
REVIEW
published: 01 May 2019

doi: 10.3389/fchem.2019.00290

Frontiers in Chemistry | www.frontiersin.org 1 May 2019 | Volume 7 | Article 290

Edited by:

Fan Zhang,

Fudan University, China

Reviewed by:

Jianping Yang,

Donghua University, China

Paolo Saccardo,

Autonomous University of Barcelona,

Spain

*Correspondence:

Chun Xu

chun.xu@uq.edu.au

Chengzhong Yu

c.yu@uq.edu.au

Specialty section:

This article was submitted to

Nanoscience,

a section of the journal

Frontiers in Chemistry

Received: 31 January 2019

Accepted: 09 April 2019

Published: 01 May 2019

Citation:

Xu C, Lei C and Yu C (2019)

Mesoporous Silica Nanoparticles for

Protein Protection and Delivery.

Front. Chem. 7:290.

doi: 10.3389/fchem.2019.00290

Mesoporous Silica Nanoparticles for
Protein Protection and Delivery
Chun Xu 1*, Chang Lei 2 and Chengzhong Yu 2*

1 School of Dentistry, The University of Queensland, Brisbane, QLD, Australia, 2 Australian Institute for Bioengineering and

Nanotechnology, The University of Queensland, Brisbane, QLD, Australia

Therapeutic proteins are widely used in clinic for numerous therapies such as cancer

therapy, immune therapy, diabetes management and infectious diseases control. The

low stability and large size of proteins generally compromise their therapeutic effects.

Thus, it is a big challenge to deliver active forms of proteins into targeted place in a

controlled manner. Nanoparticle based delivery systems offer a promising method to

address the challenges. In particular, mesoporous silica nanoparticles (MSNs) are of

special interest for protein delivery due to their excellent biocompatibility, high stability,

rigid framework, well-defined pore structure, easily controllable morphology and tuneable

surface chemistry. Therefore, enhanced stability, improved activity, responsive release,

and intracellular delivery of proteins have been achieved using MSNs as delivery vehicles.

Here, we systematically review the effects of various structural parameters of MSNs

on protein loading, protection, and delivery performance. We also highlight the status

of the most recent progress using MSNs for intracellular delivery, extracellular delivery,

antibacterial proteins delivery, enzyme mobilization, and catalysis.

Keywords: mesoporous silica nanoparticles, mesostructure, surface modification, protein therapeutics, drug

delivery

INTRODUCTION OF PROTEIN THERAPEUTICS AND MSNs

In 1922 the pancreatic insulin was successfully purified and applied for Leonard Thompson,
a 14 years old boy suffering type 1 diabetes, which ushered in the era of protein therapeutics
(Banting et al., 1991). Since then numerous protein drugs have been developed and used in
various clinical applications. By 2008, 130 protein based therapeutics had been approved by the
US Food and Drug Administration (FDA) and the number of approved protein drugs soared to
239 in 2017 (Leader et al., 2008; Usmani et al., 2017). In 2018, 7 of top 10 best-selling human
drugs are proteins based ones (Urquhart, 2018). Those protein therapeutics comprise enzymes,
monoclonal antibodies, vaccines, hormones, growth factors, tumor necrosis factors, etc., (Usmani
et al., 2017). Protein based drugs are receiving growing interest due to their specific functions,
less side effects, which are also considered safer than gene therapy as no genetic change happens
(Gu et al., 2011). However, the wide applications of protein drugs are hindered due to their
intrinsic drawbacks especially low stability. The folded characteristic 3 dimensional structures of
proteins are essential for their biological functions, but the conformation is only slightlymore stable
than unfolded one. From an entropic point of view proteins are easy to be denatured (Villegas
et al., 2018). In addition, some therapeutic proteins need to act inside cells, thus intracellular
delivery of active forms of proteins into specific cells remains the main challenge of such proteins
drugs (Ghosh et al., 2010; Gu et al., 2011).
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The rapid development of nanotechnology provides a
revolutionary way in the design of nanoparticle based drug
delivery systems to protect proteins and deliver them to
desired places. New formulations based on nanoparticles or
nanostructures have already been used in the clinical setting (Peer
et al., 2007; Davis et al., 2008) and have demonstrated enhanced
efficacy and reduced side effects, due to the properties brought on
by nanoscale effects (Muller et al., 2002; Torchilin, 2005; Naseri
et al., 2015). Nowadays, the clinically available delivery systems
are mainly organic materials such as liposomes and other lipid
formulations and polymers (Gradishar et al., 2005; Sparreboom
et al., 2005; Duncan, 2006; Greco and Vicent, 2009). However,
the intrinsic instability and limited drug-loading capacity inhibit
their applications for protein delivery (Elsabahy and Wooley,
2012; Chen et al., 2013).

