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Mesoscale Dzyaloshinskii-Moriya 
interaction: geometrical tailoring of 
the magnetochirality
Oleksii M. Volkov1,2, Denis D. Sheka  3, Yuri Gaididei2, Volodymyr P. Kravchuk  2,4,  
Ulrich K. Rößler4, Jürgen Fassbender1 & Denys Makarov1

Crystals with broken inversion symmetry can host fundamentally appealing and technologically 
relevant periodical or localized chiral magnetic textures. The type of the texture as well as its 
magnetochiral properties are determined by the intrinsic Dzyaloshinskii-Moriya interaction (DMI), 
which is a material property and can hardly be changed. Here we put forth a method to create new 
artificial chiral nanoscale objects with tunable magnetochiral properties from standard magnetic 
materials by using geometrical manipulations. We introduce a mesoscale Dzyaloshinskii-Moriya 
interaction that combines the intrinsic spin-orbit and extrinsic curvature-driven DMI terms and depends 
both on the material and geometrical parameters. The vector of the mesoscale DMI determines 
magnetochiral properties of any curved magnetic system with broken inversion symmetry. The 
strength and orientation of this vector can be changed by properly choosing the geometry. For a specific 
example of nanosized magnetic helix, the same material system with different geometrical parameters 
can acquire one of three zero-temperature magnetic phases, namely, phase with a quasitangential 
magnetization state, phase with a periodical state and one intermediate phase with a periodical domain 
wall state. Our approach paves the way towards the realization of a new class of nanoscale spintronic 
and spinorbitronic devices with the geometrically tunable magnetochirality.

A broken chiral symmetry in a magnetic system manifests itself as the appearance of chiral either periodical (e.g. 
helical or cycloid modulations1–4) or localized magnetization structures (e.g. chiral domain walls5–7 and skyrmi-
ons8–14). �e type and magnetic symmetry of this structures are determined by the orientation and strength of 
the vector of Dzyaloshinskii-Moriya interaction (DMI), which comes from the spin-orbit-driven DMI in bulk 
magnetic crystals with low symmetry15,16 or at interfaces between a ferromagnet and a nonmagnetic material with 
strong spin-orbit coupling17–20. �is DMI is intrinsic to the crystal or layer stack and, for the case of simplicity, 
we refer to it as intrinsic DMI (iDMI). Recently, it was reported that geometrically-broken symmetry in curvi-
linear magnetic systems leads to the appearance of exchange-driven DMI-like chiral contribution in the energy 
functional21–23. �is chiral term is determined by the sample geometry, e.g. local curvature and torsion, and is 
therefore extrinsic to the crystal or layer stack (eDMI). It reveals itself in the domain wall pinning at a localized 
wire bend24 and is responsible for the existence of magnetochiral e�ects in curvilinear magnetic systems25, e.g. 
coupling of chiralities in spin and physical spaces for the Möbius ring26, negative domain wall mobility for helical 
wires27–29.

�e magnetic textures of curvilinear magnets with iDMI will be necessarily determined by the interplay of 
two types of chiral interactions which are acting at di�erent lengthscales. Hence, in the following we refer to the 
resulting chiral term of such type as a mesoscale DMI (mDMI). �e symmetry and strength of this term are deter-
mined by the geometrical and material properties of a three-dimensional (3D) object. Combining the two DMI 
o�ers exciting possibility in tuning the resulting mDMI vector. As a consequence, the same material system with 
properly adjusted geometry can reveals distinct magnetic states.

Here, we study the mDMI in a one-dimensional (1D) curvilinear wire. We derive a general expression for the 
mDMI term and analyse the magnetization states which arise in a helix wire. �e clear cut comparison with a 
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straight wire with homogeneous iDMI reveals: (i) �e magnetic states of a curved wire is governed by a single vec-
tor mDMI, originating from the vector sum of the intrinsic and extrinsic DMI vectors. �is provides a possibility 
to tailor the orientation of the vector of mDMI; (ii) �e symmetry and period of the chiral structures are deter-
mined by the strength and direction of the vector of mDMI. Beside the fundamental interest for the community, 
working with helimagnetic materials, based on our theoretical framework we proposed two new statical methods 
for determining the intrinsic DMI constant, which is relevant for experimental and material science community.

