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Mesoporous materials with high specific surface, pores volume and unique pore

size were recently intensively studied as bio-materials, such as carriers for controlled

bio-active principles delivery. Mesoporous silica materials exhibit greater capacity

for drugs loading and insure a controlled bio-active compound release if they

are functionalized, in comparison with amorphous colloidal silica. Mesoporous silica

nanomaterials have lately earned increasing interest also due to their substantial

capability to be used in tumors treatment and imaging. Recently, functionalized

mesoporous silica materials known a rapid development in imagistic and curative

applications. This review summarizes the recent advancement in the obtaining and

biological properties of mesoporous silica nanomaterials, emphasizing the synthesis

methods and drug delivery application. Commonly used synthetic strategies are

discussed, followed by a systematic review of applicability in optical and MRI imaging.

Keywords: bio-application, drug delivery, functionalization, mesoporous silica, nanomaterial

INTRODUCTION

In 1906, Paul Ehrlich introduced the term “magic bullet,” referring to an antigen capability to
specific select “side chains” on the cells surface (Strebhardt and Ullrich, 2008; Li et al., 2012). In
the cytotoxic chemotherapy, the design of a targeted component is essential if an efficient dose
of a drug must attack only the damaged region, without affecting healthy cells. Hypothetically,
this “magic bullet” must contain a nanoscale delivery system able to specifically targeting tumor,
avoiding premature degradation (Peer et al., 2007). This integrated concept could result in a
controlled-release upon activation.

Various theranostic drugs have been developed over the past 30 years, the most clinically used
being multifunctional liposomes and polymeric micelles. However, the aim of this investigation is
to draw special attention to the use of silica-based mesoporous nanomaterials as drugs robust and
tuneable delivery systems.

Nanotherapeutics have been intensively studied in the last years, as a consequence of the
capability to be used as effective drug delivery frameworks with decreased unwanted secondary
effects (Lin et al., 2012). Contrary to the classical therapies, nanomaterials can be designed properly
to target affected sites (tumors) and selectively deliver their load. Until now, different nanomaterials
(polymers, metal, metal oxide, etc.) have been obtained and used as systems for integrating
active principles and diagnostic functions in a single nanomaterial, called multifunctional nano-
theranostic (Sanvicens and Marco, 2008; Lammers et al., 2010; Xie et al., 2010).

The unstoppable nanotechnology development resulted in the design of various nanomaterials
with important therapeutic potential. For example, there have been discovered many materials
suitable for treating various pathologies (Anselmo and Mitragotri, 2015, 2016), such as:
magnetic (Hao et al., 2010; Lin et al., 2012; Wu et al., 2016) or plasmonic compounds
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(Lin et al., 2012; Liu et al., 2016), that can be isolated excited with
a magnetic field and light, resulting a thermic reaction able to
induce cell death (Lin et al., 2012).

Mesoporous silica gained a raised interest, due to its
extensive multi-functionality, based on its high specific surface,
uniform and tuneable pore size, high pore volume, and facile
functionalization (Rosenholm et al., 2011; Lin et al., 2012).

The first surfactant-assisted synthesis of MCM-41
mesoporous silica (Mobil Composition of Matter No. 41)
was achieved by Mobil Company in 1992 (Kresge et al., 1992),
but MCM-41 begun to be studied for bio-applications since
2001 as a matrix for drugs release (Vallet-Regi et al., 2001;
Lin et al., 2012). Also, other studies reported silica derivates
with reduced dimensions for drugs release (Cai et al., 2001;
Fowler et al., 2001; Lin et al., 2012). Since then, extensive
research have been carried out in order to improve nanosilica
synthesis, its functionalization and to study in vitro/in vivo
activity. Figure 1 reflects a scheme used for highlighting the
development of mesoporous silica nanomaterials used in
biomedical-applications (Lin et al., 2012).

First modified mesoporous silica nanomaterials for stimuli-
reactive guided liberation of active compounds through
chemically extractible nanoparticles as coatings were obtained
in 2003 (Lai et al., 2003; Lin et al., 2012). Since then, research
focused on the addition of different compounds to obtain various
diagnostic or therapeutic effects, which include: controlled drug
delivery (Lai et al., 2003; Schlossbauer et al., 2009; Shen et al.,
2017) and targeting (Wang et al., 2010; Shen et al., 2017).

Multifunctional mesoporous silica with imaging capabilities
were synthesized and reported in 2006 (Kim et al., 2006; Lin
et al., 2006). Until now, various routes to incorporate imaging
agents were designed, for example fluorophores (for fluorescence
imaging, Lin et al., 2005; Wu et al., 2008), or superparamagnetic
nanoparticles (Kim et al., 2006; Lin et al., 2006).

From 2008, in vivo investigations have been achieved
for the identification of mesoporous silica biodistribution

FIGURE 1 | Timeline scheme of mesoporous silica nanomaterials development for bio-applications.

(Kim et al., 2008; Lin et al., 2012), toxicity (Huang et al., 2011;
Meng et al., 2011), and therapeutic effect (Kim et al., 2008; Meng
et al., 2011).