Recently, the development of inorganic materials such as
MSNs, quantum dots (Gao et al., 2004; Michalet et al., 2005),
carbon-based nanomaterials (Liu et al., 2011; Robinson et al.,
2011), layered double hydroxides (Bao et al., 2011; Yan et al.,
2013; Kura et al., 2014) and magnetic nanoparticles (Arruebo
et al., 2007; Sun et al., 2008) have attracted great attention due
to their remarkably high chemical stability. Among this group of
carriers, MSNs are of special interest because of their excellent
biocompatibility, high drug loading capacity, rigid framework,
well-defined pore structure, easily controllable morphology, and
tuneable surface chemistry (Lind et al., 2003; Meng et al., 2011;
Chen et al., 2013; Xu et al., 2014). The delivery of proteins using
traditional MSNs is usually limited by the small pores. Recent
development of MSNs with large pores and novel pore structures
greatly expand their applications for protein therapeutics delivery
(Shen et al., 2014; Knezevic and Durand, 2015; Xiong et al., 2015;
Xu et al., 2015; Yang J. P. et al., 2015). In addition, with abundant
surface modification, various responsive release systems based
on MSNs have been developed with numerous advantages such
as improved efficacy and reduced toxicity (Zhu et al., 2017).
In this review, how to design MSNs for achieving effective
protein loading, protection and delivery will be comprehensively
reviewed. The progress of MSNs based protein therapy for
various applications including intracellular delivery, extracellular
delivery, antibacterial proteins delivery, enzymemobilization and
catalysis will be highlighted.

ENGINEERING MSNs FOR PROTEIN
LOADING, PROTECTION, AND DELIVERY

Encapsulation of proteins within nanocarriers can overcome the
shortcomings of proteins such as poor solubility, poor stability,
difficulty in crossing the cell membranes and lack of specificity.
In addition, nanocarriers enable the delivery of unique drug
combinations which are important for personalized medicine
(Mura and Couvreur, 2012; Kim et al., 2013). Compared to
current clinically used organic nanocarriers such as liposomes,
MSNs can achieve higher protein loading capacity due to their
large pore size, high surface area and large pore volume. In
addition, it is reported that the solid frame of MSNs would
protect the proteins from denaturation (Kao et al., 2014). A

large number of MSNs with different structures, morphology,
and surface functionalization have already been designed and
applied for drug delivery (Carino et al., 2007; Vallet-Regi et al.,
2007; Angelos et al., 2008;Wang, 2009; Manzano and Vallet-Regi,
2010; Yang et al., 2012; Chen et al., 2013; Shen et al., 2013; Siefker
et al., 2014; Dai et al., 2017). In the following part, the effects of
pore size, surface functionalization, pore structure, pore volume
and surface area on the protein loading and protection ability
are reviewed.

Pore Size
In order to load proteins into the mesopores, the pore sizes
of MSNs usually need to be larger than the protein molecule
dimensions. MSNs with larger pore sizes usually have higher
drug loading amounts and faster release rates compared to the
ones with small pores, which may be due to a steric hindrance
effect (Vallet-Regi et al., 2008; Cirujano et al., 2017). In one
study when the pore sizes of SBA-15 were varied from 8.2 to
11.4 nm, the bovine serum albumin loading ability was increased
from 15 to 27% (Vallet-Regi et al., 2008). Zhang et al. (2014)
prepared a series of hydrophobic silica vesicles with different
entrance sizes ranging from <3.9 to 34 nm (<3.9, 6, 8, 13, 16,
24, 33, 34 nm) and tested the loading capacity of RNase A (with
dimension of 2.2∗2.8∗3.8 nm). Silica vesicles with pore size of
6 nm exhibited the highest RNase loading amount (563 mg/g),
which was almost double of that achieved by silica vesicles with
small pores (<3.9 nm) or large pores (>13 nm). This effect was
also observed in other mesoporous structures such as MCM-48
with a 3D cubic pore structure. MCM-48 with a pore size of
5.7 nm exhibited a higher loading capacity of ibuprofen (IBU)
compared to the one with 3.6 nm pores, and a faster release rate
(Izquierdo-Barba et al., 2005).