First, we consider a general case of an arbitrary curved wire, whose circular cross-section diameter is smaller 
than the characteristic magnetic length, and scrutinize the properties of a curvilinear anisotropic 1D Heisenberg 
magnet with intrinsic chiral term. In this case the total energy E = Ean + Eex + EDMI consists of three parts: 
exchange, anisotropic and iDMI contributions, respectively. �e transition to the orthogonal curvilinear refer-
ence frame allows to get rid of the coordinate dependence of the magnetic anisotropy term Ean. Furthermore, the 
geometrically broken symmetry leads to the restructuring of all magnetic energy terms containing spatial deriv-
atives. A characteristic example is the transformation of the exchange term into three components 
= + +E E E Eex ex

0
ex
D

ex
A with di�erent symmetry22, namely: isotropic part Eex

0 , which has formally the same form 
as for a straight wire; chiral part Eex

D, which represents the geometrically-induced magnetic asymmetry of a wire 
and plays the role of the curvature-induced DMI; and anisotropic part Eex

A , which represents the 
geometrically-induced magnetic anisotropy of a wire driven by exchange interaction. It should be noted that this 
chiral and anisotropic terms are sources of emergent “vector” and “scalar” potentials, respectively, for spin-waves 
in a curved wire27. Similar effects in curvature-induced geometrical potential are known from curvilinear 
quantum-mechanics systems30.

�e speci�city of our case is the presence of a spin-orbit-driven chiral term. In general case of an arbitrary 1D 
magnetic system the iDMI has the following form

∫= − ⋅ × ∂E S s D m md [ ], (1)sDMI
I

see supplementary materials (S6) for details. In (1) S is the wire cross-section area; s and ∂s are arc length of the 
central line of the wire and the derivative with respect to s, respectively; DI is the vector of the iDMI; m is the mag-
netization unit vector m = M/Ms with Ms being the saturation magnetization. As the expression (1) contains the 
coordinate derivative, the transition to the orthogonal curvilinear reference frame results in appearance of e�ec-
tive curvature-induced anisotropy31. Physically this means that the iDMI will necessarily contribute both to chiral 
and anisotropy terms. By performing the transition to the curvilinear Frenet-Serret (TNB) reference frame {eT, eN, 
eB}, with eT being a tangential, eN being a normal and eB being a binormal vector and following the approach22, we 
group al terms of the total energy in three categories containing isotropic exchange, chiral and anisotropic parts:

E KS m m m m m m m md [ ( ) ], (2a)
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which is the general expression and it is valid for any iDMI and wire geometry, that can include possible coordi-
nate dependence I(s),  s( ), and σ(s). In the expression (2) π= +K K Ms0

2 is the e�ective anisotropy constant, 
with K0 > 0 being the magnetocrystalline anisotropy of easy-tangential type. �e term πMs

2 is the e�ective local 
anisotropy constant caused by surface magnetostatic charges: in the main approach on a thickness of a curved 
wire the non-local magnetostatic interaction is rigorously shown32 to be reduced to the e�ective local anisotropy. 
�e prime denotes the derivative with respect to the dimensionless coordinate ξ = s/w, where w A K/=  is the 
characteristic magnetic length, with A being an exchange constant and the Einstein summation rule is applied on 
Greek indices α, β = T, N, B. In (2) αβmeso and meso

αβ  are mDMI and anisotropy parameters, respectively; 
  = =D AK( , , ) /

I

T
I

N
I

B
I I  being the reduced vector of the iDMI. One can also introduce a vector of eDMI 

for curvilinear wires  σ= − −( 2 , 0, 2 )
E , where ξ κ ξ= w( ) ( ) and σ(ξ) = wτ(ξ) are the reduced local curva-

ture and torsion of the wire, with κ(ξ) and τ(ξ) being the local curvature and torsion, respectively. For the case of 
planar curvilinear wire (τ = 0), the vector of the exchange-driven DMI is always perpendicular to the wire 
plane22,27. It should be noted, that anisotropy constants linear in the curvature and in the torsion are generated by 
the iDMI, while quadratic terms come from the exchange interaction.

