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Summary

Stomata control gaseousfluxesbetween the internal leaf air spaces and theexternal atmosphere.

Guard cells determine stomatal aperture and must operate to ensure an appropriate balance

between CO2 uptake for photosynthesis (A) and water loss, and ultimately plant water use

efficiency (WUE). A strong correlation between A and stomatal conductance (gs) is well

documented and often observed, but the underlying mechanisms, possible signals and

metabolites that promote this relationship are currently unknown. In this reviewwe evaluate the

current literature on mesophyll-driven signals that may coordinate stomatal behaviour with

mesophyll carbon assimilation. We explore a possible role of various metabolites including

sucrose andmalate (fromseveral potential sources; includingguard cell photosynthesis) andnew

evidence that improvements in WUE have been made by manipulating sucrose metabolism

within the guard cells. Finally we discuss the new tools and techniques available for potentially

manipulating cell-specificmetabolism, including guard andmesophyll cells, in order to elucidate

mesophyll-derived signals that coordinatemesophyll CO2 demandswith stomatal behaviour, in

order to provide a mechanistic understanding of these processes as this may identify potential

targets for manipulations in order to improve plant WUE and crop yield.

I. Introduction

Global food security is currently the greatest challenge facing plant
scientists. With an increasing global population predicted to

stabilize at c. 9 billion by the year 2050 (Cohen, 2003; Godfray
et al., 2010) political and scientific pressure ismounting to improve
crop yield for future sustainable food and fuel production. Abiotic
and biotic stresses cause considerable losses of crop yield
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(Chrispeels & Sadava, 2003) and therefore crop improvements
need to include the ability to cope with such stresses, particularly
those associated with a predicted rapidly changing climate. Water
availability is a major constraint of crop yield (Araus et al., 2002;
Chaves, 2002) and is often considered the single most important
factor limiting food production, leading to yield losses for example
of 40% in maize (Boyer, 1982; Harrison et al., 2014). Currently
agriculture accounts for 70–90% of all freshwater use (Morison
et al., 2008), and with average predictions for climate change
including a mean annual temperature increase of between 1 and
3°C (depending on location and prediction scenario, IPCC, 2007)
along with precipitation and evapotranspiration changes (IPCC,
2007), making agriculture sustainable will require a major
reduction in crop water use in many areas (Morison et al., 2008).

The major pathway for water loss from plants is through the
stomatal pores that are found on the surfaces of the majority of the
aerial parts of plants. These pores control the fluxes of gases between
the outside atmosphere and the leaf interior, and therefore
ultimately control the amount of CO2 uptake by the leaf for
photosynthesis (A) and, consequently, the amount of water lost by
leaves through transpiration (E). At the leaf level, the ratio of CO2

uptake to water loss (A/E) determines plant water use efficiency
(WUE). Stomata must operate to ensure an appropriate balance
between CO2 uptake for Calvin cycle activity and autotrophic
production of organic compoundswith the plant’s need forwater to
remain fully hydrated, and there is often a close correlation
observed between photosynthetic rates and stomatal conductance
(Wong et al., 1979). Although the majority of water taken up by a
plant (c. 97%) is not used in the biochemical reactions (Taiz &
Zeiger, 1998), in order for a plant to expand and grow its cells must
remain fully turgid (Schopfer, 2006). Any reduction in cell water
volume and turgor pressure (and water potential) immediately
decreases cell expansion and plant growth (Thompson, 2005).
Stomata have long been considered a potential target for manip-
ulation (Cowan & Troughton, 1971). However, the majority of
improvements in WUE involving stomata to date have tended to
reduce conductance (and water loss) at the expense of carbon gain
(Lawson & Blatt, 2014) and therefore, although calculations of
intrinsic water use efficiency (IWUE) may appear relatively high
numerically, values of assimilation are low, potentially reducing
productivity. Owing to our need to produce increased quantities of
food and fuel, such traits are not entirely desirable. Although there
is generally a close correlation between mesophyll photosynthetic
rates and stomatal conductance over the long term, short-term
perturbations in the environment (e.g. irradiance) often lead to
temporal and spatial disconnections between stomatal conductance
(gs) and A (Kirschbaum et al., 1988; Tinoco-Ojanguren & Pearcy,
1993; Lawson & Weyers, 1999; Lawson et al., 2010). It would
therefore be entirely plausible to hypothesise that improvements in
the coordination and synchrony of stomatal responses and
mesophyll photosynthetic rates with the dynamic environmental
growth conditions could improve plant WUE over the long term
(Lawson et al., 2010, 2012; Lawson & Blatt, 2014).

Stomata respond directly to environmental stimuli. In response
to changes in leaf external and internal environmental conditions,
the guard cells that surround the stomatal pore adjust their

volume resulting in adjustments of the pore aperture and,
therefore, stomatal conductance to gas fluxes. It is generally well
accepted that stomata open in response to increases in irradiance
(with the exception of stomata in CAM plants), and low CO2

concentrations within the intercellular air space (Ci) and close in
darkness, high vapour pressure deficits (VPDs) and high CO2

concentrations (Assmann, 1999; Outlaw, 2003) in order to
balance the mesophyll demands for CO2 against the need to
maintain leaf water content. However, the natural growth
environment for all plants is highly dynamic with changes in
environmental stimuli on a variety of timescales. For example
light can fluctuate on a timescale of seconds to minutes.
Therefore, stomata perceive and respond to multiple signals
simultaneously often in a hierarchical manner (Lawson et al.,
2010; Lawson & Blatt, 2014). Changes in external conditions
affect photosynthetic carbon assimilation either directly (e.g.
changing intensities of irradiance) or indirectly through the
resulting impact on stomatal behaviour (e.g. VPD). A coordinated
response of both stomata and mesophyll photosynthesis to
changing stimuli helps the plant to maintain WUE (Lee &
Bowling, 1995; Mott et al., 2008) and results in the commonly
observed correlation between stomatal conductance and photo-
synthesis (Wong et al., 1979; Buckley et al., 2003). However, the
underlying mechanisms and signal that promote this relationship
are currently unknown (Lawson et al., 2010). The coordination
between photosynthetic carbon gain and stomatal behaviour is
key to determining plant WUE and productivity, as short leaf-
level improvements in the ratio of carbon gain relative to water
loss accumulate over a season and ultimately determine the
amount of dry matter produced. As mentioned earlier, due to the
fundamental role of stomata, manipulation of stomatal traits has
been identified as a potential area for WUE improvements
(Condon et al., 1987; Fischer et al., 1998; Masle et al., 2005;
Doheny-Adams et al., 2012). However, mutations that increase
WUE can do so at the expensive of carbon assimilation, reflecting
the trade-off in CO2 availability with reduction in stomatal water
loss. For example, reduced stomatal conductance in Arabidopsis
mutants with a loss of function in the vesicle trafficking protein
SYP121 led to greater WUE, but only with reduced CO2

assimilation which impaired growth (Eisenach et al., 2012).
Likewise, Antunes et al. (2012) showed that reductions of sucrose
synthase 3 (SuSy3) in Solanum tuberosum led to an increase in
WUE, with decreased gs but this lowered gs restricted CO2

assimilation rate. Conversely, alterations in stomatal behaviour
that increase photosynthesis can do so at the expense of water loss.
This was demonstrated in the recent study by Tanaka et al.
(2013), who showed that increased stomatal density (via manip-
ulation of STOMAGEN) increased assimilation rates by 30%,
whereas transpiration rates were increased by a greater amount
(50%) leading to a 50% reduction in WUE.

Additionally, Antunes et al. (2012) in the same studymentioned
above increased expression of SUC2 in guard cells specifically, and
found enhanced gs and assimilation rates but only with a parallel
reduction inWUE.However, this is not always the case and several
studies have demonstrated increasedWUE and/or assimilation rate
without compromising mesophyll CO2 uptake. Laporte et al.
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(2002) demonstrated that decreased expression of NADP-Malic
enzyme decreased gs, and although photosynthesis was not
evaluated in this study, no effects on growth were observed. Yoo
et al. (2010) illustrated high WUE, and a 25% reduction in
transpiration rate and gs with no effect on CO2 assimilation rate in
Arabidopsis loss of function GT-2 LIKE1 (GTL1) mutants. These
studies illustrate the importance of considering the relationship
between mesophyll CO2 demands and stomatal behaviour when
attempting to manipulate stomatal behaviour in order to improve
WUE, and the importance of elucidating the mechanisms that
coordinate mesophyll CO2 demand with stomatal function. They
also highlight the potential for improving WUE through mani-
pulation of stomata. An excellent example of manipulations in
stomatalmetabolism to improveWUEhas recently been published
by Wang et al. (2014): this illustrated enhanced light-induced
stomatal opening rates, greater photosynthesis and improved
growth rates in Arabidopsis plants over expressing H+-ATPase
under the control of a guard cell-specific promoter. What is truly
exciting about this work is that not only have these authors shown
improved photosynthesis and growth through manipulation of
guard cell metabolism, but also they have demonstrated that such
results are possible by altering the functional dynamic responses of
stomata to improve photosynthesis andWUE, an area that to date
has received little attention, but could provide future targets for
manipulation (see Lawson & Blatt, 2014).