Although these nanomaterials have gain an increased interest
and proved their compatibility for bio-applications in the last
10 years, various aspects must be taken into consideration prior
to be clinically used (Lin et al., 2012). For instance, if they are
intravenous injected, the biodistribution depends on the particles
diameters and surface properties, therefore, the concern must
be targeted in the size and stability control under the biological
environment (37◦C, highly salted or serum-containing media)
before injection (He et al., 2010; Lin et al., 2012). Another
aspect that must be taken into consideration is the toxicity
of mesoporous silica nanomaterials, the adverse effects being
carefully examined.

Various studies concentrated on in vitro drug delivery,
controlled release, or toxicity of mesoporous silica materials
(Rosenholm et al., 2010; He and Shi, 2011; Lin et al.,
2011; Xu et al., 2012). This review will mainly emphasize
advancement in the domain, underlining the emergent synthesis
methods, strategies to improve mesoporous silica stability
and biodegradability.

Nowadays, the chemotherapeutics delivery evolved, resulting
nano-encapsulated drug formulations which can improve
the pharmacological profile of the free drugs. However,
mesoporous silica materials are gradually receiving interest
due to their unique properties, such as well-established drug
delivery properties (Vallet-Regi et al., 2007) and versatility
for creating high-performing hybrid materials. Besides
mesoporous silica, other multifunctional devices based on
various nano-platforms were discovered (Soenen et al., 2011;
Monnier et al., 2014; Chauhan et al., 2018; Hameed et al.,
2018).

It is well-known that bulk silica is intensively used in food
or cosmetic industry, indicating that it has low toxicity. FDA
(US Food and Drug Administration) cataloged silica compound
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FIGURE 2 | Scheme of the main nanoparticles metabolic path and the glomerular filtration barrier.

as safe (ID Code: 14808-60-7)1. However, when a chemical
compound is conceived like a nanomaterial, new limitations
or safety risks arise, caused by their particles size (Lin et al.,
2012). As an example, the interaction that appears between the
nanoparticles and the cells, allowing their assimilation by the
tumor cells, could result in unpredicted side effects in the healthy
cells (Buzea et al., 2007).

For the mesoporous silica utilization in bio-approaches
(Santos et al., 2015), the matrix degradation should be considered
for the elucidation of the release kinetics, although for
functionalized silica the parameter is harder to manage (Allen
and Cullis, 2013; Sercombe et al., 2015).

The parameters and effects that must be monitored
include, beside the degradability and the possibility to be
eliminated (Figure 2), the size (Shang et al., 2014), shape
(Huang et al., 2010; Li et al., 2015), pore volume (Li et al.,
2018), and surface functionalization. Mesoporous silica
with 100–200 nm nanoparticles dimensions are considered
the optimal choice, preventing fast release (Li et al., 2012;
Lin et al., 2012) and acute toxic effect (Napierska et al.,
2009; Nishimori et al., 2009; Abbaraju, 2017), without
aggregating on physiological fluids, blood capillaries and
alveoli (McCarthy et al., 2012; Abbaraju, 2017).

Furthermore, the rod-like particles are considered more
satisfactory than the spherical particles, as a consequence to easily
achieve polyvalent interactions with the membranes (Huang
et al., 2010; Meng et al., 2011; Lin et al., 2012).

1https://www.drugs.com/inactive/silicon-dioxide-colloidal-200.html (accessed

July 28, 2019).

The interest on mesoporous silica for drug delivery depends
on various factors the most important being the scale of
the silica nanoparticles interaction with living systems. Before
reaching the market, all nanomedicines must be industrially
transferred, obviously, after clinical translation. Regarding the
first step, the industrial technology is related to the scaling up
process, involving also the reproducibility and the total costs,
resulting in the ordinary barriers for commercialization. For
example, the mesoporous silica nanoparticles are obtained in
the lab from milligrams to grams of product, but the large-
scale batches production under Good Manufacturing Practices
(GMP) conditions is a roadblock to their commercialization.
Furthermore, reproducibility on their synthesis at small scale
is relatively easy, but at the industrial scale is difficult. In
this respect, the mesoporous silica clinical translation has been
delayed, being blocked in the first milestone, whether or not the
nanoparticles are reproducible and scalable, in terms of stability
and high loading capacity. So far, researchers have not overlapped
this milestone, although some advances were made. The next
milestone to consider must be related to their potential toxicity
and immunogenicity, which has been found to strongly depend
on the surface functionalization. It has been demonstrated
that mesoporous silica was perfectly biocompatible, in different
animal models, in which toxicity has been discarded. However,
until now, the mesoporous silica nanomaterials were not
evaluated into any clinical trial, this being a delicate step, since
many nanodrugs failed the clinical translation even before the
clinical trials because of reiterative pitfalls.

Taking into account all the above-mentioned drawbacks
and limitations, the integration of various features in a single
entity could be considered a mirage. This review will highlight
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also the evolution of hybrid inorganic-silica nanomaterials with
various bio-applications.

Taking into account all aspects, to currently categorize the
mesoporous silica nanomaterials as appropriate tools for bio-
applications, they must act in accordance with modification
requirements with respect of morphology and surface, resulting
in the minimization of the immune reply and enhance
tissue/cell recognition—targeting.

