit of these models.

8.1 A simple model

We will concentrate on the simplest example of this sort
proposed in [222] and [223, 224] which is closest in spirit
to the string models in sects. 6.2–6.4 (a phenomenological
model in the spirit of sect. 6.5 can be found in [225]).

The field theory will live in an AdS space in five dimen-
sions (discarding the extra five dimensions of the string
theory removes the SO(6) global symmetry of the N = 4
model as would happen were the superpartners to be de-
coupled),

ds2 = r2dx2
4 +

dr2

r2
. (8.1)

The radial coordinate r will be interpreted as the holo-
graphic energy scale of the theory (see (3.68)). As written
the metric has an SO(2, 4) symmetry and would appear
to describe a conformal gauge background. To break that
symmetry and impose confinement a crude, hard wall is
imposed at r = r0 —the theory will only live at r ≥ r0.
One can think of this scale as the mass gap of the gauge
background.

We will choose to describe the quark mass and con-
densate and the pion fields in the model. We introduce a
scalar field

X = X0e
2iπata

. (8.2)

X0 will be a background field that describes the quark
mass and condensate (these are both assumed to be ma-
trices in flavour space that are proportional to the iden-
tity). As we saw in (2.15) for a scalar to describe a quark

bilinear operator (∆ = 3) it must have mass squared
m2 = ∆(∆ − 4) = −3 in AdS and then the solution is
of the form

X0 =
1

2

m

r
+

1

2

Σ

r3
. (8.3)

Remember that r has energy dimension so m is the mass
and Σ the condensate. πa are then the N2

f − 1 pion fields.
In addition, the model describes the vector and axial

vector states through two massless gauge fields dual to the
operators q̄Lγ

µqL and q̄Rγ
µqR

10. The action is

S =

∫ ∞

r0

d5x
√−gTr

{

|DX|2 + 3|X|2 − 1

4g2
5

(F 2
L + F 2

R)

}

,

(8.4)
where X transforms on the left under SU(Nf )L and on
the right under SU(Nf )R.

It is of course completely ad hoc to only describe these
states. In QCD there are many other states with mass of
order the a0 and the ρ but we simply choose to ignore
them.

The mass, condensate and the position of the hard
wall will be parameters of the theory that are fit. There
is also g5, which in string theory duals is a prediction
in terms of the gauge theory ’t Hooft coupling g2

Y MN .
In the phenomenological approach though, this relation
is abandoned and the value of g5 is fitted to the vector
current correlator extracted from QCD,

∫

d4xeiqx〈Ja
µ(x)Jb

ν(0)〉 = δab(qµqν − qgµν)ΠV (−q2) ,
(8.5)

where Ja
µ(x) = q̄γµT

aq. For QCD, the leading-order con-

tribution to ΠV (−q2) is [226]

ΠV (−q2) = − N

24π2
ln(−q2). (8.6)

In order to calculate this quantity from the five-
dimensional model, we appeal to the AdS/CFT corre-
spondence. The five-dimensional vector field V a

µ (x, r) =
(Aa

Lµ(x, r) + Aa
Rµ(x, r))/2 acts as a source for the four-

dimensional vector current Ja
µ(x) in the limit r → ∞. It

obeys the equation of motion

∂µ

(

1

g2
5

eφ√−ggµαgνβ(∂αV
a
β − ∂βV

a
α )

)

= 0. (8.7)

We look for solutions of the form V µ(x, r) = V µ
0 (x)v(x, r),

with limr→∞ v(x, r) = 1, so that V µ
0 (x) will act as a source

of dimension one for Ja
µ(x). Solving the equation of mo-

tion (8.7) in the V r(x, r) = 0 gauge gives

v(q, r) = −π
2
Y1(q/r) ∼ 1 − q2

4r2
ln

(−q2
r2

)

, as r → ∞,

(8.8)
where Y1 is a Bessel function of the second kind. Substi-
tuting the solution back into the action and differentiating

10 The mass-conformal dimension relation for vector opera-
tors is m2 = (∆− 1)(∆− 3), thus m2 = 0.
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Table 4. Results for meson variables in AdS/QCD. AdS A is
the best fit to the starred variables. Model B is the best fit to
all the observables.