The enhanced activity and stability of proteins, once loaded
inside the pores of MSNs, have been well-documented. Kao
et al. (2014) studied the activity and stability of lysozyme
immobilized in MSNs of various pore sizes by testing the
proteins’ secondary and tertiary structures with methods such
as circular dichroism and activity assay. The activity of the
lysozyme when immobilized in the pores of MSNs (pore size
close to protein dimensions) was higher than that of native one.
In addition, the enzymatic activity was also improved by MSNs
from thermal denaturation (Figure 1, Kao et al., 2014). Kalantari
also reported the immobilization of another enzyme, lipase, into
MSNswith tunable pore size (from 1.6 to 13 nm). They concluded
that suitable pore size (slightly larger than the size of lipase) is
responsible for the loading and the performance of lipase. The
MSNs with optimized pore size exhibited a high loading capacity
of 711mg g−1, and an 5.23 times specific activity higher than that
of the native enzyme (Kalantari et al., 2017).

Since the pore size of MSNs plays a critical role for the
loading and release of protein, methods to control the pore
size distribution should be briefly reviewed. Traditionally two
ways have been developed to expand the pore size, utilizing
polymers/surfactants with longer carbon chains/co-surfactants as
template or adding suitable organic agents (swelling agents) to
increase the sizes of surfactant templates (Knezevic and Durand,
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FIGURE 1 | Enhanced stability and activity of lysozyme after loaded inside the mesopores of MSNs. Schematic illustration (A) showed the relative activity of lysozyme

loaded into MSNs was 4.4-folds higher than that loaded on the outer surface of solid silica nanoparticles (SSN). (B,C) showed the pore structure of MSNs and (D)

showed the circular dichroism (CD) spectrum of free lysozyme and the one loaded inside MSNs. Reproduced with permission from Kao et al. (2014), The American

Chemical Society.

FIGURE 2 | MSNs with radial pore structure and their application for large protein (β-Gal) delivery. (A–C) showed the structure of MSN-CC and (D) shows the

intracellular delivery of β-Gal. (E–G) showed the structure of amino group modified hollow MSNs with radial pores. (H) showed the highest β-Gal delivery efficacy ** p

< 0.01. Reproduced with permission from Xu et al. (2015), The Wiley-VCH and Meka et al. (2016), The Wiley-VCH.

2015). For the first strategy, the most typical example is the

synthesis of SBA-15 using amphiphilic block copolymers as
templates, and the pore size can achieve up to 10 nm (Zhao et al.,

1998). For the second strategy, 1,3,5-trimethylbenzene (TMB) is
the most common pore-expanding agent (Huo et al., 1996; Feng

et al., 2000) and the pore size of MSNs can be enlarged in a large

range with addition of TMB. It is noted that excessive addition of
swelling agents may result in the loss of structure (Knezevic and
Durand, 2015). Very recently, MSNs with radial pore structures

(Polshettiwar et al., 2010; Shen et al., 2014; Du and Qiao, 2015;
Wang et al., 2019) provide another strategy in the synthesis of
MSNs with large pores. The pore size can be expanded to 50 nm
or even larger (Xu et al., 2015; Wang et al., 2019).

Surface Functionalization
The loading of drug into MSNs are usually achieved by
the interaction between the protein molecules and surface
of pore channels through non-covalent bindings such as
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electrostatic interaction, hydrogen bonding, pi-pi stacking etc,
(Yang et al., 2012). Chemical modification of MSNs with
appropriate functional groups can provide specific interactions
with proteins thus provide effective control over protein loading
and release. The high density of silanol groups on the surfaces
of MSNs and the large library of available organic silanes make
the functionalization of MSNs quite easy through a simple post-
grafting or co-condensation method (Manzano et al., 2008; Yang
et al., 2008; Chang et al., 2010; Li et al., 2013; Bouchoucha
et al., 2014; Jambhrunkar et al., 2014). With suitable surface
functionalization, strong interaction between proteins and the
pore channels by electrostatic force can be achieved, and protein
loading amount can be increased while release rates are slowed.
In pioneering studies, positively charged amino modified MCM-
41 and SBA-15 showed a much higher loading capacity to IBU
(a drug with carboxy groups, negative charged) compared to
unmodified negative charged ones (Vallet-Regi, 2006). A slower
release rate of IBU was also observed from the amino modified
MSNs (Babonneau et al., 2003, 2004; Ramila et al., 2003; Song
et al., 2005; Vallet-Regi, 2006). Tu et al. (2016) tested the
encapsulation ability of negatively and positively charged MSNs
with big pores (10 nm) toward a series of proteins with different
molecular weights (from 12 to 250 kDa) and surface charges. It is
concluded that the surface chemistry within the channels plays a
dominant role in the loading of proteins. It is also notable that
the protein loading process was quick, MSNs achieved 95% of
maximum proteins loading ability within 20min (Tu et al., 2016).