SYNTHESIS OF MESOPOROUS SILICA
NANOMATERIALS

At the beginning, scientists focused on improving the synthesis
of mesoporous silica nanomaterials, trying to control their pore
structure, size, and stability. Table 1 summarizes some typical
synthesis methods for the mesoporous silica nanomaterials.

Typical scanning and transmission electron microscopy (SEM
and TEM) images of mesoporous silica prepared by our group are
presented in mesoporous Figure 3 (Miricioiu et al., 2019).

Mesoporous silica nanoparticles can be used as host materials
for transporting therapeutics medicaments or encapsulation of
molecules due to their biocompatibility, high loading capacity,
the capability to attach target ligands for specific cellular
recognition, or the design of well-defined and tuneable porosity
(Tang et al., 2012; Hao et al., 2016; Vazquez et al., 2017).
In order to achieve these, the morphology of the silica must
be considered as one of the most important factors. One
common synthesis method for mesoporous silica is the use
of structure directing agents (neutral or charged surfactants)
(Yuan et al., 2011; Vazquez et al., 2017). Generally, mesoporous
silica are obtained from a silica precursor (or sodium silicate
tetraethylorthosilicate-TEOS) by incorporating a surfactant, in
an alcoholic solution under basic conditions (Pang and Tang,
2005; Hodali et al., 2016). Some studies focused on the
mechanism of silica nanospheres and nanorods formation, by
modifying the surfactant concentration (Lelong et al., 2008;
Wang et al., 2013) and sol-gel dilution (Chen and Wang,
2012). The interaction between the Si–O–Si/species and the
surfactant was monitored, and the pore diameters, shape, order,
and morphology were correlated with the surfactant properties
(size, length, etc.) (Vazquez et al., 2017). Also, the mesoporous
silica obtaining was studied in non-alcoholic medium (Lelong
et al., 2008; Chen and Wang, 2012; Vazquez et al., 2017),
but the spherical particles formation was restricted by the
surfactant amount (under 1 wt.%). The specific surface area of
the mesoporous silica materials was around 1,030–1,070m2/g,
with a pore volume of 0.81–0.85 cm3/g. The use of EtOH
was considered, maintaining a fixed amount of CTAB (4.1
wt.%) and ordered spherical and rod-like particles was obtained
(Wang et al., 2013). The mesoporous silica material presented
a specific surface area of 1,500 m2/g and a pore volume of
0.86 cm2/g. As it can be noticed, the dilution of the sol-gel
results in the modification of the specific surface area and in the
transformations of the particles morphology (from spherical to
rod-like), highlighting that silica mesoporosity and morphology
are related to the micelles formation and ordering.

A general synthetic route follows some typical steps: a silica
source (tetraethyl orthosilicate-TEOS or sodium orthosilicate-
Na2SiO6) is mixed with a surfactant, then, a hydroxide (NH4OH
or NaOH) is added, allowing that the silicate is hydrolyzed,
surrounding the spherical micelles; finally, in order to silicate
micelles self-assemble into cylinders, the mixture must be
subjected to hydrothermal treatment (Lin et al., 2012). Surfactant
can be removed by calcination, solvent extraction, or dialysis.
First mesoporous silica with nanoparticles adequate for bio-
application were obtained in 2001 (Fowler et al., 2001; Lin et al.,
2012). Afterwards, many investigations adopted the introduction
of a co-solvent or another surfactant (Lin et al., 2012) for
particles growth suppression, in order to get mesoporous
silica nanomaterials with controlled size—Table 1 (Cai et al.,
2001; Fowler et al., 2001; Lin and Tsai, 2003; Han and
Ying, 2005; Berggren and Palmqvist, 2008; Sutewong et al.,
2011).

The addition of surfactant during the synthesis generates
a structure with many small pores (mesoporous structure)
between 2 and 50 nm, according to IUPAC notation
(Assefa et al., 2016). Recently, templates as chitosan were
used to inherent amino and hydroxyl functional groups,
intermediating future functionalization of the mesoporous silica
(Lalchhingpuii et al., 2017).

In order to produce silica nanomaterials with size suitable for
bio-applications, a catalyzed sol–gel process has been employed.
This process uses the organo-silane precursors which, by
hydrolysis (1) and condensation (2), generating a new state (sol)
(Brinker and Scherer, 1990; Mai and Meng, 2013):

Si (OR)4 + OH−
→ Si(OR)3OH + RO− (1)

SiO−
+ Si (OR)4 → Si− O− Si+ OH− (2)

For example, monodispersed nanosilica with particles size
between 50 and 2,000 nm was obtained by Stober process, using
the hydrolysis of tetraethylorthosilicate, catalyzed by ammonia,
in an aqueous alcohol solution (Stober et al., 1968; Yanagisawa
et al., 1990). The first sanvicens mesoporous silica nanomaterials
were synthesized for catalytic applications (Yanagisawa et al.,
1990; Kresge et al., 1992). Later, sub-micrometer-scaled MCM-
41 particles were prepared by a modified Stober process (Grun
et al., 1997) andMCM-41 with 100 nm was synthesized by means
of a diluted surfactant solution (Cai et al., 2001). Nano-silica with
particle diameter under 50 nm were synthesized by applying two
surfactants or dialysis (Suzuki et al., 2004; Li et al., 2012).