Observable Measured AdS A AdS B
(MeV) (MeV) (MeV)

mπ 139.6 ± 0.0004 139.6∗ 141
mρ 775.8 ± 0.5 775.8∗ 832
ma1 1230 ± 40 1363 1220
fπ 92.4 ± 0.35 92.4∗ 84.0

F
1/2
ρ 345 ± 8 329 353

F
1/2
a1 433 ± 13 486 440

twice with respect to the source V µ
0 gives the vector cur-

rent correlator

ΠV (−q2) =

[

1

g2
5q

2
r3∂rv(q, r)

]

r=∞
, (8.9)

which (up to contact terms) yields

ΠV (−q2) = − 1

2g2
5

ln(−q2). (8.10)

Finally, comparing this to the perturbative QCD re-
sult (8.6) determines the five-dimensional coupling to be

g2
5 =

12π2

N
. (8.11)

It may appear rather surprising to be fitting to the asymp-
totic perturbative result when a gravity dual is inherently
a description of a strongly coupled gauge theory. The ar-
gument that is usually made is that perturbative QCD
is conformal in the UV and so it is natural to match to
the UV behaviour in AdS which is also conformal. One
captures this conformality in the model if not the asymp-
totically free running of the coupling.

Now as usual one can solve (8.7) for solutions of the
form V = V (r)eip.x, p2 = −M2 with V (r) falling to zero
as r → ∞. One must choose a (necessarily arbitrary)
boundary condition at the hard wall and we can for exam-
ple choose ∂rV = 0. We can therefore extract the masses
of the ρ and its excited states.

One can also extract the decay constant for a ρ de-
caying to a photon. One integrates the action by parts
treating one field V as a solution of the equation of mo-
tion and one as a background external field. The coupling
is then

F 2
ρ =

1

g2
5

V ′′
ρ (r → ∞). (8.12)

Similarly, one can study the axial vector gauge field
and the pion to determine the pion mass, a1 mass and
their decay constants. The best fit results to the QCD
data are shown in table 4. There is a good fit to the data.

8.2 Higher-order pion interactions

The chiral symmetry-breaking pattern of AdS/QCD
means that the pions necessarily take the form of a chiral

Lagrangian model. In this formalism the coefficients are a
prediction though. In [223] the order p4 terms in the chi-
ral Lagrangian were estimated in the simplest AdS/QCD
model (assuming the lightest rho dominated these terms).
These terms take the form

L4 = L1 Tr2
[

DµU
†DµU

]

+ L2 Tr
[

DµU
†DνU

]

×Tr
[

DµU†DνU
]

+ L3 Tr
[

DµU
†DµUDνU

†DνU
]

+L4 Tr
[

DµU
†DµU

]

Tr
[

U†χ+ χ†U
]

+L5 Tr
[

DµU
†DµU

(

U†χ+ χ†U
) ]

+L6 Tr2
[

U†χ+ χ†U
]

+ L7 Tr2
[

U†χ− χ†U
]

+L8 Tr
[

χ†Uχ†U + U†χU†χ
]

−iL9 Tr
[

Fµν
R DµUDνU

† + Fµν
L DµU

†DνU
]

+L10 Tr
[

U†Fµν
R UFLµν

]

. (8.13)

We reproduce the results from [223] in the following table:

Experiment AdS5

L1 0.4 ± 0.3 0.4

L2 1.4 ± 0.3 0.9

L3 −3.5 ± 1.1 −2.6

L4 −0.3 ± 0.5 0.0

L5 1.4 ± 0.5 1.7

L6 −0.2 ± 0.3 0.0

L9 6.9 ± 0.7 5.4

L10 −5.5 ± 0.7 −5.5

8.3 Glueballs

It is also possible to include glueballs into AdS/QCD [227–
229] through additional scalars in the bulk. We can as-
sociate the 0++ glueballs with the operator TrF 2 a
dimension-4 operator —the usual AdS dictionary teaches
that the dual supergravity field should be massless. The
equation of motion (for a solution of the form φ =
φ(r)eipx, p2 = −M2) is

(

1

r
∂rr

5∂r +M2

)

φ(r) = 0. (8.14)

If we again impose Neumann boundary conditions
(∂zφ = 0) at the hard wall we find the glueball masses
(normalizing to the lattice gauge theory [230,231] value for
the lightest mass state) M1 = 1.63GeV, M2 = 2.98GeV,
M3 = 4.33GeV, etc.