Another strategy of surface functionalization to control the
protein loading and delivery behaviors is modification of MSNs
with hydrophobic groups. Proteins are composed of many amino
acids with different hydrophobic properties, a hydrophobic
surface modification usually increases the protein loading and
enhance the stability. Doadrio et al. (2006) modified SBA-15
with octyl (-C8) and octadecyl (-C18) groups and tested the
drug release behaviors after loading with an antibiotic drug
erythromycin. They found the MSNs modified with hydrophobic
groups showed a slower release rate, the octadecyl-modified
SBA-15 exhibited a one order of magnitude lower release
rate compared to unmodified SBA-15. The observation was
explained as the hydrophobic groups impeded the penetration
of aqueous solution and prevented the fast release of the
loaded drugs (Vallet-Regi et al., 2007). Bale et al. (2010) utilized
n-octadecyltrimethoxysilane modified silica nanoparticles to
deliver green fluorescent protein and RNase A into mammal
cells. Results indicated that hydrophobic modification helped
to preserve the biological activity of proteins and, more
importantly, to achieve endosomal escape. Niu et al. (2016)
studied the effects of hydrophobic modification (octadecyl-
group) as well as surface roughness of silica nanoparticles on the
loading capacity, release profile, cellular uptake and endosomal
escape of RNase A. They concluded that the hydrophobic
modification enhanced the protein loading capacity, achieved
sustained release and improved the cellular uptake performance.
Octadecyl-functionalized silica nanoparticles with rough surface
showed the best performance in RNase A delivery which
caused significant cancer cell inhibition. In addition, Zhang
et al. (2018) reported that hydrophobic modification of silica

vesicles (-C8 and -C18 groups) enhanced the insulin enrichment
ability from PBS or artificial urine. They also found that the
insulin which loaded inside alkyl modified silica vesicles showed
less secondary structure’s conformation change than that of
hydrophilic ones.

Pore Structure
Various pore structures, in terms of pore geometry, are also
reported to affect the protein loading and release properties. Xu
et al. (2015) synthesized MSNs with cone shaped pores (MSN-
CC, Figures 2A–D), which has a large pore size (45 nm) and a
high pore volume (2.59 cm3 g−1). They demonstrated that MSN-
CC can achieve a high loading capacity of large proteins and
successfully deliver active beta-galactosidase (β-Gal, 8∗13∗18 nm)
into cells. Based on this work, Meka et al. (2016) designed an
amine-functionalized hollowMSNswith cone shaped pores using
one step synthesis. With the cationic groups, this hollow MSNs
(Figures 2E–H) showed higher loading capacity toward negative
proteins such as β-Gal and better cellular uptake performance
by up to 40-fold and 5-fold compared to free protein or protein
loaded in unmodified MSNs. In addition, β-Gal delivered by
amine-modified MSNs retains its activity and catalytic functions.
Andersson et al. (2004) also showed MSNs with cage-like pores
provided a higher drug loading amount compared to those with
cylindrical pores. The pore structure also influences the drug
release behavior. Vallet-Regi et al. (2007) found that MCM-48
with a 3D cubic pore structure released loaded IBU faster than
MCM-41 with 2D hexagonal pores (Izquierdo-Barba et al., 2009).

Surface Area
Usually the drug loading process was carried out by immersing
MSNs in drug solutions with high concentration followed with
separation. Vallet-Regi et al. (2007) compared the maximum
loading amount of alendronate in MSNs with similar structure
but different surface area. Results showed that under the same
loading conditionMCM-41with surface area of 1,157m2 g−1 had
a higher loading amount than SBA-15 with surface area of 719m2

g−1 (139 vs. 83mg g−1) (Vallet-Regi et al., 2007; Izquierdo-Barba
et al., 2009). The pore surface provides the sites for the physical or
chemical adsorption of the drugs, thus is an important factor for
evaluating the drug loading capacity of MSNs. This conclusion is
based on the studies of small molecular drugs. For proteins, large
pore negative chargedMSNswith different structures (with a core
inside vs. hollow) but similar surface area have similar proteins
loading capacity (Xu et al., 2015; Meka et al., 2016). More studies
with rationale design are suggested to further test the effects the
surface area on protein loading. It is noted that the contribution
of different (e.g., micropore) surface area need to be considered
corresponding influence on protein loading and release.