MCM-41 silica was typically obtained via a surfactant
(hexadecyltrimethylmonium bromide) dispersed in ultrapure
water; the mixture is stirred for several hours in ambient
conditions; then the silica source, for example sodium silicate
is added, stirring continuously the mixture. After that, the
mineralizer, tetramethyl ammonium hydroxide is added, stirring
the mixture another 30min (Oshima et al., 2006). Then, the
pH is adjusted to 10.5, checking it after 15min. The mixture
is agitated for 24 h and then it is subjected to hydrothermal
treatment, by introduction into an autoclave 3–5 days, at 100–
120◦C. The resulting mixture is filtered under vacuum, washed
with water and dried (Miricioiu et al., 2019). After aging,
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TABLE 1 | An overview of some synthesis methods for mesoporous silica nanomaterials.

Surfactant Silica source Size control

method

Particle size

(nm)

Pore

structure

Surfactant

removal

References

Hexadecyltrimethyl

monium bromide

Tetraethyl

orthosilicate

Water dilution and

neutralization

60–100 Ordered 2D

hexagonal

Calcination Fowler et al., 2001

Hexadecyltrimethyl

monium bromide

Tetraethyl

orthosilicate

Dilution 100–2,500 Ordered 2D

hexagonal

Calcination Cai et al., 2001

CnTAMX

alkyltrimethyl

ammonium halide

(n = 14-18; X = Br

or Cl)

Sodium silicate Low concentration

of surfactant-silica

source

30–70 Disordered Calcination Lin and Tsai, 2003

Pluronic P65,

P123, F108, F127

Tetraethyl

orthosilicate

Surfactant

suppresses

particles growth

100–300 Ordered 3D

cubic

Calcination Han and Ying, 2005

Pluronic P123 Tetraethyl

orthosilicate

Water and salt

addition

50–300 Ordered 2D

hexagonal

Calcination Berggren and Palmqvist,

2008

Hexadecyltrimethyl

monium bromide

Tetraethyl

orthosilicate and

(3-aminopropyl)

triethoxysilane

Dye incorporation

and pore

expander addition

100–220 Ordered 3D

cubic

Ethanolic acid

extraction

Sutewong et al., 2011

FIGURE 3 | Typical scanning electron (a) and transmission electron (b) microscopy for MCM-41 mesoporous nanosilica.

the resulting nanoparticles are calcined at 550–600◦C in order
to eliminate the excess of hexadecyltrimethylmonium bromide
and to weaken the interactions between the surfactant and
the formed silica (Li et al., 2012). Scanning and transmission
electron microscopy certified the hexagonal arrangement after
the hexadecyltrimethylmonium bromide removal (Figure 3;
Miricioiu et al., 2019).

FUNCTIONALIZATION OF THE
MESOPOROUS SILICA NANOMATERIALS

For the silica nanomaterials extension in the bio-domain,

physical and chemical surface modifications have been applied.

In this manner, the biocompatibility can be enhanced, the non-

specific adsorption can be prevented and functional groups for
further biomolecule conjugation purposes can be provided. The

most common surface modification includes layer by layer self-
assembly (LSA) and chemical surface functionalization (Jafari
et al., 2019).

The mesoporous silica nanomaterials can be functionalized
by incorporation during the synthesis of metal or metal oxide
nanocrystals (Figures 4a,b).

A heterogeneous mixture formed by the surfactant-coated
metal nanocrystals in an organic solvent must be added to
a solution of a surfactant (such as hexadecyltrimethylmonium
bromide), in order to obtain a metal-functionalized silica (Li
et al., 2012). Then, a silicate source is added to the mixture
to promote the condensation reaction, thus, gold, silver and
iron oxide being embedded into the mesoporous silica (Coti
et al., 2009; Thomas et al., 2010). This functionalized systems
can possess various bio-activities, for example antimicrobial,
assured by the dissolved metallic ions, plasmonic, or magnetic
characteristics (Li et al., 2012).
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FIGURE 4 | Typical TEM image for (a) mixed iron-oxide and silver mesoporous silica and (b) Zn embedded in mesoporous silica.

To evaluate the substantial effect of different functionalization
methods, research have been achieved to design colloidal
core–shell mesoporous silica with various types of linear
PEG (polyethylene glycol) modifications (Cauda et al., 2010).
The silica functionalization can decrease the degradation rate
comparing with the un-functionalized ones, the explication
being the existence of the PEG matrix on the nanomaterial
surface. PEG is hydrophilic, preventing in this manner the
proteins adsorption and it reduces unwanted interactions of the
physiological environment with the nanosilica (Yang et al., 2019).

Other research highlighted the silica surface functionalization
with hydroxyl, carboxyl and PEG groups (noted OH–SiNPs,
COOH–SiNPs, and PEG–SiNPs)and their bio-distribution and
urinary excretion were studied (Figures 5A,B; He et al., 2008).