Remarkably, the mDMI term contains the full set of Lifshitz invariants in the TNB reference frame. �erefore, 
it is instructive to introduce the vector of the mDMI

D D D �σ= + = − + + −D D D e e e( 2 ) ( 2 ) , (3)
I E

T
I

T N
I

N B
I
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where  is a vector sum of the DMI vectors of the intrinsic and the extrinsic types, respectively. �us, for a curved 
1D object, the vector  determines a new direction of e�ective DMI in the system. It should be emphasized that 
 is dependent on both geometrical and material properties of the sample.

In the following we apply the general approach of mDMI to the speci�c example of a helical wire with iDMI and 
compare our results with the case of a straight wire with same iDMI. Helix is the simplest curvilinear system with both 
curvature and torsion, which has the following parametrization: ^ ^ ^x y zs R s s R s s Ps s( ) cos( / ) sin( / ) /(2 )0 0 0πγ = + + . 
Here R is the helix radius, P is the pitch of the helix, = ±1  is the helix chirality, namely,  1= −  for the clockwise 

(right) helix and  = 1 for the counterclockwise (le�) one and π= +s R P /(2 )0
2 2 2 . Helix is characterized by the 

constant curvature R s/ 0
2κ =  and torsion τ π= P s/(2 )0

2 . It should be noted, that for such kind of curvature and tor-
sion de�nition, κ is always positive, while sign of τ is determined by the helix chirality. We consider a homogeneous 
iDMI with a vector, which is aligned along the tangential direction of a wire, namely: in the case of a straight wire 
  z

I

T

I= ^, which is similar to those in a cubic noncentrosymmetric magnets33, Fig. 1(a); in the case of a helical wire 
 = e

I

T

I

T
, while the vector of the mDMI  D �σ= − −e e( 2 ) 2T

I
T B lies in the TB-plane, Fig. 1(d). Should be 

indicated, that for the speci�c value of the torsion /2T
Iσ =  the direction of the mDMI vector becomes perpendicu-

lar to the initial tangential direction, which can be interpreted as a change of type of the DMI from the bulk one to the 
interfacial one.

In the case of a weak iDMI (for the case of a straight wire) or mDMI (for the case of a helical wire), in both 
magnetic systems homogeneous magnetization ground state appears: For a straight wire, the magnetization is 
aligned strictly along the wire (tangential direction), Fig. 1(b). For a helical wire, the existence of the exchange- 
and the iDMI-induced anisotropies in (2) prevents the appearance of the equilibrium homogeneous tangential 
state, Fig. 1(e). As a result, magnetization vectors are tilted by a constant angle ψ from the tangential direction eT:

� D � Dψ σ σ≈ − | − | .( /2), with , /2 1 (4)T
I

T
I

�erefore, this state is referred to as the homogeneous (in the curvilinear reference frame) quasitangential state, 
Fig. 1(e). We note that even in the presence of a strong easy-axis anisotropy and absence of the iDMI ( 0T

I = ), 
the resulting e�ective anisotropy in 1D wire is biaxial29. It is instructive to mention a speci�c case σ σ= =  /2:0 T

I  
the interplay between the exchange- and iDMI-driven anisotropies results in a strictly tangential state (but aniso-
tropy remains biaxial).