Pore Volume
Though the drug loading process is considered to be mainly
happened on the surface of mesopores, the drug-drug
interactions can happen under some conditions such as very
high drug loading concentration, which could fulfill the pores.
In those cases the pore volume is an important factor which
affects the drug loading capacity. For example mesocellular
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silica foams with a pore volume of 1.9 cm3 g−1 showed a higher
bovine serum albumin loading amount than SBA-15 with a
pore volume of 1.1 cm3 g−1 (Schmidt-Winkel et al., 1999). Yang
and co-authors coated mesoporous silica foam (pore size >

10 nm) on the outside of solid magnetic oxide composites for
protein adsorption. With the addition of several mesoporous
silica layers, the pore volume increased to ∼0.49 cm3 g−1 and
high loading capacity toward BSA (113mg g−1) and cytochrome
C (142–175mg g−1) were achieved without compromising the
magnetic property (Yang et al., 2014). Xu et al. (2015) synthesized
MSNs with cone shaped pores and the pore volume reached
as high as 2.69 cm3 g−1, a ultra-high loading capacity toward
large proteins (560mg g−1 toward IgG and 190mg g−1 toward
β-Gal) was achieved (Xu et al., 2015; Meka et al., 2016). In
general, MSNs with high pore volume can load more amount of
proteins under the condition that the pore size is larger than the
dimension of proteins. The effect of pore volume toward protein
release has not been reported yet to our knowledge.

APPLICATION MSNs FOR
INTRACELLULAR PROTEINS DELIVERY

Protein therapeutics are promising drugs to intervene cell

functions more precisely due to their high target specificity. They
are also considered to be safer compared to gene therapies as
no genetic alteration happens. In many applications such as

cancer therapy and immune therapy, protein therapeutics need
to work inside the cells however bare protein cannot cross the
cell membranes by themselves. In 2007, Slowing et al. (2007) first

demonstrated the intracellular delivery of a small protein, native
cytochrome c (with a size of 2.6∗3.2∗3.3 nm), into human cervical
cancer cells (Hela cells) by MCM-41 type MSNs with 5.4 nm pore
size. In this pioneer work, though the intracellular delivery of
cytochrome c was proved, the function of the protein after deliver

into cells was not tested. Later, Davis et al. (2008) employed
PEI modified MSNs to delivery cytochrome c and induced
programmed cell death of Hela cells (Huang et al., 2013). In
addition to cytochrome c, ribonuclease A (RNase A, with the size
of 2.2∗ 2.8∗3.8 nm) is also widely used as a protein drug model to
test the delivery efficacy and the intracellular functions. RNase
A degraded RNA in the cytosol, after loaded into MSNs and
delivered into cancer cells, they can inhabit protein production
and cause cell death. Zhang et al. (2014) reported hollow silica
vesicles for the intracellular delivery of RNase A. Results show
a high protein loading capacity and high potency for cancer
cell inhibition. Niu et al. (2016) demonstrated hydrophobic
modification (C18-functionalization) of MSNs is an effective
strategy for the intracellular delivery of RNase A. Benzene-
bridged MSNs (with hydrophobic groups in the framework or
silica) were also fabricated and applied for RNase A delivery
(Yang Y. N. et al., 2015). In addition to small proteins, protein
therapeutics with large molecular weight are also delivered into
cells benefiting from the development of MSNs with large pores
(Xu et al., 2015; Meka et al., 2016).

In addition to just delivery of proteins into cells, there were
more designs on MSNs to achieve “on-demand” responsive

intracellular release. For example, organic MSNs with disulfide
bond can achieve glutathione (GSH) responsive release to
selectively release proteins in cancer cells. Yang et al. (2016)
designed disulfidebond-bridged and large-pored MSNs for
intracellular RNase A delivery. This disulfide bond-bridged
MSNs demonstrated a GSH responsive degradation behavior,
which showed a higher degradation rate in cancer cells but a
low rate in normal cells. Very recently, oxidative and redox
dual-responsiveness organosilica nanoparticles were further
developed to selectively deliver and release RNase A in cancer
cells and the anticancer performance was evaluated in vivo
(Figure 3, Shao et al., 2018). These diselenide-bridged MSNs
with 10 nm pores can load RNase A inside the pore channels
with electrostatic interaction and degrade upon exposure to
redox or oxidative conditions to release the payload. The anti-
cancer performance was also evaluated on nude mice bearing
tumors. With surface medication with fragments from the cancer
cell membrane, those MSNs showed longer blood circulation
time, low toxicity and enhanced tumor inhabitation ability,
suggesting dual responsive degradable MSNs with proper surface
modification provides a promising strategy for the delivery of
protein therapeutics into tumors (Shao et al., 2018).