An earlier review by Lawson & Blatt (2014) examined the size,
speed and responsiveness of stomata and highlighted the potential
impacts onWUE. Although this reviewmentioned the importance
of coordinated stomatal responses with mesophyll demands for
CO2 and provided examples of limitation toA andWUE caused by
nonsynchronized behaviour, the potential mechanisms that coor-
dinate mesophyll behaviour with stomatal function were not
covered. Therefore, the aims of this review are to first provide a
synopsis of the coordination of stomatal responses with mesophyll
function and then explore the evidence put forward for a
mesophyll-driven signal that couples these responses, including
the evidence for a role of sucrose and malate in coordinating
photosynthesis with stomatal conductance. In doing this we will
examine the origins of sucrose (including guard cell photosynthe-
sis) and the impact on guard cell function of manipulating sucrose
metabolism. In the last section we provide an overview of the
potential for exploring genetic approaches tomanipulate guard and
mesophyll photosynthesis and how this may help elucidate routes
to improving plant water use efficiency.

II. Coordination between mesophyll and stomata

The close correlation between gs and A (Wong et al., 1979;
Farquhar & Wong, 1984; Mansfield et al., 1990; Buckley et al.,
2003) has often been observed over a range of CO2 concentrations
and light intensities (Radin et al., 1988; Hetherington & Wood-
ward, 2003), and it was originally proposed that the concentration
of CO2 inside the leaf (Ci) helped maintain the coordination of the
mesophyll photosynthesis with stomatal aperture (Fig. 1). Ci is
determined not only by stomatal aperture and the flux of gas from
the bulk atmosphere into the leaf, but also by the consumption of

CO2 through mesophyll photosynthesis. Light induces photosyn-
thetic consumption of internal CO2 (Ci) which opens stomata. It is
therefore an attractive hypothesis that Ci coordinates photosyn-
thetic responses and mesophyll demand for CO2 with stomatal
conductance.However, several studies have suggested that stomatal
responses to CO2 (incl. Ci) are too small and therefore insufficient
to account for the relatively large changes in gs that have been
observed in response to light (Raschke, 1975; Farquhar et al., 1978;
Sharkey & Raschke, 1981b; Farquhar & Sharkey, 1982; Morison
& Jarvis, 1983; Ramos &Hall, 1983; Mott, 1988). This evidence,
along with the observations that stomata respond to light and CO2

in epidermal peels, led to the suggestion of direct perception and
signal transduction in the guard cells themselves (Mott, 2009).
However, there is no consensus within the literature, with often
different stomatal responses to light and CO2 concentration
reported for intact leaves and for isolated epidermis. Additionally,
differences in magnitude and speed of change in stomatal
conductance have been observed in response to identical stimuli
in the same species, but in different laboratories. For these reasons
the underlying mechanisms and signals that coordinate and
promote the close relationship between photosynthesis (A) and gs
have not been unequivocally established.

Most traditional stomatal literature assumes that stomatal
responses to light and CO2 primarily arise in the guard cells and
that the mesophyll has little or no effect (Mott et al., 2008); any
mesophyll influence is driven only by the consumption of CO2 and
the resultant impact on Ci. It is now well established that stomatal
opening responses to light have at least two components: the blue
and the red light responses. The specific blue light response is
independent of photosynthesis, saturating at a low fluence rate
(Zeiger et al., 2002) and involves the activation of a plasma
membrane H+-ATPase in the guard cells (Kinoshita & Shimazaki,
1999; Shimazaki et al., 2007). The red light response, or photo-
synthesis-mediated response, is saturated at similar light intensities
to that of mesophyll photosynthesis and is abolished by inhibitors
of photosynthetic electron transport such as 3-(3,4-dichloro-
phenyl)-1,1-dimethylurea (DCMU) (Kuiper, 1964; Sharkey &
Raschke, 1981a; Tominaga et al., 2001; Olsen & Junttila, 2002;
Messinger et al., 2006). It is this second response, linked with
assimilation rate, that has often been assumed to be driven entirely
by mesophyll consumption of CO2 leading to a reduction in Ci

(Mott, 1988; Roelfsema et al., 2002). Early literature is full of
examples demonstrating that stomatal aperture adjusts to maintain
a constantCi : Ca ratio (seeMott, 1988),Ci being c.⅔ atmospheric
CO2 concentration (Ball & Berry, 1982). However, as mentioned
above, there are also many reports that argue against a Ci driven
coordination of A and gs, including those examples demonstrating
that changes inCi are too small to account for the observed stomatal
responses to light. Indeed, more recent studies show a stomatal
response to light even when Ci is held constant (Messinger et al.,
2006; Lawson et al., 2008; Wang & Song, 2008).

III. The mesophyll signal

It has been suggested that guard cell responses are linked to a
product of photosynthetic activity in themesophyll, via a diffusible
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(a)

(b)

Fig. 1 Schematic diagram of a leaf cross-section showing possible mechanisms that connectmesophyll and guard cells and affect stomatal behaviour (a). CO2

absorbed fromtheatmosphere through the stomatal porediffuses towards themesophyll cells (green line),where it is used forphotosynthesis (A). Sucrose (Suc,
represented by red dots) moves from the mesophyll cells (MC) toward the phloem (Ph). Water (blue arrows) coming out of the xylem (Xy) move toward
the guard cells and evaporate (Tr) to the atmosphere. Someof the apoplastic Suc (red line) is carried by the transpiration stream toward the guard cells (GC) and
accumulates at the GC. The diagram includes additional potential effectors (such as Ci, metabolites and aqueous- vs vapour-carried signals). (b) Schematic
diagram of the primary metabolism in GC and the potential effects. Suc may accumulate at the GC cell wall (red dots), and may have an extracellular
osmotic effect. Sucmayenter theGCvia Suc transportersormightbe cleaved in the apoplast intoglucose (Glc) and fructose (Fru) that also enterGCvia ahexose
specific transporter. In the cytosol, Sucmay have an osmotic effect. Photosynthesis in GC yields triose-phosphates (triose-P)whichmay be converted to starch
within the chloroplast or exported to the cytoplasm, where it might be converted to Suc or malate. Starch degradationmay also contribute to Suc and malate
accumulation. Malate may be produced in guard cells and/or arrive from mesophyll cells and enter the guard cells through malate transporters such as
AtABCB14. Within guard cells malate may activate vacuolar Cl� transporters such as AtALTM9, contributing to stomatal osmolarity and opening. High CO2