Figure 1. Schematic illustration of the interplay between the intrinsic and extrinsic DMI and the resulting 
magnetization distributions in a wire. (a) �e vector of iDMI in the Cartesian frame of reference for a straight 
wire. (b,c) Tangential homogeneous ( = 0, σ = 0, 0T

I = ) and periodical helicoidal ( 0= , σ = 0, 2 7T
I = . ) 

states in a straight wire with the easy-tangential anisotropy and iDMI. (d) Vectors of the iDMI and eDMI in the 
TNB reference frame. (e,f) Quasitangential ( 0 8 = . , σ = 0.5, 0T

I = , = +1 ) and periodical ( = .0 8, 
σ = 0.5,  2 7T

I = . ,  = +1) states in a helical wire with the easy-tangential anisotropy and mDMI obtained 
from numerical simulations (see Methods). Color arrows correspond to the magnetic moments. �e Cartesian, 
the Frenet-Serret {eT, eN, eB} and the rotated {e1, e2, e3} reference frames are shown with solid, dashed and 
dashed-dot lines, respectively in (e).
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By rotating the reference frame by the angle ψ we diagonalize the e�ective mesoscopic anisotropy tensor of a 
helical wire (2). For the case of simplicity, it is useful to make transition to the new frame of reference by making 
rotation by the angle ψ around the axis eN in the positive direction. In the rotated ψ–frame {e1, e2, e3} [Fig. 1(e)] 
with the magnetization ~ = + +m m mm e e e1 1 2 2 3 3 the energy density has the following form:

= | ′| − + + ′ − ′ + ′ − ′ .∼
m m m m m m m m m m m( ) ( ) (5)

2
1 1

2
2 2

2
1 2 3 3 2 2 1 2 2 1E K K D D

While the coe�cient  > 01  characterizes the strength of the e�ective easy-axis anisotropy, the > 02  gives 
the strength of the e�ective hard-axis anisotropy. �e parameters 1 and 2  are the e�ective mDMI constants, 
which are responsible for two types of the magnetization rotation: around the direction e1 and e3, respectively. �e 
exact expressions for i and i  with i = 1, 2 are given in supplementary materials. In ψ–frame, the quasitangential 
state becomes aligned along the direction e1, Fig. 1(e) (dash-dotted line), and its energy density reads qt

1E K= − .
In the case of a su�ciently strong iDMI or/and big values of the reduced curvature and torsion, in both mag-

netic systems appear periodical states, Fig. 1(c,f). Contrary to the case of a straight wire where the symmetry and 
period of the chiral modulation are de�ned by the direction and strength of the iDMI vector I, in the case of a 
helical wire, the chiral modulations are dependent on the direction and strength of the vector of mDMI D. �is 
means that a curvilinear system is characterized by both spin-orbit and spin-geometry couplings, which mag-
netochiral properties are determined by mDMI vector D. Hence, while in the case of a straight wire, chiral mod-
ulations form a helicoidal state1,2,33, Fig. 1(c), the general form of the periodical structure in a helical wire is an 
elliptical helicoidal state, Fig. 1(f). Using the angular parametrization θ θ φ θ φ= + +e em ecos sin cos sin sin

1 2 3
~  

for the energy functional (5) and the Landau-Lifshitz equation (S2), we obtain
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where the overdot indicates a derivative with respect to rescaled time which is measured in units of (2γ0K/Ms)
−1, 

where γ0 is a gyromagnetic ratio. �e stationary solution for the periodical state in the rotated ψ-frame can be 
presented in the following form,

  
θ ξ

π
ξ φ ξ ξ ϕ ξ= + ϑ






 = − +






( )

2 2
, ( )

2 2
,

(7)
per per

where ϑ(χ) and ϕ(χ) are the 2π–periodical functions, with χ ξ= /2  and   = + =1
2

2
2

D �σ− +( 2 ) 4T
I 2 2  being the strength of the mDMI. When the iDMI is absent ( = 0T

I ) the period of the 
periodical state matches with the geometrical period of the helical wire27. Hence, the value of  determines the 
period of the chiral modulations, while the direction  =e /D

 determines their symmetry, Fig. 2(a). By tuning 
DI and DE it is possible to rotate eD at will, e.g. to obtain two speci�c states characteristic to a straight wire with 
di�erent symmetry of iDMI33:

 (i) Cycloidal state, which appears in the ψ-frame of references for  = 01 ,  ≠ 02  and corresponds to the 
situation when the magnetization undergoes chiral modulations around e3-axis, Fig. 2(d). �is case 
matches the situation when the vector eD is aligned along the hard axis e3, Fig. 2(a).