MSNs are also widely used for immune therapy and to
deliver vaccine into antigen presenting cells (Mody et al.,
2013). Yang and collaborators reported the delivery of protein
antigens using multi-shell dendritic mesoporous organosilica
nanoparticles for cancer immunotherapy. The organosilica
nanoparticles successfully loaded ovalbumin (OVA) and
mediated endo/lysosome escape to macrophages. They evaluated
the in vivo antitumor performance of organosilica nanoparticles
to deliver B16F10 tumor cell fragments in a therapeutic
vaccination model, showing better immunity for cancer therapy
than pure silica nanoparticles. Their work provided us new
insights for the design of MSNs for adjuvants delivery and
vaccine developments (Yang Y. et al., 2017). MSNs are also used
for oral vaccine delivery. Wang et al. (2012) loaded bovine serum
albumin into MSNs with different particle size (130 nm, 450 nm,
and 1–2µm) and administrated orally to mice. They observed
the immune response and found MSNs with small size triggered
higher IgG antibody concentration in plasma (Wang et al., 2012).

In addition to cancer and immune therapy, MSNs are also
used to for other protein therapies such as deliver proteasomes
for the treatment of Azhamen’s syndrome. Han et al. (2014)
utilized MSNs to load and deliver therapeutic proteasomes
to degrade tau aggregates for the management of Alzheimer’s
disease. MSNs were internalized and distributed in the cytosol
after endosomes escaping. In vitro tests showed proteasomes
loaded MSNs degraded the overexpressed tau in the cells more
efficiently compared to the native proteasomes, and decreased
the levels of the truncated tau which is considered as pathological
hallmark of this disease (Figure 4).

APPLICATION OF MSNs FOR
EXTRACELLULAR PROTEIN DELIVERY

For those protein therapeutics that works outside of cells, MSNs
also provide a platform to protect their activity and achieve
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FIGURE 3 | Responsive MSNs based protein delivery system for cancer therapy. Schematic drawing (A) showed the synthesis of biodegradable diselenide-bridged

MSNs [TEM images in (B)] with dual-responsive and cancer cell membrane mimetic surface modification was used to deliver RNase A into cancer cells (C) and inhibit

tumor growth in vivo (D). Reproduced with permission from Shao et al. (2018), The Wiley-VCH.

FIGURE 4 | MSNs delivered proteasome to degrade tau aggregates, a pathological hallmark of Alzheimer’s disease. Panel (A) was the schematic illustration and

(B,C) showed the SDS-polyacrylamide gel electrophoresis (PAGE) staining of MSNs- proteasome interaction. Panel (D) showed the TEM images of MSNs and

proteasome loaded MSNs. Hydrolysis assay (E) and western blots studies (F) demonstrated the degradation of tau aggregates, indicating the delivery of active form

of proteasomes by MSNs. Reproduced with permission from Han et al. (2014), The Nature Publishing Group.

responsive release. For example, insulin is widely used for the
management of diabetes. However, the daily multiple insulin
injections are quite painful, this discomfort can become a barrier
to the use the insulin injections for many patients (Hunt et al.,
1997; Zambanini et al., 1999). In addition, direct injection
manner may cause hypoglycemia and result in serious problems
such as unconsciousness or even death (Veiseh et al., 2015).
Glucose responsive systems that release insulin automatically in a
way that mimics physiological insulin secretion provide a better
way and have the potential to change the way in which type 1
diabetes is managed.

VariousMSN-based glucose responsive insulin release systems
have been developed which take advantage of the high
drug loading capacity, good biocompatibility and easy surface
modification offered by MSNs (He and Shi, 2011; Zhao et al.,
2011; Chen et al., 2013; Xu et al., 2017). In 2009, Zhao et al. (2009)
reported boronic acid (one type of phenylboronic acid, PBA,
which can form reversible covalent complexes with diol units of
glucose) functionalized MSNs for glucose-responsive controlled
release of insulin and cyclic adenosine monophosphate. The
gluconic acid-modified insulin was immobilized on the exterior
surface of MSNs, which also served as caps to encapsulate cAMP
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molecules inside the mesopores. The release of both insulin
and cAMP was triggered by the introduction of glucose, which
competitively bounds to boronic-acid on the surface of MSNs,
resulting in the loosening of insulin and the release of cAMP.
However, in this work the insulin was modified by gluconic
acid which may affect the biological function of this component.
Sun et al. (2013) introduced another two PBA derivatives, 3-
acrylamidophenylboronic acid and N-isopropylacrylamide for
use as capping agents for insulin loaded MSNs. These PBA
derivatives formed a dense layer which prevented the release
of insulin and underwent swelling upon exposure to glucose to
trigger insulin release. In this design unmodified insulin was used
which eliminated the concern of denaturation of insulin.