In vivo optical data from the urinary bladder showed that
the nanomaterials were partially eliminated through renal route,
highlighting that these modifications are independent on the
renal elimination (Figure 5C; Yang et al., 2019). Nevertheless,
PEG derivate manifested longer blood circulation and lower liver
uptake compared to the hydroxyl and carboxyl derivates.

Various research investigated the SBA-15 silica
functionalization. For studying the effect of surface
functionalization upon deterioration behavior, Kim et al.
explored the biodegradation of functionalized SBA-15, modified
with hydroxyl, amine and carboxyl moieties on the surface
(Choi et al., 2015; Yang et al., 2019). The carboxyl functionalized
silica had the lowest degradation percentage. These studies
indicated that the SBA-15 surface functionalization results
in a reduction of the degradation rate then the neat silica,
highlighting that the functionalization could affect the silica
shell corrosion by connecting with the cations from the
biological media for reducing the SBA-15 clearance rate
(Choi et al., 2015; Yang et al., 2019).

A key factor that enables silica nanomaterials to be used
in bio-applications is the capability to capture various loads
in the pores channels, thus protecting the active compounds
from enzymatic degradation (Li et al., 2012). The mesoporous
silica nanoparticles are usually charged by immersion in the
active compound solution, the therapeutic being assimilated
through adsorption. When silica surface is functionalized,

the cargo is able to be controllable released at the targeted
damaged tissue, no premature release in the bloodstream being
observed, reducing any secondary effect and increasing the
therapeutic efficiency (Li et al., 2012). For example, Niculescu
et al. reported SBA-15 mesoporous silica functionalized
with amino groups from organic amines (aminopropyl
triethoxysilane) for bio-active coordinative complex delivery
(Niculescu et al., 2018). It was observed a linkage between
the functional groups from the coordination compound
and the amino groups from the silica surface, resulting
an improvement of the hydrophobic interaction with the
hydrophobic active principle (Niculescu et al., 2018). Once the
degree of silylation is decreased by amination, the drug release
rate will be improved.

BIOCOMPATIBILITY

In the context of bio-applications, mesoporous silica
nanomaterials are generally considered biocompatible, with
minimal non-specific or adverse effects. However, there are
several factors that affect the silica biocompatibility, such as
individual size, shape, and surface chemistry, until this moment
the mesoporous silica biocompatibility remaining inconclusive
(Hudson et al., 2008; Tang et al., 2012). This review take into
account the current advances on how particles shape, size and
surface properties influence the interaction with living cells
(Jafari et al., 2019).

The biocompatibility, bio-distribution and clearance are
influenced by the mesoporous silica nanomaterials morphology.
For example, short-rod mesoporous silica is distributed
predominantly at the liver level, whereas long-rod silica is
caught in the spleen and manifest a reduced elimination rate
(Huang et al., 2011; Jafari et al., 2019). The particles shape also
influences cellular uptake, in vitro research reporting that the
shape is independent of the endocytosis rates and dependent on
endocytotic rate (Trewyn et al., 2008; Jafari et al., 2019).

Particles dimensions can influence the biological parameters
(distribution, duration of blood circulation, or elimination rate)
(Jafari et al., 2019). When the nanoparticles are intravenously
delivered, they are predominantly directed to the liver and
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FIGURE 5 | Illustration (A) and TEM images (B) of three silica surface functionalized nanomaterials. (C) Ex vivo imaging of mice after intravenous injection, with various

organs throughout necropsy after 4.5 h, for treated mice (1) OH–SiNPs, (2) COOH–SiNPs; (3) PEG–SiNPs and untreated mice (4). Arrows represent from left to right:

liver, kidney, spleen, lung, heart, spermary, bladder, brain, and muscle. Reproduced with permission He et al. (2008) Copyright 2008, American Chemical Society.
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spleen (Maleki and Hamidi, 2016). The silica nanoparticles with
smaller size have a longer blood circulation lifetime (He et al.,
2011). The mesoporous silica nanoparticles elimination by urine
increases with the particles size, affecting the degradation rate and
the biocompatibility. In vitro studies showed some toxicity for
spherical 1,220 nm nanoparticles at concentration levels higher
than 25 mg/mL (He et al., 2009).

Furthermore, the mesoporous silica nanomaterials
biocompatibility may be influenced by the surface properties.
Cationic charges on the surface may produce considerable
immune reaction and cytotoxicity in contrast with the neutral
and anion counterparts (Nel et al., 2009; Verma and Stellacci,
2010; Jafari et al., 2019), but they are favorable for trans-
vascular transport in tumors. A negative zeta potential is
considered related to the serum opsonin. The mesoporous
silica biocompatibility is affected by the silanol groups at the
outer layer, they negatively interacting with the biological
molecules and destroying their structure (Slowing et al., 2009).
Therefore, surface functionalization is essential for altering
surface reactivity, in order to enhance the biocompatibility.