concentrationmay increase concentrations of malate produced in themesophyll stimulating anion efflux through channels such as GCAG1 and close stomata.
The cytosolic Glc and Fru obtained from Suc cleavage or from starch degradation must be phosphorylated into Glc-P and Fru-P to be further metabolized.
Sensing of Glc and Fru by hexokinases (HXK) may generate a signal that closes stomata. C, cuticle; E, epidermis; MC, mesophyll cell; GC, guard cell; A,
photosynthesis;Xy, xylem;Ph, phloem;gm,mesophyll conductance toCO2;Ci, substomatalCO2 concentration;Tr, transpiration;ATP, adenosine triphosphate;
NADPH, nicotinamide adenine dinucleotide phosphate; RuBP, ribulose 1, 5-bisphosphate; Glc-P, glucose phosphate;HXK, hexokinase; Suc, sucrose; Triose-P,
triose phosphate.White circles andwhite arrows,mesophyll-driven signals affecting stomatalmovement; red dots and lines, sucrose paths; blue faded arrows,
the flow of water from xylem toward the stomata; green arrow, CO2 movement; blue circles, transporters; green circles, the effect on stomatal aperture.
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factor, that is ‘the mesophyll signal’ (Wong et al., 1979; Lee &
Bowling, 1992; Mott et al., 2008; Mott, 2009). The impetus for
this hypothesis is the close relationship between mesophyll
photosynthetic capacity and gs, which is observed under a variety
of conditions. The idea of a mesophyll-driven signal is not a new
one. In 1954 Heath & Russell proposed that there was an indirect
chemical or electrical signal transmitted either from the epidermal
or mesophyll cells to influence stomatal behaviour. Subsequent
studies suggested that the signal was a metabolite of photosynthesis
(Wong et al., 1979; Grantz & Schwartz, 1988) which balanced
photosynthesis between Rubisco and electron transport limitation
(Wong et al., 1979; Messinger et al., 2006). Support for the role of
an active mesophyll driven signal in stomatal responses has come
from experiments conducted on epidermal peels. These studies
have demonstrated no effect of red light or CO2 concentration on
stomatal aperture (Lee&Bowling, 1992; Roelfsema et al., 2002) or
have reported a slower response often over several hours (Olsen &
Junttila, 2002) and/or reduced sensitivity (Young et al., 2006)
compared with responses reported in intact leaves (Mott et al.,
2008). However, it should be noted that whilst several studies have
reported little effect of light and CO2 on stomatal responses in
epidermal peels, there are many excellent studies and a plethora of
literature that have illustrated significant stomatal responses to light
and CO2 in epidermal peels and guard cell protoplasts (see for
exampleMeidner&Mansfield, 1968; Fitzsimons&Weyers, 1986;
Mansfield et al., 1990; Outlaw et al., 1996; Webb et al., 1996;
Willmer & Fricker, 1996 Assmann & Shimazaki, 1999; Pei et al.,
2000 and reference within). Lee & Bowling (1992, 1993)
demonstrated a stomatal response when the isolated epidermis
was incubated in the presence of mesophyll cells or chloroplasts
isolated from an illuminated leaf, but not when incubated without
mesophyll or in the presence of chloroplasts isolated from dark
adapted leaf material. Chloroplastic ATP, zeaxanthin, NADPH
and Ribulose 1, 5-bisphosphate (RuBP) have all been put forward
as a potential signal (Wong et al., 1979; Farquhar &Wong, 1984;
Lee&Bowling, 1992; Zeiger&Zhu, 1998; Tominaga et al., 2001;
Buckley et al., 2003), but as yet the signal, named ‘stomatin’ by Lee
& Bowling (1995), has remained elusive (Fig. 1). Recent studies
have adopted a unique epidermis–mesophyll transfer experimental
approach first used by (Mouravieff, 1956, 1957) and recently
refined byMott et al. (2008). In these experiments the epidermis is
removed from themesophyll andmeasured in isolation or replaced
back onto the mesophyll belonging to the same or a different
species. These studies demonstrated that stomatal responses to light
and CO2 concentration in isolated epidermis were not the same as
those observedwhen the epidermis was placed back ontomesophyll
(Mott et al., 2008;McAdam&Brodribb, 2012; Fujita et al., 2013)
and, in general, responses tended to be slow and not of the same
magnitude.

They also highlighted that the mesophyll signal was the same
irrespective of species, but that some stomata were not responsive to
the signal (Mott et al., 2008). Mott et al. (2008) argued that
stomata in Vicia faba epidermal peels do not respond to changes in
light or CO2 concentration, although many early studies observed
responses in isolated Vicia faba peels (Brearley et al., 1997),
although the incubationmediamay have influenced these findings.

Recent studies in ferns and lycophytes showed that guard cells in
these species were unresponsive to mesophyll signals, even though
the mesophyll of these species still produced a signal that modern
seed plants could respond to (McAdam & Brodribb, 2012). The
nature of the signal has varied between different studies. Sibbernsen
& Mott (2010) flooded the intercellular air space with water and
used hydrophobic filters to conclude that the signal must be a
vapour phase signal generated from the mesophyll, whilst Fujita
et al. (2013) placed various sized cellophane and polyethylene
spaces between the epidermis and mesophyll and concluded that
there must be an aqueous apoplastic transferred signal from the
mesophyll. The latter observations agree with Lee & Bowling
(1992) who put forward the water soluble signal ‘stomatin’. In a
recent study Mott et al. (2013) used an electrode under the
epidermis and monitored stomatal responses from the signal
generated, and concluded that the signalmust be a vapour phase ion
that generated changes in pH of the epidermis.

Alternatively, it could be that guard cell photosynthesis
(discussed later, see Fig. 1) may provide a metabolite signal (Wong
et al., 1979; Muschak et al., 1999; Lawson, 2009) or the stomata
could sense the redox state of the photosynthetic electron transport
chain (Busch, 2013).

IV. Arguments against a mesophyll-driven signal
other than Ci

There are many arguments against a mesophyll-driven signal that
coordinates mesophyll photosynthesis with stomatal behaviour.
Roelfsema et al. (2002, 2006) illuminated individual guard cells
with and withoutmesophyll illumination, and albino areas ofVicia
faba and variegated regions of Chlorophytum comosum leaves to
demonstrate that guard cells only respond to red light if the
underlying mesophyll was also illuminated. These studies support
the idea of an active mesophyll-driven signal in stomatal responses,
however, the authors assigned the response to mesophyll-driven
changes in Ci. Further support for a Cimediated stomatal response
comes fromwork on the high temperature 1 (HT1)mutants, which
carry a mutation in the gene encoding a protein kinase. Hashimoto
et al. (2006) showed that stomata of ht1mutant responded to blue
light but lacked both a red light and CO2 response, therefore
suggesting a coordination between red light and CO2 stomatal
responses, signifying a Ci driven coordination.

Experiments using transgenic plants with altered photosynthetic
capacity have reported stomatal conductances that are equivalent
(Quick et al., 1991; Stitt, 1991; Hudson et al., 1992; Lauerer et al.,
1993; Evans et al., 1994; Price et al., 1995; von Caemmerer et al.,
2004; Lawson et al., 2008) or even greater (Muschak et al., 1999;
Lawson et al., 2008) than wild-type controls. In these plants, the
stomata opened in response to increasing light, despite having high
Ci values (through reduced photosynthesis), suggesting that either
light overrides a Ci response (Lawson et al., 2008) or that stomata
respond to external rather than internal CO2 concentrations (von
Caemmerer et al., 2004). Such studies question both the role of
photosynthesis (either mesophyll and/or guard cell) and Ci in
stomatal responses to light, suggesting that signals not directly
related to photosynthesis must be involved and demonstrating
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that the environmentally induced correlation between gs andA that
is frequently observed can be broken (von Caemmerer et al.,
2004).

There are numerous examples in the literature of a close
correlation between mesophyll photosynthetic rates and stomatal
conductance, however, the mechanism(s) that coordinates these
responses is not entirely known. The general consensus by many
researchers that Ci maintains this balance does not account for the
small change in stomatal aperture observed with changes in Ci

concentration. This observation, in conjunction with the sluggish
behaviour of stomata in isolated peels, supports amesophyll-driven
signal based on (1) a product of photosynthesis or electron
transport, (2) the redox state of the tissue, (3) a metabolite in the
transpiration stream, and (4) vapour phase ion and/or electrical
signal. Although the existence and nature of a mesophyll-driven
signal is controversial, it wouldmake sense that stomatal behaviour
is in some way coordinated with the mesophyll CO2 demands or
capacity. Stomata can respond and function in isolation but,
equally, there is a general consensus that the fine-tuning of stomatal
behaviour is under the influence of the mesophyll. This complex
relationship could also explain the significant natural variation that
exists in stomatal responses both between and within species
(Weyers & Lawson, 1997; Lawson et al., 1998; Lawson&Weyers,
1999), as well as the hierarchy of stomatal responses that are
directed by bothA and the environment. Such a hierarchal response
would also validate why the close correlation between A and gs can
be broken in transgenic plants, and that light is the dominant signal
and overrides any Ci response, resulting in stomata that remain
open despite low A and high Ci (von Caemmerer et al., 2004;
Lawson et al., 2008). Elucidating the signal and understanding the
genetic bases and molecular signals behind any coordination
between mesophyll photosynthetic carbon assimilation and sto-
matal control could be extremely lucrative for manipulating plants
for improved WUE.