Another design based on GOD mechanism was reported
in 2011. Zhao et al. (2011) used MSNs with large pores
(approx. 20 nm) for insulin loading, while the pore capping
was achieved via a coating of GOD and catalase (CAT), an
enzyme capable of catalyzing H2O2 into H2O and oxygen
to prevent the accumulation of H2O2, using layer-by-layer
(LbL) method to control the insulin release. Up to 377 mg/g
loading capacity of insulin was achieved using this method.
The glucose responsive layers (enzyme layers) were coated
onto the insulin loaded MSNs by Schiff base bond formation
and functioned as “gates” to preventing insulin release in the
absence of glucose. The enzymes (GOD and CAT) converted
glucose into gluconic acid with oxygen and the production of
gluconic acid decreased the local pH value. In the presence of
glucose, the Schiff base bond was partially protonated and the
enzyme layers were “loosened” which increased the permeability
and triggered insulin release (Qi et al., 2009; Chen et al.,
2011, 2012). With this design the insulin was released in
response to glucose spontaneously and could achieve repeated
on/off releases of insulin under the condition with/without
glucose (Zhao et al., 2011).

It is noted that most of current glucose responsive insulin
release systems (primarily GOD based systems) release more
than half their loaded insulin at a glucose concentration either
below 7mM (De Geest et al., 2006; Ding et al., 2009; Qi et al.,
2009; Wang et al., 2009; Zhao et al., 2009, 2011, 2012, 2013;
Chen et al., 2011, 2012; Sato et al., 2011; Sun et al., 2013;
Chou et al., 2015) or above 20mM (Gu et al., 2013; Yu et al.,
2015). However, the blood glucose levels are adjusted in the
range of 3.9 ∼ 6.1mM under normal physiological conditions,
which means most of the glucose responsive systems are too
sensitive, releasingmore than half the loaded insulin content even
under normal blood glucose concentrations. Recently, Xu et al.
(2017) reported a glucose-responsive insulin release system based
silica vesicles loaded with insulin with a layer-by-layer enzyme
polymer coating (Figure 5). The insulin-release threshold can
be adjusted by changing the polymer amount in the coating
layers and the insulin release was switched “ON” in response
to hyperglycemia and “OFF” to normal glucose levels. In vivo
experiments in type I diabetes mice showed this MSNs based
system regulated the glycemia levels in a normal range up to 84 h
with a single administration while not affected the blood glucose
concentration of normal mice. Those MSNs based systems have
the potential to be developed as convenient and safe insulin
delivery carriers for diabetes management.

For monoclonal antibodies generally working on the surface
of cells, loading inside MSNs also enhanced their activity by
providing protein and controlling release. For example, cytotoxic
T-lymphocyte associated antigen 4 antibody (CTLA-4 Ab) can
inhibit checkpoint receptor and has been used in patients with
melanoma. Functionalized silica foam with a pore size of 30 nm
was used to loaded CTLA-4 Ab and showed an ultra-high loading
capacity (up to 800mg g−1). In vivo tests with tumor bearing
mice (melanomas) model showed that CTLA-4 Ab loaded silica
foam significantly enhanced antitumor activity compared to free

FIGURE 5 | MSNs based glucose responsive insulin delivery system (A–C). Hollow MSNs (D) was used to loaded insulin and functionalized with glucose responsive

layers through enzyme-polymer layer-by-layer coating strategy (E). In vivo studies showed MSNs based nanosystem enables a fast glucose response insulin release

and regulates the glycemia levels in a normal range up to 84 h with a single administration (F). Reproduced with permission from Xu et al. (2017), The American

Chemical Society.
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FIGURE 6 | Mesoporous silica nanoparticles for the delivery of antimicrobial

protein into biofilm. MSNs for lysosome delivery. (A) the schematic drawing of

MSNs delivery for biofilm. Panel (B) showed the TEM image of MSNs and (C)

the penetration of MSNs into biofilm. The antibacterial performance was tested

towards E. coli biofilm (D). Reproduced from Xu et al. (2018) and by

permission of The Royal Society of Chemistry.

antibodies, attributed to the prolonged release and protection of
antibodies at tumor sites (Lei et al., 2010).