8.4 A plethora of AdS/QCD phenomenology

A considerable number of other aspects of QCD phenom-
enology have been successfully addressed using AdS/QCD
which we cannot completely review here. The reader is
referred to the following references. Strange quarks are
added in [232]. Higher-spin mesons are studied in [233].
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Baryon states are included in [234]. Four-point current-
current correlators relevant to the ∆I = 1/2 rule and
the BK parameter for K-meson mixing are analyzed
in [235]. Heavy-quark potentials are computed in [236].
The AdS/QCD model is related to light-cone QCD in [237,
238] allowing form factor computations. Form factors for
mesons are also in [239,240].

Properties of QCD at high temperature and density
and the deconfinement transition have been analyzed in
this context in [241–247].

Such models have also been adapted to describe walk-
ing [248] technicolour [249, 250] dynamics for electroweak
symmetry breaking in [251–255]. It is worth remarking
that very similar ideas to these models have inspired the
field of Higgsless electroweak models [256, 257] and their
deconstructed [258,259] partners for example in [260].

8.5 Regge behaviour and the soft wall

The basic AdS/QCD model does not have the expected
Regge behaviour for the towers of radially excited states
(M2

n ∼ n) [261–264]. To see this, consider the action for
the gauge field in AdS describing the rho mesons,

I ∼
∫

d5xe−Φ(z)√−gF 2. (8.15)

Here we have included a dilaton field Φ that is a constant
in the basic AdS/QCD model. The equation of motion for
a solution of the form Ax = f(z)eikx, k2 = M2 is

(

r∂rr
3∂r +M2

)

f = 0. (8.16)

Changing variables to z = 1/r and substituting

f = eB/2ψ, B = φ+ ln r, (8.17)

we find

−ψ′′ + V (z)ψ = M2ψ, V =
1

4
(B′)2 − 1

2
B′′, (8.18)

which is of a Schrödinger equation form.
If we impose the IR boundary by putting in a hard

cut-off then the Schrödinger potential in the IR is that
of a square well. The mass spectrum therefore grows as
M2

n ∼ n2, in contradiction with the physically observed
Regge behaviour.

One might simply argue that this is a sign that the
supergravity approximation is breaking down when we try
to apply these methods to QCD —string theory naturally
gives Regge behaviour, so a resolution would be to work
with a full string theory. In [265] it was pointed out though
that if the dilaton grows as 1

r2 in the IR the potential V
will be of the form

V = z2 +
3

4z2
. (8.19)

The exact solution is known and M2
n = 4(n+1). Regge

style behaviour is therefore accessible in principle in the
supergravity regime. None of this behaviour is derivable
though merely posited.

8.6 Improvement and perfection

An obvious criticism of AdS/QCD is that it is a model
rather than being derived explicitly from the QCD La-
grangian. There is no understanding of systematic errors.
Can we hope to improve the model then?

Presumably, in reality, the weakly coupled string the-
ory model will only be valid in the strong-coupling regime
of QCD at low energies. It is therefore a low-energy ef-
fective theory. An obvious consequence of this is that a
UV cut-off should be imposed [266, 267] and the scaling
dimension of operators, values of higher-dimension opera-
tor couplings and expectation values of operators should
all be matched at the cut-off. In principle, this is possible
although there is no obvious truncation to a finite num-
ber of such matchings and the resulting model need not
be weakly coupled.

The introduction of expectation values for relevant op-
erators is discussed and introduced in [268–271]. Instan-
ton effects are included in [267]. In [272,273] backreacted
geometries in five-dimensional non-critical string theory
are generated that have a dilaton profile set to match the
QCD running coupling —the models display confinement
and chiral symmetry breaking (through the addition of
D4 and D4 branes). Meson properties have not yet been
computed there though. The inclusion of higher-dimension
operator couplings is discussed in [266,274]. Improvements
to the phenomenological fit can be achieved by all these
methods although at the expense of additional free pa-
rameters.