A recent paper using chlorophyll fluorescence imaging com-
bined with gas exchange to show spatio-temporal decoupling of
stomatal and mesophyll in response to cutting the leaf veins,
suggesting that the two tissue types responded to two different
signals (Hanson et al., 2013).

V. Guard cell osmoregulation and evidence for a role
of sucrose

Sucrose has been put forward as a potential metabolite involved in
the coordination betweenmesophyll photosynthesis and guard cell
osmoregulation. However, before exploring the potential mecha-
nisms involving sucrose signalling, it is important to outline
stomatal osmoregulation and the role and origin of sugars in guard
cells and stomatal behaviour, as these also have the potential to
provide a signalling or sensory mechanism/pathway.

Stomatal movements, regulated by a number of external and
internal cues or signals are brought about by changes in osmotic
potential, due to the loss or accumulation of solutes in the guard
cells. There is a wealth of elegant biochemical and biophysical data
describing the roles of potassium, calcium and ABA in these
processes and mutants have been used to investigate the genetic

basis of guard cell function (Assmann, 1993; Willmer & Fricker,
1996; Blatt, 2000; Evans & Hetherington, 2001; Schroeder et al.,
2001). Although for decades guard cell aperture was thought to be
solely due to osmotic adjustment driven by the accumulation and
loss of K+ ions, with Cl� and malate ions acting as counter ions
(Schroeder et al., 2001; Roelfsema&Hedrich, 2005; Pandey et al.,
2007), there has been a steady increase in evidence of a role for
sucrose (Suc). Early hypotheses regarding guard cell osmoregula-
tion involved a role for sugars. It has been proposed that at dawn
sugars generated from the degradation of starch are the primary
guard-cell osmolytes required for stomatal opening (Lloyd, 1908;
Meidner & Mansfield, 1968). The role for sugar in guard cell
osmoregulation and stomatal responses was abandoned with the
discovery that K+ in guard cells, with malate2� and/or chloride
(Cl�) acting as the counter ion(s), correlated with stomatal opening
(Imamura, 1943; Yamashita, 1952; Fischer, 1968; Fischer &
Hsiao, 1968; Humble & Raschke, 1971; Allaway, 1973; Pearson,
1973; Outlaw & Lowry, 1977; Shimada et al., 1979; Outlaw,
1983; Asai et al., 2000). The role of K+ and Cl� ion channels in
guard cell behavior was functionally confirmed (reviewed in
MacRobbie, 1998; Schroeder et al., 2001; Pandey et al., 2007) and
the starch-sugar hypothesis was replaced by the potassium-malate
theory. The disappearance of starch in the guard cells throughout
the day still fitted with this new theory, and the inverse correlation
between guard cell starch concentration and stomatal aperture
suggested that starch degradation contributes carbon skeleton for
the synthesis of organic anions such asmalate, to act as counter ions
and support stomatal opening (Outlaw & Lowry, 1977; Schnabl,
1980, 1981). In guard cells, malate is thought to be synthesized via
the reduction of oxaloacetate, formed from the carboxylation of
phosphoenolpyruvate (PEP). The former step is catalysed by
NADP- or NAD-dependent malate dehydrogenase (MDH), and
the latter by phosphoenolpyruvate carboxylase (PEPC). The
majority of enzymes necessary for malate synthesis from starch
have been identified in guard cells (Rao&Anderson, 1983; Gotow
et al., 1985; Hedrich et al., 1985; Robinson & Preiss, 1987;
Raschke et al., 1988; Shimazaki, 1989; Scheibe et al., 1990;
Parvathi & Raghavendra, 1997; Asai et al., 2000).

A role for Suc in guard cell osmoregulation was revisited when
studies proposed that K+ and its counter ions malate could not
provide all the osmotic required to support stomatal apertures in
Commelina communis (MacRobbie & Lettau, 1980a,b), and it was
suggested that soluble sugars account for the additional osmoticum
required to support stomatal opening (MacRobbie, 1987;Talbott&
Zeiger, 1993). A decline in K+ concentrations concomitant with an
increase in Suc concentrations throughout the day raised the
hypothesis that K+ is responsible for early morning opening of
stomata, but that it is replaced later in the diel period by Suc which
becomes the major osmolyte responsible for maintaining stomatal
aperture from midday on (Amodeo et al., 1996; Talbott & Zeiger,
1998; Schroeder et al., 2001; Lawson, 2009). Pearson (1973), who
assayed for sucrose in epidermal peels ofVicia faba andCommelina
cyanea, found a consistent increase that peaked mid-afternoon, but
the relationship between aperture and Suc content was quite weak,
questioning the contribution of sugar to the guard cells osmoticum.
Having said this, the role of Suc as a major osmoticum driving
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stomatal responses is not universally accepted and many models
examining guard cells fluxes across the plasma membrane and
tonoplast concentrate on ion fluxes and tend to dismiss a major
influence of Suc. However, several researchers have suggested that
sucrose could play a key role in coordinating mesophyll and
stomatal behaviour via the apoplast (Lu et al., 1995, 1997; Outlaw
&De Vlieghere-He, 2001; Outlaw, 2003; Kang et al., 2007; Kelly
et al., 2013). The origin of Suc for guard cell movements is not
entirely clear. Suc could be supplied to guard cells by three potential
ways: (1) starch degradation in guard cells (Lloyd, 1908; Assmann,
1993); (2) guard cell photosynthetic carbon fixation; and (3) Suc
imported from the mesophyll cells (Fig. 1) (Gotow et al., 1988;
Tallman & Zeiger, 1988; Poffenroth et al., 1992; Talbott &
Zeiger, 1993, 1996).

VI. Degradation of starch

Starch accumulates in guard cells at night and slowly disappears
throughout the light period (Tallman & Zeiger, 1988). As
mentioned above, this observation was the foundation of the
starch-sugar hypothesis (Tallman&Zeiger, 1988), and later on for
the starch-malate hypothesis (Willmer et al., 1973; Reckmann
et al., 1990; Asai et al., 2000). There is some evidence that suggests
that these twometabolic processes, starch-sugar and starch-malate,
depend on light quality, with blue light stimulating starch
breakdown to Suc rather than malate production (Tallman &
Zeiger, 1988). It is generally assumed that the starch found in guard
cells originates from the end products of photosynthesis (e.g. Suc)
in the underlying mesophyll (Pallas, 1964), which is imported into
the guard cells. This in itself provides a long term link between
mesophyll photosynthesis and guard cell function, but is tempo-
rally separated fromone day to the next. Ritte et al. (1999) provided
evidence of a guard cell-specific sugar transport by identifying
activity of amonosaccharide-H+ symporter (Ritte et al., 1999). The
expression of a H+-monosacharide symporters AtSTP1 in Arabid-
opsis was shown to be high at night (Stadler et al., 2003),
supporting the uptake of Suc at night for starch synthesis.However,
it is interesting to note that transient diurnally regulated increases in
the expression ofAtSTP1 observed aroundmidday, suggested a role
for osmoregulation (Stadler et al., 2003). It should be noted,
though, that starch is practically absent in the early morning in
Arabidopsis guard cells (Stadler et al., 2003) and therefore
metabolism and stomatal responses may differ between species.