APPLICATION OF MSNs FOR
ANTIBACTERIAL PROTEINS DELIVERY

The use of nanoparticles as delivery vehicles for antimicrobial
proteins shows great potential for the treatment of bacterial
infections. For example, lysozyme, a nature protein than can
catalyze the hydrolysis of bacterial wall, was coated on the
surface of MSN-41 which enhanced the interact with Escherichia
coli (E. coli, one typical Gram-negative bacterium) and raised
the local concentrations of lysozyme. The minimal inhibition
concentration was 5-folds lower after conjugated with MSNs
compared to free lysozyme (Li and Wang, 2013). To tackle the
problem of exposure of lysozyme on the external surface, Song
et al. (2016) prepared MSNs with large pores which had ability
to load lysozyme inside, and demonstrated the enhanced the
ability for the treatment of E. coli in vitro and in an ex vivo
small intestine infection model. Wang et al. (2019) prepared

dendritic mesoporous silica nanoparticles with pore sizes ranging
from 2.7 to 22.4 nm for lysozyme loading. They found MSNs
with large pores had a high lysozyme loading ability (244.5mg
g−1) and showed a sustained release profile. Lysozyme loaded
inside MSNs showed better antibacterial effect toward E. coli,
reducing the minimum inhibitory concentration (MIC) from
2,500mg mL−1 of free lysozyme to 500 µg mL−1. Very recently,
Xu et al. (2018) reported that MSNs could penetrate inside the
biofilms (Biofilms are groups of microbial cells embedded in
extracellular polymeric substances and bacteria in biofilms had
higher resistance to antimicrobial drugs) and deliver lysozyme
into biofilm to kill deeper bacteria (Figure 6A). Those hollow
mesoporous silica nanoparticles with large cone-shaped pores
(Figure 6B) had ability to loaded lysozyme inside and penetrated
into biofilms (Figure 6C). Enhanced therapeutic activity toward
E. coli biofilms was demonstrated with rational design of MSNs
(Figure 6D).

APPLICATION OF MSNs FOR ENZYME
MOBILIZATION AND CATALYSIS

MSNs are also of great significance for enzyme immobilization
and catalysis by addressing the intrinsic issues of the native
enzymes (Wang and Caruso, 2005; Popat et al., 2011; Yang T.
et al., 2017). Wang and Caruso (2005) used a series of MSNs
with pore sizes from 2 to 40 nm for the immobilization of
various enzymes including lysozyme, peroxidase, catalase and
cytochrome C. After loading inside MSNs, the enzymatic activity
was retained in a wide range of pH and even after exposure to
enzyme-degrading substances such as proteases. It is noted that
MSNs-enzyme kept 70% of the initial activity after 25 batch of
successive reactions. Very recently, Kalantari et al. (2018) also
reported the application of dendritic mesoporous organosilica
nanoparticles with benzene groups in the framework for an
enzyme, lipase, and immobilization. It is interesting to note
that after loaded into organosilica nanoparticles, lipase showed
enhanced pH and thermal stability and also higher activity
than free lipase. In addition, after 5 cycles lipase loaded in
MSNs retained 94% catalytic activity, showing the advantage
for reusability (Kalantari et al., 2018).

SUMMARY AND OUTLOOK

In conclusion, MSNs demonstrated high loading capacity and
protective effects toward proteins, provided advantages in the
intracellular, extracellular, antibacterial delivery, immobilization
of various proteins with enhanced therapeutic/catalytic efficacy.
With the rigid framework and well-defined pores, MSNs provide
protection toward protein and preserve their activity. In addition,
the fast development of novel MSNs especially those with
radial pore structure and large pores promotes the application
for protein delivery. We envision that significant progress will
be made and new MSNs with rational design and tailored
functionalization will be developed in the near future for better
protein delivery.

For the future directions, targeted protein delivery and
controlled protein release would be emerging technological
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strategies to further improve the therapeutic effects. The recent
works such as cloaked MSNs with red blood cell membranes or
other targeting agents have shown longer circulation time and
accumulation in target areas such as tumor (Xuan et al., 2018).
The design of various responsive release system based MSNs are
also receiving more attention. Many new studies have clearly
demonstrated the feasibility and advantage of remote-controlled
proteins release systems (Yang et al., 2013).

It is noted that the in vivo effects of MSNs based proteins
delivery systems are less studied. More intensive preclinical
explorations such as animal studies are needed to realize their
potential in clinical applications. Currently the investigation
of MSNs for the in vivo delivery of therapeutic proteins
has not kept pace with advances in MSNs fabrication. More
studies are expected to evaluated the biocompatibility, stability,
efficacy and biological interactions of MSNs based protein

delivery system. The close collaborations between materials

scientists, biologist, pharmacist, and clinician would fasten
this process.
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