BIO-APPLICATIONS

Drug Delivery
Mesoporous silica nanomaterials present unique properties that
qualify them as ideal nano-carriers for hosting, protecting and
transporting drugs to the target site. The incorporation of
targeting agents at the mesoporous silica surface is feasible for
conducting them to the damaged tissue, growing the specificity
and reducing unwanted secondary effects (Lin et al., 2012).
Furthermore, multifunctional mesoporous silica nanomaterials
can be design so that they possess synergistic therapeutic
effects against diseased tissues. Most of the investigations on
the mesoporous silica for drug delivery has been dedicated to
cancer therapy.

The first study on silica type-MCM-41 for ibuprofen
controlled release was achieved by the group of Vallet-Regi et al.
(2001). The ibuprofen liberation profile highlighted a divergent
behavior, which depends on the way that the active substance
is loaded in the silica, but it is independent on the pore size.
The in vitro experiments were achieved within constant state and
the mixture was not stirred while the drug was released, limiting
the diffusion at the particles surface (Wang, 2009). Later on,
other study focused on the effect of pores size from the MCM-
41 on the ibuprofen release rate, revealing that, in a simulating
body fluid (SBF) solution, it is decreasing direct proportional
with the pores size decreasing in the domain of 2.5–3.6 nm
(Horcajada et al., 2004).

Another important mesoporous material for therapeutics
delivery systems is MCM-48 silica, recently attracting interest
due to its matrix containing unique penetrating bi-continuous
channels, which can be used when easy molecule accessibility
and rapid transport is required. MCM-48 was investigated
as carrier for ibuprofen and erythromycin (Izquierdo-Barba
et al., 2005), the therapeutics release rate decreasing with
the pores diameters and the surface chemical modification
(Izquierdo-Barba et al., 2005).

Several investigations have been reported for drug delivery
based on organic modified mesoporous materials. It is generally
accepted that the functionalization influences the adsorption and
delivery. MCM-41-based materials were modified with organic
aminopropyl groups for the control of the ibuprofen release,
the functionalization being decisive for the active compound
adsorption and release (Munoz et al., 2003; Zeng et al.,
2005).

From the same class of mesoporous silica, SBA-15 with large
and controlled pore size has a high ordered hexagonal matrix
(Zhao et al., 1998). The SBA-15 has pores with an average
diameter around 6 nm, larger than the MCM-41 pores diameter,
which is around 3 nm (Niculescu et al., 2011). Due to this
characteristic, it is generally assumed that SBA-15 will present
less limitation for the release of bulk molecules. Calcined SBA-
15 was tested for the antibiotic amoxicillin delivery (Vallet-Regi
et al., 2004), proven that the drug quantity incorporated within
the silica network depends on the solvent, pH, and amoxicillin
concentration (Zhang et al., 2018). In the pure SBA-15, the Si-
OH groups exist only at the surface, forming weak hydrogen
bonds with the active compound; this is the reason why silica
is not strong enough to retain the drug and allow it to be
delivered in a sustained manner (Hashemikia et al., 2015; Zhang
et al., 2018). In order to surpass this milestone, functional
groups were introduced on the surface of SBA-15 (Doadrio et al.,
2006).

SBA-15 nanomaterials were post- and one-pot reaction
modified with amino groups for ibuprofen (IBU) and bovine
serum albumin (BSA) delivery (Song et al., 2005). Results
showed that the drugs assimilation and delivery were extremely
influenced by the SBA-15 silica surface properties. The ibuprofen
delivery from the post-synthesis functionalized SBA-15 was
efficiently controlled, because of the ionic interaction established
between the ibuprofen carboxylic groups and the amino
groups from silica surface. Recently, SBA-16 mesoporous silica
was used for immobilization and release of two antiseptic
organic complexes with Zn was tested in deionized water,
not in a simulated body fluid (Zelenak et al., 2005). The
complexes were liberated after 10 h. Nevertheless, traces of
the active compounds were found in the silica after 80 h,
as a consequence of the vigorous immobilization in the
silica matrix.

MSU-type mesoporous silica has also been studied for drug
delivery, such as penta-peptide drug, which is instantaneously
delivered after the solid was washed with dimethylformamide
(DMF) (Tourne-Peteilh et al., 2003; Wang, 2009). Ibuprofen
and antipyrine can be delivered by carbonized mesoporous
silicon microparticles, but no release profile was reported
(Lehto et al., 2005).

Cell Imaging and Photosensitizer Carrier
The silica nanoparticles can be used in imaging, dye-doped
materials being synthesized by Stöber or reverse micro-emulsion
method. Monodispersed solid nanosilica with particle diameter
between 50 nm and 2µm was obtained by Stöber method,
which is a simple and efficient approach. The first well-dispersed
colloidal silica spheres including fluorophores or dyes were
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synthesized by Vanblaaderen and Vrij (1992) and Abbaraju
(2017). This study was extended for obtaining fluorescent core-
shell nanosilica particles (C dots), which are water-soluble and
non-toxic and having particle diameters between 20 and 30 nm
(Ow et al., 2005; Abbaraju, 2017). These dots constitute biological
exploration devices with increased bio-stability, dye quantum
effectiveness and diminished energy transfer reaction, caused by
the limited rotational motility of the dye captured in the C dots
nucleus, assuring the preservation against a dissolution medium
effect or molecular quenchers (Burns et al., 2009; Abbaraju,
2017). FDA approved the use of the C dots in human clinical
trial in 2011, the study showing that the nanoparticles were
harmless in human use, without any traces after renal elimination
(Abbaraju, 2017).