VII. Guard cell photosynthetic production of Suc

The majority of guard cells contain functional chloroplasts
(Humble & Raschke, 1971; Willmer & Fricker, 1996);
Paphiopedilum species is one of the exceptions to this rule, having
no chloroplasts but functional stomata (Nelson & Mayo, 1975;
Willmer & Fricker, 1996). It has also been known for many years
that linear electron transport takes place in the guard cell
chloroplasts (Hipkins et al., 1983; Shimazaki & Zeiger, 1985;
Willmer & Fricker, 1996; Cardon & Berry, 1992; Tsionsky et al.,
1997; Lawson et al., 2002, 2003) although high numbers and
activity of Photosystem I (Lurie, 1977) have been thought to

indicate high rates of cyclic electron flow and supporting the notion
that ATP production potentially provides the energy required for
plasma membrane proton pumps (Shimazaki & Zeiger, 1985;
Tominaga et al., 2001) required for ion uptake. Alternatively, the
energy and reductant produced from electron transport (ATP &
NADPH) could be used for the reduction of oxaloacetate (OAA)
and malate production from starch degradation (Outlaw, 2003)
which has been correlated with an increase in stomatal aperture
(Imamura, 1943; Yamashita, 1952; Fischer, 1968; Fischer &
Hsiao, 1968; Humble & Raschke, 1971; Allaway, 1973; Pearson,
1973; Outlaw & Lowry, 1977; Shimada et al., 1979; Outlaw,
1983; Asai et al., 2000). Several lines of evidence suggest a limited
photosynthetic capacity in guard cells compared tomesophyll, and
smaller numbers and sizes of chloroplasts in guard cells (Shimazaki
et al., 1982; Reckmann et al., 1990; Gautier et al., 1991; Outlaw&
De Vlieghere-He, 2001; Vavasseur & Raghavendra, 2005). Using
chlorophyll fluorescence imaging Lawson et al. (2002) proposed
that electron transport in guard cells was 20% lower than the
underlying mesophyll, but that both cells responded in a similar
manner to environmental stimuli. (Lawson et al., 2003). Although
early reports suggested that there was no (or little) Calvin cycle
activity in guard cells (Outlaw et al., 1979, 1982; Outlaw, 1982,
1987, 1989; Tarczynski et al., 1989), it is now generally accepted
that all theCalvin cycle enzymes are present and functional in guard
cells (see review by Lawson, 2009). It has also been shown that
14CO2 uptake in guard cells can be incorporated into 3-PGA and
RuBP (Gotow et al., 1988) and perhaps used to produce Suc as a
guard cell osmoticum for guard cell opening, specifically in
response to red/photosynthetic light (Poffenroth et al., 1992) and
in the absence of starch breakdown (Talbott & Zeiger, 1993).
However, other studies have reportedmalate as the primary fixation
product (via PEPc), very little Calvin cyclemetabolites (Willmer&
Dittrich, 1974;Raschke&Dittrich, 1977) and lowactivity levels of
Rubisco and Calvin cycle enzymes (Outlaw, 1982; Reckmann
et al., 1990). There is still controversy over the extent of guard cell
photosynthetic CO2 fixation, and whether Suc could be produced
in any quantity that could be osmotically useful for guard cell
behaviour (see Outlaw, 2003). The most widely accepted consen-
sus is that even if CO2 fixation via the Calvin cycle occurs in guard
cells, the contribution to osmotic requirements for stomatal
opening is minimal and too low for any significant function (see
reviews by Outlaw et al., 1982; Outlaw, 1989), with reports
suggesting only a 2% contributions to guard cell osmotic
adjustments (Reckmann et al., 1990). However, despite decades
of research the role of guard cell chloroplasts and their potential in
providing energy or Suc for stomatal adjustments or as a signalling
mechanism that enables coordination between mesophyll photo-
synthesis and stomatal behaviour is still unknown and requires
further investigation.

VIII. Guard cell Suc imported from the mesophyll

Hite et al. (1993) suggested that guard cells might act as carbon
sinks, taking up Suc via plasma membrane transporters. Suc
and and hexose transporters were discovered in guard cells (Stadler
et al., 2003; Weise et al., 2008; Bates et al., 2012; Bauer et al.,
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2013). Lu et al. (1995, 1997) have shown that mesophyll-derived
Suc is accumulated at the guard cell apoplast and enters the guard
cells of open stomata. It has been suggested that during times of
high photosynthesis and transpiration rates, the apoplastic Suc
concentration at the guard cells can be absorbed and replace
potassium and malate as the osmoticum for the maintenance of
stomatal opening (Ritte et al., 1999). Outlaw and colleagues
proposed that apoplastic Suc from the mesophyll cells was a source
of Suc for guard cells and provided the osmoticum for stomatal
opening (Lu et al., 1997; Ewert et al., 2000; Outlaw & De
Vlieghere-He, 2001). They also claimed that Suc moving
throughout the apoplast of a transpiring leaf may accumulate in
an osmotically significant concentration in the guard cell wall and
stimulate stomatal closure as a means to coordinate photosynthesis
with transpiration (Ewert et al., 2000;Outlaw&DeVlieghere-He,
2001; Kang et al., 2007).

Apart from playing an osmotic role, the fate of sugars within
guard cells is not yet known. As illustrated above, sugar might
provide energy for stomatal opening and replenish carbohydrate
stores such as starch. However, studies using transgenic plants with
impairments in photosynthesis queried a role for photosyntheti-
cally produced Suc (from guard or mesophyll cells) in stomatal
opening (Baroli et al., 2008; Lawson et al., 2008). In these studies,
reduced photosynthesis through reduced activity of key enzymes in
the Calvin cycle did not reduce stomatal conductance as would be
expected if photosynthetically driven Suc opens stomata. On the
contrary, plants with reduced photosynthesis due to a reduction in
sedoheptulose-1,7-bisphosphatase (SBPase) activity (a key enzyme
in the regeneration of RuBP that has a high control co-efficient on
photosynthesis and therefore, Suc production), displayed a
tendency toward greater stomatal conductance (Lawson et al.,
2008).

IX. Sugar sensing and metabolism

Suc is the most commonly transported photoassimilate in most
plant species. Once in cells, Suc may be metabolized, stored in
vacuoles or converted into starch in plastids. To metabolize Suc
within the cell two pre-steps are required: (1) cleavage of Suc into its
derivatives, glucose and fructose, by Suc cleaving enzymes (which
may release UDP-glucose as well), and (2) phosphorylation of
glucose and fructose by sugar phosphorylating enzymes, hexoki-
nase (HXK) and fructokinases (FRK) (Dennis & Blakeley, 2000).
The phosphorylated hexoses, glucose-P and fructose-P then serve as
initial essential substrates for central metabolic processes, such as
glycolysis, energy production and the formation of organic
molecules (Dennis & Blakeley, 2000).

HXK, also expressed in guard cells (Arabidopsis eFP Browser
http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi?data-Source=Gua
rd_Cell, and Bates et al. (2012)) is the only enzyme that can
phosphorylate glucose and is therefore considered to play a pivotal
metabolic role inmost, if not all, living tissues (Granot et al., 2013).
In addition to its hexose phosphorylation catalytic activity, it is now
well accepted thatHXK is a dual functional enzyme that also holds a
sugar sensing role (Jang et al., 1997; Moore et al., 2003). As part of
its sensing role, HXK monitors glucose concentrations in

photosynthetic tissues and inhibits the expression of photosyn-
thetic genes when sugar concentrations are sufficiently high, thus
coordinating sugar production (photosynthesis) with sugar con-
centrations (Jang et al., 1997; Dai et al., 1999; Xiao et al., 2000;
Moore et al., 2003; Rolland et al., 2006; Kelly et al., 2012). It is
nowwell established that the sugar sensing role ofHXK ismediated
by ABA, so that HXK stimulates expression of ABA related genes,
and ABA deficient mutants do not exhibit the HXK-related sugar
effects (Zhou et al., 1998; Laby et al., 2000; Leon & Sheen, 2003;
Rolland et al., 2006; Rognoni et al., 2007; Ramon et al., 2008).
However, themolecularmechanismbywhichHXKpromotesABA
in response to sugars is still unknown.

Most of our knowledge on the sugar sensing role of HXK was
obtained by manipulating HXK expression levels (see reviews by
Ramon et al., 2008; Granot et al., 2013). Initial characterization of
mature tomato and Arabidopsis plants expressing high levels of the
Arabidopsis HXK1 (AtHXK1), either expressed globally or specif-
ically in guard cells, revealed that in both cases, transpiration and
stomatal aperture size were significantly reduced (Kelly et al.,
2012, 2013). By contrast, the opposite behaviour was observed
when assaying the hxk1 mutant (Kelly et al., 2013). As HXK
activity is sugar-dependent, it is reasonable to assume that the
sugars themselves, which are the substrate for HXK, trigger these
effects. Outlaw and colleagues (Outlaw, 2003; Kang et al., 2007)
have shown that some of the apoplastic Suc generated in the
mesophyll is carried to guard cells by the transpiration stream, and
where the water evaporates, the Suc accumulates at the vicinity of
the guard cells (Fig. 1). They suggested that the increase in Suc
concentration outside the guard cells might impose an osmotic
effect that may stimulate stomatal closure, thus coordinating
photosynthesis with transpiration (Outlaw, 2003; Kang et al.,
2007). It was recently hypothesized that the Suc arriving at guard
cells is cleaved in the apoplast to form glucose and fructose that
enter the cells via hexose transporters, or enters the cell via sucrose
transporters and is cleaved within the guard cells to form glucose
and fructose, which are then sensed by HXK, stimulating stomatal
closure (Fig. 1) (Kelly et al., 2013). As HXK can sense increasing
concentrations of sugar (Jang et al., 1997), it was assumed that the
closure effect on stomatal movement in response to increasing
sugar concentrations entering the guard cells, coordinates photo-
synthesis with transpiration.