The basic AdS/QCD model also inputs chiral symme-
try breaking and the quark mass through two indepen-
dent parameters c and m. In reality, the quark condensate
should be a prediction of the background gauge dynam-
ics (the metric) and the value of m. The more complete
string models of chiral symmetry breaking discussed above
in sects. 6.2–6.4 do contain this explicit dynamics. In [275]
the dilaton flow model of chiral symmetry breaking was
adapted to an AdS/QCD model keeping that dynami-
cal behaviour. The computations are essentially those of
sect. 6.2 but with g5 fixed as in eq. (8.11). The resulting
model has one fewer free parameter and gives a match to
the data of similar quality to the basic AdS/QCD model.

Finally, higher-dimension operators in the gravity
dual’s action, representing stringy corrections, have been
included in [276].

8.7 Summary

AdS/QCD is a tidy crystallization of the ideas of hol-
ographic chiral symmetry-breaking models applied to
QCD. Generically, such models do well at reproducing
QCD phenomenology at the 10% level, suggesting that
their parent string theory models are capturing crucial
aspects of QCD dynamics. It remains a challenge though
both to understand how to systematically move towards a
complete description of QCD, and how to precisely embed
the AdS/QCD models into string theory.
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9 Conclusion

In this review we have seen how a new theoretical tech-
nique for calculating in strongly coupled gauge theory has
emerged from string theory. The AdS/CFT correspon-
dence in its initial form described the highly supersym-
metric and conformal N = 4 Yang-Mills theory at large
’t Hooft coupling. Deformations of the gravity dual have
since led to the understanding of confinement in non-
conformal theories. Here, we have concentrated on the
next step necessary for moving towards QCD, which con-
sists of adding quarks in the fundamental representation.
The strong dynamics of the gauge fields bind the quarks
into tightly bound mesonic states. When quarks are in-
cluded in non-supersymmetric geometries, we have seen
that chiral symmetry breaking is generated —the quarks
acquire a dynamical mass and there are Goldstone fields
associated with the symmetry breaking, the analogues of
the pions. It is very pleasing that the examples presented
show a large number of phenomena we observe in QCD.

The gravity dual description also works well for
strongly coupled finite-temperature field theories, for ex-
ample, for describing dynamical processes such as diffu-
sion and meson melting. These results are potentially rel-
evant for the quark-gluon plasma, for which standard per-
turbative or lattice gauge theory methods are not eas-
ily available.

Given these qualitative successes, it has been tempting
to make quantitative comparisons to QCD. This necessar-
ily involves ignoring the absence of asymptotic freedom
and the presence of massive, but not decoupled, super-
partners. The ’t Hooft coupling is also brought down from
the infinite coupling limit to make these comparisons. Sur-
prisingly though, such comparisons do hold up well (typi-
cally at the 10% level). This suggests that a wide range of
gauge theories share a number of even quantitative proper-
ties. There is considerable hope that calculations relevant
to QCD can be performed. This hope must be tempered
though by the difficulties of bringing systematic errors un-
der control.

We want to stress though that the value of the grav-
ity dual approach are of a more principal nature. They
provide an opportunity for new exchanges between string
theory and quantum field theory, which leads to a fresh
look at both fields. This has lead to progress in both areas.
Moreover, in this context, string theory as a candidate for
a unified theory of fundamental interactions has made a
significant step towards a more applied approach of being
applicable to experimentally testable models.

10 Other reviews

A number of other recent reviews may be of interest to our
readers. The “classic” review of the AdS/CFT correspon-
dence is [277]. Reference [278] contains a description of
generalizations to theories with broken conformal invari-
ance. Reference [279] covers material on D7 brane probes
in supersymmetric theories. The Sakai-Sugimoto model is
reviewed in [280]. Thermal properties of these theories are
reviewed in [281].
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127. C. Nuñez, A. Paredes, A.V. Ramallo, Flavoring the grav-
ity dual of N = 1 Yang-Mills with probes, JHEP 12, 024
(2003) arXiv:hep-th/0311201.
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