The reverse micro-emulsion method for obtaining dye-doped
nanosilica particles involves the use of water, surfactant and oil
(Jin et al., 2011). The silica precursor’s hydrolysis, condensation,
and the formation of dye trapped nanoparticles occur at the
surfactant-oil interface, to form fluorescent nanoparticles. By
using this method, monodispersed silica nanoparticles with the
diameters of 30–60 nm were obtained (Santra et al., 2001a,b;
Bagwe et al., 2004; Sanvicens and Marco, 2008; Yoo and Pak,
2013). In 2004, a modified micro-emulsion method was reported
for the incorporation of organic dye into silica nanoparticles
(Zhao et al., 2004). The same approach was applied for obtaining
hybrid silica nanoparticles doped with Pb-Se quantum dots
for cell imaging, their toxicity being lowered by individual
or multiple covering of the silica (Tan et al., 2007; Abbaraju,
2017).

Moreover, hollow nanosilica containing vast cavity and
mesopores were used for optical magnetic resonance imagistic,
positron emission tomography (PET) (Suschek et al., 2002;
Abbaraju, 2017) and ultrasound imaging (Shi et al., 2013).

Photodynamic therapy is a photosensitizer-based tumor
ablative treatment, followed by the tumor local radiation at
a specific wavelength in order to activate the photosensitizer
(Suschek et al., 2002; Abbaraju, 2017). After activation, it shifts
the energy to molecular oxygen, producing reactive oxygen
entities with cytotoxic effect, which are able to oxidize the target
cellular macromolecule, resulting in the tumor cell removal
(Figure 6; Lucky et al., 2015).

Mesoporous silica nanomaterials have also been employed as
vehicles for fluorescent agents, being optically transparent due
to their nanoscale particle size, not disturbing the emission of
fluorescent agents. Taking into account that quantum dots can
be easily oxidized, exhibiting fluorescence, PEGylated liposome-
coated quantum dots-mesoporous silica were developed the
oxidation prevention and the dispersion stability improvement
(Pan et al., 2011; Wang et al., 2015). For example, the in vitro
study of cadmium ions as quantum dots highlighted that the
liposome-modified mesoporous silica prevented the quantum
dots degradation (Pan et al., 2011).

An effective biomedical tool is considered the magnetic
resonance imaging (MRI), providing the capacity to non-
invasively get anatomic and functional data with high resolution
(Wang et al., 2015). Mesoporous silica nanomaterials-based
magnetic resonance contrast agents exhibit an increased
sensitivity due to their high specific surface, providing increased
payloads of the active magnetic centers (Wartenberg et al., 2013;
Cha and Kim, 2019). Moreover, silica mesoporous structure
provides easy access into the magnetic center. Mesoporous
silica nanomaterials functionalized with targeted ligands may be
efficiently conducted to damaged tissue for diagnostic goals, the
accumulation of these nanomaterials-based magnetic resonance
contrast agents at the selected site conferring an augmented
imaging susceptivity (Wang et al., 2015).

Mesoporous silica nanoparticles are also used for application
in photodynamic therapy, being vectors due to their flexible
synthesis, porosity and the matrix capacity to absorb the
light (Abbaraju, 2017). For example, there were prepared
organically modified nanosilica particles for the retention of 2-
devinyl-2-(1-hexyloxyethyl)-pyropheophorbide (HPPH), which
is a photosensitizer used in phase I/II of clinical trials
for treating esophageal cancer (Roy et al., 2003; Abbaraju,
2017). The entrapment of the photosensitizer into mesoporous
silica nanoparticles can conduct to the discharge from the
nanocarrier, inducing reduced efficiency. Somemesoporous silica
nanomaterials were obtained for combined photodynamic and
photothermal therapy, by using the release of carboxy aluminum
phthalocyanine with small Pb nanosheets (Zhao et al., 2014;
Abbaraju, 2017). The mesoporous silica nanomaterials covalently
bond the photosensitizer, while the Pb electrostatically covered

FIGURE 6 | Schematic photodynamic reaction. Adapted with permission Lucky et al. (2015) Copyright 2015, American Chemical Society.
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the silica surface. The HeLa-type cervical cancer cells viability
decreased with 65% after the administration of functional
nanocomposites, the effect being significant than the individual
treatment (Abbaraju, 2017).

Mesoporous Silica Nanomaterials in
Vaccines
The actual challenge in vaccines includes the induction of strong
and safely immune-protective response in the host at low cost.
Mesoporous silica nanomaterials can be used as an antigen
carrier due to antigen preservation and its delivery to presenting
cells (Kapczynski et al., 2012; Abbaraju, 2017).