A functional approach has been taken to examine the above
hypothesis, namely whether Suc stimulates stomatal closure and
whether it happens via HXK. Exposing intact leaves or epidermal
strips (composed of only guard and epidermis cells with the
mesophyll removed) to Suc or to its derivates, glucose and fructose,
stimulated stomatal closure (Kelly et al., 2013). This effect was
found to be enhanced when HXK was overexpressed and was
partially revoked when a competitive inhibitor of HXK (N-
acetylglucoseamine; Hofmann & Roitsch, 2000) was applied
togetherwith the Suc. This led to the conclusion that Suc stimulates
stomatal closure and that this response is mediated by HXK (Kelly
et al., 2013). This recent observation is in line with the findings of
Lee & Bowling (1992), who stated that incubating isolated
epidermis with glucose and Suc prevent stomatal opening; this was
surprising at the time, in view of the osmotic-opening role assigned
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to sugars (Talbott & Zeiger, 1993, 1996; Amodeo et al., 1996).
This observation is also in line with the finding that plants with
reduced rates of photosynthesis (and Suc production) displayed a
tendency toward greater stomatal opening (Lawson et al., 2008).

As already mentioned, there is solid evidence in the literature for
an interaction between sugars, HXK and the hormone ABA. In
general, the sugar-sensing effects mediated by HXK are known to
be dependent on the production and signalling of ABA (Leon &
Sheen, 2003; Rolland et al., 2006; Rognoni et al., 2007; Ramon
et al., 2008). It has been shown that sugar and HXK stimulate the
ABA signalling pathway within guard cells (Kelly et al., 2013)
promoting stomatal closure, but it remains to be determined if
sugar and HXK has any direct impact of ABA synthesis and ABA
concentration in the guard cells. As initially suggested by Lu et al.
(1997), the feedback inhibition of Suc generated by photosynthesis
in the mesophyll and arriving at guard cells, potentially integrates
three pivotal physiological processes: photosynthesis, transpiration
and sugar translocation (Outlaw, 2003). It is the constant, on-going
combination of the three that adjusts the amount of Suc streaming
toward the stomata. When transpiration and photosynthesis rates
are high and the mesophyll cells produce more sugar than can be
uploaded into the phloem, surplus Suc is carried toward the
stomata by the transpiration stream and stimulates stomatal
closure, thus reducing water loss. Initially this link may seem
counter-intuitive as conditions or situations that result in increased
photosynthesis (and therefore Suc) are not normally associatedwith
reduced stomatal aperture. However, increased apoplastic Suc
concentrations would only arise if sink capacity was limited and
phloem loading was saturated. Additionally, the mechanismmight
operate over the longer diel period – for example, reduced stomatal
apertures are often observed in the afternoon despite environmental
conditions being similar to those found in the morning.

Many plant species are apoplastic loaders in which Suc produced
inmesophyll cells is exported to the intercellular space before being
loaded into the phloem (Rennie &Turgeon, 2009). It is easy to see
how apoplastic intercellular Suc carried by the transpiration stream
to the guard cells would form a feedback mechanism that closes
stomata (Lu et al., 1997; Outlaw & De Vlieghere-He, 2001;
Outlaw, 2003; Kelly et al., 2013) that appears to be related to the
type of phloem loading strategy (either apoplastic or symplastic)
(Kang et al., 2007). It is intriguing to study whether sugars have
similar effects in symplastic loaders as well (Kang et al., 2007).
Because guard cells are capable of carrying out photosynthesis and
producing sugars (see Lawson, 2009), it is possible that guard cell-
produced sugarsmight also stimulate stomatal closure.Namely, the
guard cell-produced sugars may also be sensed by the guard cell
HXK in both apoplastic and symplastic loading species. In
addition, the specific conditions under which sugars accumulate
also remains to be elucidated and the threshold or dosage-
dependency that stomata respond to is also unknown. To
thoroughly elucidate the role of sugars in stomatal movement
and the coordination of gs with A, and to distinguish between
external and internal sugar effects, the amount of Suc needs to be
measured directly in guard cells in response to externally supplied
sugars alongside stomatal aperture measurements. Diurnal mea-
surements of photosynthetic production of Suc, phloem loading

and apoplastic Suc in the vicinity of guard cells alongwith guard cell
Suc concentration, HXK activity and stomatal aperture are all
needed to elucidate the entire mechanism.

There are several additional studies that support stomatal closure
as a result of sugar concentration. The girdling technique, in which
the outer phloem is removed restricting shoot-to-root sugar
transport via phloem, results in endogenous accumulation of
glucose and Suc in shoots along with a significant reduction in gs
(Setter & Brun, 1980; Else et al., 1996; Urban & Alphonsout,
2007; Domec & Pruyn, 2008). Fruit load experiments provide
additional observations of how stomata are affected by sugar
content. A recent study conducted in avocado (Persea americana)
compared fruit loaded treeswith nonfruited.High fruit load,which
leads to lower sugar concentrations in leaves, was found to be
correlated with higher gs values and higher water intake, whereas
removing the fruits displayed an opposite behaviour; high sugar
content and lower gs and water uptake (Silber et al., 2013).
However, both of these experimental findings could equally be
explained by reduced sink availably for photosynthate and a
downregulation of photosynthesis and which in turn would result
in a reduced stomatal aperture.

X. The importance of malate as a mesophyll-driven
signal

In addition to sucrose, it is well established that malate acts as an
osmoticum for the opening and closing of stomata providing a
counter ion forK+ ions (Imamura, 1943; Yamashita, 1952; Fischer,
1968; Fischer&Hsiao, 1968; Humble&Raschke, 1971; Allaway,
1973; Pearson, 1973; Outlaw & Lowry, 1977; Shimada et al.,
1979; Outlaw, 1983; Asai et al., 2000). The production of malate
in the guard cells has also been associated with electron transport
and starch degradation in these cells (Outlaw & Lowry, 1977;
Schnabl, 1980, 1981). Early studies suggested that the energy and
reductant produced from electron transport within guard cells
could support the production of malic acid via phosphoenolpyr-
uvate carboxylase (PEPC) CO2 fixation (Willmer & Dittrich,
1974; Raschke & Dittrich, 1977), with the breakdown of starch
through the day providing the required carbon skeletons (see
Outlaw &Manchester, 1979; Asai et al., 2000). Increases in PEPc
activity with irradiance have been reported, in combination with
increased NADP- or NAD-dependent malate dehydrogenase
activity (Rao & Anderson, 1983; Scheibe et al., 1990) resulting
in the accumulation of malate in the guard cells and stomatal
opening (Allaway, 1973; Pearson, 1973; Pearson & Milthorpe,
1974; Vavasseur & Raghavendra, 2005). Inhibition of malate
synthesis using the phosphoenolpyruvate carboxylase (PEPC)
inhibitor 3,3-dichloro-2-dihyroxyphosphinoylmethyl-2-propeno-
ate (DCDP) in epidermal strips of Vicia faba prevented stomatal
opening in response to illumination due to a decrease in malate.
When applied in the light, DCDP reduced stomatal aperture along
with decreases in guard cell malate concentrations (Asai et al.,
2000) confirming the osmotic role formalate in guard cell opening.
Further support for the involvement of PEPc activity comes from
Cousins et al. (2007) who showed reduced rates of stomatal
opening in PEPc-deficient Amaranthus edulis mutants compared
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with wild-type controls (Cousins et al., 2007), whilst Solanum
tuberosum plants over-expressing PEPc had greater stomatal
opening rates compared with plants with reduced PEPc (Gehlen
et al., 1996).

The above studies demonstrate that malate plays a key role in
stomatal regulation as an osmoticum and as a sink for the end-
products of guard cell electron transport. However, more recently
the importance of malate as a regulator of stomatal responses to
external CO2 concentration has been demonstrated (Hedrich &
Marten, 1993; Hedrich et al., 1994; Roelfsema et al., 2002; Lee
et al., 2008; Fernie & Martinoia, 2009). These and other studies
illustrated that malate acts as a signal that coordinates stomatal
behaviour with mesophyll photosynthetic demands (Hedrich &
Marten, 1993; Lee et al., 2008; Fernie &Martinoia, 2009; Ara�ujo
et al., 2011). Below we provide a summary of reports providing
evidence for the importance of malate in guard cell signalling and
links with mesophyll photosynthesis.