For example, SBA-15-type nanomaterial possesses enhanced
immunogenicity and immune reaction than Al(OH)3, in vitro
macrophages studies showing that silica manifested increased
phagocyte intake and minimal interaction with the cells
(Carvalho et al., 2010; Abbaraju, 2017). Furthermore, the
highest concentration of SBA-15 also conducted to a significant
increase of the cells number, creating interleukin(IL)-4 and
interleukin(IL)-13 and, generating a heterogeneous reaction of
both Th1-type and Th2-type cytokines (Abbaraju, 2017).

Mesoporous silica rods were tested in adjusting the immune
cells and potential application as a vaccine matrix to induce
adaptive immune reaction (Kim et al., 2015; Abbaraju, 2017). In
vivo tests showed that mice immunized with full mesoporous
silica rods vaccine manifested important growth of Thy 1.2+

leukemic cells, inducing increased expression of the Peripheral
blood CD4+ CXCR5+ T helper cell clonal and T follicular
helper cells differentiation (Kim et al., 2015). The silica surface
modification effect upon immune cell activation was studied
(Abbaraju, 2017). The mesoporous silica nanomaterials were
modified with poly(ethylene glycol) (PEG) and poly(ethylene
glycol) (PEG)/arginine-glycine-aspartic (RGD) and they were
investigated in the immune cell adhesion and infiltration, the
PEG derivate inducing higher CD86 expression than the RGD
derivate (Abbaraju, 2017). Also, the PEG-RGD derivate exhibited
lower inflammatory effect than the PEG-one.

However, the impact of all the crucial factors in adjusting
the immune reaction was not completely elucidated. The effect
of nanomaterials pores and particles size on immunological
properties was studied by orally administration to mice,
using Bovine serum albumin as model adjuvant (Wang
et al., 2012). Three types of nanosilica particles with various
particles diameters {S1, [S2 and 1-2(SBA-15)]} were applied,
the Immunoglobulin G antibody from the plasma after oral
administration of bovine serum albumin-loaded S1, S2, SBA-15
being in the sequence SBA-15<S2<S1 (Abbaraju, 2017).

Also, the influence of particle size on targeting dendritic cells
was studied, demonstrating that the particles smaller than 20–
30 nm in diameter can straight get to dendritic cell. Figure 7
presents the silica nanoparticles delivery into lymph nodes.
Nevertheless, particles with diameters higher than 20 nm can
be phagocyted and the dendritic cells uptake is also presented
(Navarro-Tovar et al., 2016).

On the other hand, silica nanomaterials were also used for
DNA vaccines delivery, relying on the transitory manner of the
intended antigen in the host cells (Navarro-Tovar et al., 2016).
Silica nanomaterials-DNA exhibited a clear enhancement in the
immunogenicity, in contrast with DNA at a reduced magnitude
as against the conventional vaccine. Silica-based vaccine also
manifested increased proliferative responses, suggesting that
silica nanomaterials can be considered as good delivery systems
for the DNA vaccines, stimulating cellular and humoral
reactions. This perspective for the distribution by mucosal routes
constitutes an important target, due to the advantages of mucosal
immunization such as easy administration and immune profiles.

CONCLUSIONS

Various types of nanosystems for cancer-targeted imaging and
therapy were developed in the last decade. Among them,
silica-based nanomaterials have been extensively synthesized,
due to their non-toxic nature and facile chemistry for
surface functionalization. The state-of-the-art reflected that

FIGURE 7 | Silica nanomaterials-based vaccines delivery by parenteral (A) and mucosal (B) routes. Adapted with permission Navarro-Tovar et al. (2016) Copyright

2016, Taylor & Francis.
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materials based on nanosilica constitute fascinating media
for new vaccines design, insuring the antigen conjugation
(Cassano et al., 2017) and cellular adaptive immune responses.
Mesoporous silica nanoparticles have been used in clinical
trials for diagnostic purposes and drug delivery. The toxicity
of these nanomaterials should be further investigated and
evaluated at the clinical and pre-clinical levels. Concluding,
the utilization of silica nanoparticles is significantly influencing
the medicine domain, by obtaining new compounds to fight
epidemiologic diseases.

This review drew special attention the main progress in drug
delivery and bio-applications (Wang et al., 2015) of mesoporous
silica nanomaterials. Mesoporous silica nanomaterials have
attractive characteristics, such as a large specific surface, uniform
and tuneable pores, increased pore volume, and decreased mass
density (Kumar et al., 2018). They were intensively studied
for drug delivery since 2000, to provide the improvement
of the drug loading capacity and in vivo targeting efficiency,
decreasing the unwanted effects on healthy organs. Due to
their versatile mesoporous structure and porosity, they possess
important advantages, for example, as drug delivery system,
the release of the cargo is well controlled. Also, magnetic
and luminescent mesoporous silica nanomaterials provide the
simultaneous bioimaging and drug delivery.

However, significant milestones must be addressed, for
example, obtaining novel multifunctional mesoporous silica
nanomaterials with controllable drug release, which can also be
supervised via on line bioimaging in the target tissue (Wang
et al., 2015). Also, more comprehensive and detailed toxicity tests
are required before the mesoporous silica nanomaterials may be
used in human patients. In order to design mesoporous silica
nanomaterials appropriate in biomedical applications with no
side effects, intensive in vivo tests are still required.
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