Substantial evidence for malate acting as the mesophyll-
derived signal influencing stomatal behaviour came from Ara�ujo
et al. (2011), who demonstrated greater stomatal conductance
(and also photosynthesis) in Solanum lycopersicum plants with
reduced expression (driven by the constitutive 35S promoter) of
SISDH2-2 gene which encodes for the iron sulphur subunit of
the succinate dehydrogenase protein. Succinate dehydrogenase
catalyses the formation of fumarate from succinate in the
tricarboxylic acid (TCA) cycle and therefore antisense plants
exhibited a reduction in TCA metabolites including fumarate
and malate. However, when repression was driven by a guard
cell-specific promoter, no effect on stomatal conductance nor
photosynthesis was apparent, signifying that changes in guard
cell malate depended upon supply from the surrounding
mesophyll cells and not from the guard cells themselves. These
findings provided considerable evidence demonstrating that
adjustments to mesophyll mitochondrial metabolism affect
stomatal function via the regulation of organic acid concentra-
tions (Fernie & Martinoia, 2009). Following the formation of
fumarate from succinnate, fumarate is metabolised into malate
by Fumarase (fumarate hydratase; E.C. 4.2.1.2.) in a reversible
hydration reaction (Nunes-Nesi et al., 2007). In constitutive
antisense fumarase Solanum lycopersicum plants photosynthesis
was reduced due to low stomatal conductance and a 50%
decrease in CO2 uptake under atmospheric conditions was
observed (Nunes-Nesi et al., 2007). In these plants lower
amounts of fumarase fed back to reduce mitochondrial activity,
characterised by a mild reduction in flux through the TCA cycle
in the light and a reduction in dark respiration resulting in
increased malate concentrations, which in turn stimulated
stomatal closure. These authors furthermore demonstrated that
these changes led to a reduction in overall biomass, which they
attributed to a deficiency in stomatal function (marked reduc-
tion in stomatal conductance).

The findings outlined above support earlier patch clamp studies
which suggested that malate was the guard cell CO2 sensor,
whereby apoplastic malate concentration regulates anion efflux in
guard cells through a malate-sensitive anion channel GCAC1
(Hedrich & Marten, 1993). GCAC1 (Guard Cell Anion Channel

1) also named QUAC1/ALMT12 (QUick-activating Anion
Channel 1 (R-type)), is highly expressed in guard cells, targeted
to the plasma membrane and is permeable to chloride and nitrate
(Meyer et al., 2010; Sasaki et al., 2010). QUAC1 mutants are
impaired in malate-induced anion currents (Meyer et al., 2010),
and it has been demonstrated that QUAC1 predominantly
transports malate and sulphate (Hedrich & Marten, 1993;
Hedrich et al., 1994; Frachisse et al., 1999; Meyer et al., 2010)
and is thus well suited for release of malate from guard cells as
previously shown for Vicia faba (Keller et al., 1989; Dietrich &
Hedrich, 1994). It has been concluded that the QUAC1 complex
represents an ABA-dependent anion-selective (Mal2� and SO4

2�)
plasma membrane channel transporting malate and sulphate in a
voltage-dependent manner (Mumm et al., 2013; for a more
in-depth review, see Negi et al., 2014).

Hedrich and co-workers showed that changes in ambient CO2

concentration modified extracellular malate which promoted
stomatal closure through the activation of voltage-dependent
properties of these anion-release channels in the guard cell plasma
membrane, (Hedrich & Marten, 1993; Hedrich et al., 1994).
These studies provided further convincing evidence that malate
functions as a CO2 sensor in guard cells and thus provided support
for amechanism that linksmesophyll photosynthesis and guard cell
function. Additionally, high CO2 induces stomatal closure and has
been shown to be enhanced in plants lacking the ABC transporter
AtABCB14 (Lee et al., 2008). Lee et al. (2008) demonstrated that
this ABC transporter is highly expressed in guard cells and
functions as a malate importer protein, aiding in malate accumu-
lation in the guard cells by transporting it from the apoplast, where
it increases the osmotic pressure causing the stomata to open. These
authors suggest that this mechanism allows a recycling of malate in
response to elevated CO2 concentrations and supports the theory
that malate directly modulates stomatal responses to CO2 and
therefore functions as an important regulator of guard cell function
(Lee et al., 2008).

Amore recent study has accentuated the importance ofmalate in
stomatal function, identifying AtALMT9 as a vascular chloride
channel that is activated by cytosolic malate concentration.
ALMT9 belongs to the ALuminium-activated Malate Trans-
porter family (De Angeli et al., 2013; Mumm et al., 2013), and
plasmamembrane locatedALMTs are involved indicarboxylic acid
excretion and the influx of inorganic and organic ions during
stomatal closure (De Angeli et al., 2013) – for example ALMT12/
QUAC1 is expressed in guard cells transporting malate (see above).
Arabidopsis AtALMT9 knockout mutants have been shown to
have compromised stomatal opening, demonstrating that AtAL-
MT9 is required for proper regulation of stomata (De Angeli et al.,
2013). These findings support the work of Wang & Blatt (2011),
who showed that carboxylates play an important regulatory role
inhibiting chloride fluxes across the plasmamembrane ofVicia faba
guard cells. Ara�ujo et al. (2011) concluded from their study, along
with the evidence for malate transporters, that malate provides a
mechanism linking mesophyll and stomatal function, supporting
the hypothesis of a signal coordinating stomatal responses with
mesophyll (Mott, 2009; Lawson & Blatt, 2014). These data
provide strong evidence thatmalate concentration in guard cells has
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a significant influence on stomatal function and support the theory
of mesophyll regulation of stomatal behaviour (Lee et al., 2008;
Mott et al., 2008; Mott, 2009; Sibbernsen & Mott, 2010).

It should be remembered that here we have focused on signals
that promote possible coordination between mesophyll photosyn-
thetic demands and stomatal function and that there are many
other signals to which stomata respond that have been shown to be
equally if not more important than those discussed here, including
ABA and other hormones, as well as redox signals which likemalate
also interact strongly with guard cell ion channel (for a more in
depth review see Negi et al., 2014).

XI. Role of aquaporins

In addition to the potential roles of sugars/malate and ion channels
in regulating stomatal movements, aquaporins have also been
implicated in the control of stomatal aperture. Aquaporins encode
the water channels of intracellular and plasmamembranes and play
a crucial role in water conservation. In stomata, water flow is a
crucial aspect of guard cell turgor and changes in water content can
have wider implications for the osmotic potential of these cells
(Maurel et al., 2002). Moreover, some aquaporins have also been
described as having a role in the transport of CO2, H2O2, boron
and silicon in addition to carbohydrate routing and are thus
implicated in diverse functions such as carbon fixation, nutrient
translocation and cell signalling (Terashima & Ono, 2002; Ma
et al., 2004; Flexas et al., 2006; Heckwolf et al., 2011), thereby
playing a role in interactions between mesophyll and stomatal
conductance.

One group of aquaporins, the plasma membrane intrinsic
proteins (PIP) correspond to proteins found abundantly in
vascular and plasma membranes and have been described as
playing an important role in regulating stomatal aperture.
Uehlein et al. (2003) generated transgenic tobacco plants that
showed antisense inhibition and over-expression of the tobacco
PIP1 homologue NtAQP1. A thorough characterization of these
plant lines indicated that the mesophyll conductance to CO2 was
positively correlated to NtAQP1 expression, although it was
equally demonstrated that two additional physiological param-
eters, stomatal conductance and net photosynthetic capacity,
were also linked to NtAQP1 expression levels (Flexas et al.,
2006). Taken together, it was determined by these authors that
NtAQP1 serves as a CO2 pore in tobacco leaves (Uehlein et al.,
2003, 2012; Flexas et al., 2006). Furthermore, in both tobacco
and Solanum lycopersicum, the constitutive over-expression of
NtAQP1 increased net photosynthesis (AN), mesophyll CO2

conductance (gm), stomatal conductance (gs) and increase root
hydraulic conductivity under stress (Kelly et al., 2014; Sade et al.,
2010, 2014).

Additionally, ABA mediates the regulation of aquaporins gene
expression, protein abundance and/or activity in response to
environmental constraints including drought and salt stress (Zhu
et al., 2005; Maurel et al., 2008) providing an additional mecha-
nism linking mesophyll CO2 demands with stomatal behaviour.
These data further attest to the complex, interconnected roles of
multiple components implicated in the regulation of guard cell

aperture and highlights the importance ofmesophyll-driven signals
in stomatal responses.

XII. Guard cell manipulation and possible future
directions

In the attempt to understand the link betweenmesophyll and guard
cell metabolism genetic engineering provides a unique opportunity
to dissect not only stomatal physiology and function (Nilson &
Assmann, 2007), but also the specific role of each cell type in
governing stomatal metabolism, stomatal opening and water use
efficiency. Lawson & Blatt (2014) reviewed the complexity of
alteration in stomatal numbers and sizes for improving WUE and
highlighted that guard cell function can counterbalance anatomical
changes. However, they also singled outmanipulation of guard cell
metabolism as a potential target for increasing WUE while
maintaining photosynthesis rate. The aim of this section is to
highlight the potential ways ofmanipulating guard cellmetabolism
and stomatal response, using the currently available tools.

Over the last 10 yr significant strides have been made in
understanding the underlying mechanisms governing stomatal
opening/closing and the proteins intrinsically linked to guard cell
functions and mesophyll–stomatal interactions. Combined with
the availability of a number of promoters permitting the specific
expression of transcripts in different cell types, the idea of
manipulating guard cell metabolism or specific stomatal traits has
the real potential to elucidatemesophyll–stomatal interactionswith
the overall goal of delivering plants with improvedWUE and yield.
Table 1 compiles a list of promoters functionally evaluated for
expression in different cells type, that ismesophyll, guard cells, both
and neither (Muller-Rober et al., 1995; Francia et al., 2008;
Galbiati et al., 2008; Cominelli et al., 2011; Kelly et al., 2013)
providing an effect toolbox to explore cell-specific interactions.

Guard cell-specific promoters, combined with organelle-specific
transit peptides,may also allow the elucidation of the role of specific
transcripts implicated in photosynthesis, electron transport,
carbohydrate biosynthesis and ion channel function to be evaluated
on a cell-by-cell basis. Moreover, the ability to induce transient
expression in guard cells (Rusconi et al., 2013) opens up the new,
exciting possibility to study guard cell signalling and the transduc-
tion pathways involved. These tools would furthermore allow the
role of specific transcripts in the coordination of guard cell
behaviour and mesophyll–stomatal interactions to be determined
experimentally.

For example, the over-expression or suppression of key photo-
synthetic transcripts such as SBPase, FBPaldolase in addition to the
manipulation of key electron transport proteins can be exclusively
targeted to guard cells or themesophyll, to further elucidate the role
of GC photosynthesis and electron transport on GC function, the
role of mesophyll metabolism in stomatal behaviour and their role
in a coordinated response to environmental stimuli that potentially
involves GC photosynthesis and ion channels. In addition to these
studies, the expression of CO2 transporters could be used to
evaluate the role ofCO2fluxes onCi and in turn evaluate the roleCi

on the relationship between mesophyll/guard cell photosynthesis
and stomatal aperture. This could be studied further by the over-
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expression or downregulation of aquaporins in both guard cells and
mesophyll cells. Aquaporins have been implicated in the control of
stomatal aperture and have been proposed to play a role in CO2

movement within guard cells. Given the availability of these tools,
improving stomatal function and WUE through genetic manip-
ulation presents itself as a viable option.

The role of sugars in guard cell function has also been heavily
studied; however, the contrasting results remain controversial with
regards to the origins of sugars in guard cells. The promoter of
KST1, a guard cell-specific promoter (Muller-Rober et al., 1995),
has beenused to drive expression ofHXK in tomato guard cells.Net
photosynthesis of the transformed Solanum lycopersicum plants
remained unaffected, as well as plant growth, whereas transpiration
was reduced relative to the wild-type control plants (Fig. 2). This
improved the instantaneous water use efficiency (IWUE) of the
plants (unpublished results). These results demonstrate that
exclusive expression of HXK in guard cells might be an efficient
way to improve the WUE of plants.

In this review, we have briefly discussed the role of ion channels
in guard cell movements (for a more in depth review, see Negi
et al., 2014) and the current literature implies that a complex
interaction between ion channels, sugars, malate and photosyn-
thesis exists indicating that complex genetic changes touching on
each of these areas could be used to alter guard cell–mesophyll
coordinated responses and potentially improve WUE (see Lawson
& Blatt, 2014). The role of some individual ion channels has been
clearly elucidated even if the complex interactions of these
channels have still to be clearly defined. Nevertheless, ion channels
provide a number of targets to be identified for genetic manip-
ulation to alter stomatal function or responses and therefore the
link between stomatal behaviour and mesophyll photosynthesis.
For example, it has been shown that disruption of GORK activity

in the mutant gork-1, results in the impairment of stomatal closure
(Ache et al., 2000; Hosy et al., 2003). The loss of GORK activity
also led to increased water consumption consistent with enhanced
stomatal apertures. The GORK ion channels presents itself as an
ideal candidate for manipulation and the over-expression of
GORK could significantly impact guard cell function. However,
GORK functions in tandem with the voltage-dependent K+

in

channels, such as KAT1 mediating potassium flow during guard
cell opening and closing cycles. Although the over-expression of
KAT1 had no effect on stomatal opening under experimental
conditions (Wang et al., 2014), disruption of KAT1 resulted in a
more than 50% reduction in K+

in conductance (Szyroki et al.,
2001). Gene stacking of GORK and KAT1 as a single expression
cassette presents an interesting case study on the role of potassium
flow on GC function. Furthermore, another ion channel mutant,
slac1 exhibits a reduced rate of stomatal opening in response to
light, low CO2 and high humidity, three physiological stimuli
known to strongly activate stomatal opening (Laanemets et al.,
2013a,b; Merilo et al., 2013). The manipulation of SLAC1
channel function through over-expression of the SLAC1 protein
could therefore potentially accelerate stomatal opening in response
to light and other stimuli. These studies have highlighted that
manipulation of stomatal behaviour is possible through manip-
ulating ions channels; however, what is still unknown is the role
mesophyll signalling may play in these responses and activation of
such ion channels.

In this review we have touched upon some of the key
features regulating guard cell–mesophyll interactions. It is clear
from the available studies that these relationships are complex
involving multiple mechanisms and signalling responses.
Therefore, an integrated approach will allow us to unravel
the key components of each of these pathways and determine

Table 1 Available promoters for transcript studies in guard and mesophyll cells

Promoter Gene ID Localisation References

CYTOCHROME P450 86A2 mono-oxygenase
CYP86A2

At2g37300 High guard cell specificity Francia et al. (2008)
Galbiati et al. (2008)

CYTOCHROME P450 86A2 mono-oxygenase
CYP86A2 subfamily

At4g00360 High guard cell specificity Galbiati et al. (2008)

AtMYB60 transcription factor At1g08810 High guard cell specificity Cominelli et al. (2011)
Rusconi et al. (2013)

PP2C PROTEIN PHOSPHATASE(AtPP2C) At1g03590 High guard cell specificity Galbiati et al. (2008)

GC1 At1g22690 High guard cell specificity Yang et al. (2008)
Wang et al. (2014)

PLEIOTROPIC DRUG
RESISTANCE 3 (AtPDR3) transporter

At2g29940 High guard cell specificity Galbiati et al. (2008)

KST1 potato potassium channel (AtKAT1 homologue) NP001275475 High guard cell specificity Muller-Rober et al. (1995)
Kelly et al. (2013)

FASCICLIN-LIKE gene At5g44130 Stomata and mesophyll Galbiati et al. (2008)

PHOTOSYSTEM II PROTEIN At1g03600 Downregulated in guard cells compared to
mesophyll cells

Galbiati et al. (2008)
12S SEED STORAGE CRA1 gene At5g44120

PENTATRICOPEPTIDE REPEAT-CONTAINING PROTEIN At2g37310 Was NOT detected either in stomata or
mesophyll cells

Galbiati et al. (2008)
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how they inter-relate, providing possible potential targets for
future manipulation.
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