 (ii) Helicoidal state, which corresponds to the chiral modulation around the axis e1 in the ψ-frame of referenc-
es, Fig. 2(e). �is case is realized for ≠ 01 , = 02 , which corresponds to helicies with large radii and 
straight wires, and matches the situation, when eD is aligned along the easy axis e1, Fig. 2(a).

Expanding the ( /2) ξϑ  and ϕ ξ( /2)  into the Fourier series and minimizing the total energy with respect to 
Fourier amplitudes we derive numerically the energy density of the periodical state per . By comparing energies 
of the quasitangential and periodical states, we determine the boundary curve � � D( , )b b T

Iσ= , which separates 
two stable phases under the condition σ σ=� D � DE E( , , ) ( , , )qt

T
I per

T
I 22, Fig. 2(g). �e quasitangential state can 

also exist inside the periodical phase as a metastable state and vice versa. Similar scenario was discussed recently 
in the case of a straight wire with the iDMI directed perpendicular to the easy-axis of magnetization4 and for the 
helices with eDMI only27. �e corresponding metastable state forms a periodical domain wall state. �e instability 
curve of this state is determined by vanishing the spin-wave spectrum gap on the background of the homogene-
ous state27. �e dispersion relation of spin waves on the background of the quasitangential state has the following 
form

q q q q( ) ( ) ( ) (8)1
2

1 2
2

1Ω = − + + + + .D K K K

Here Ω corresponds to the dimensionless eigenfrequency and dimensionless wave number q = kw with k being 
the wave number, whose wave vector is oriented along the wire. �e dispersion law (8) violates the mirror sym-
metry (frequency nonreciprocity of spin waves) and has a gap, which depends on the mDMI constant 1. �is gap 

vanishes at the critical wave number = − −q ( 2 )/2
c 1

2
1 2D K K  determining the instability curve  in of the 

quasitangential state and transition of magnetic system to the continuously periodical state. �is instability curves 
are shown on the phase diagrams Fig. 2(g1–g3) by dotted, dashed and dashdotted curves, respectively. It is 
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important to note that in the case of absence of iDMI the dispersion relation (8) makes a transition to the previ-
ously obtained one27. �e region between the boundary and instability curves can have metastable states (shaded 
area on Fig. 2(g1–g3)), which represent mix of periodical and homogeneous states in the form of periodical 
domain wall state. In the limit case of straight wire, the instability curve converges to a point = 2T

I,c  
D AK( 2 )T

I,c = , which de�nes the direct transition from the homogeneously tangential to the periodical state 
without any metastable states33. It should be mentioned that the dispersion relation of a spin-waves on the back-
ground of the helicoidal state in the case of straight wire has a band structure34.

In general case of presence both kinds of DMI, there are three types of magnetic states in the system: quasitan-
gential state; periodical state and intermediate state with periodical DW. It should be noted, that intermediate 
periodical DW state appears in any �nite systems due to the boundary conditions. �e summary of the phase 
diagrams is presented in Fig. 2(g) with indicated boundary � D( , )b T

Iσ  and instability � Dσ( , )in T
I  curves for three 

di�erent values of the iDMI: below, equal and above the critical value T
I,c:

•	 <T
I

T
I,c   [Fig. 2(g1)]: the phase with the periodical state (orange-shaded region) is situated above the phase 

of the quasitangential state (green-shaded region) and the phase diagram is symmetrical with respect to the 
line σ σ= = /20 T

I . When the value T
I  increases the periodical phase becomes shi�ed to the range of large 

positive σ, while the boundary curve σ( , )b T
I

� D  (green solid line) separating the quasitangential and the peri-
odical states approaches the instability curve � Dσ( , )in T

I  (dotted line). In the region between these curves 
appears periodical domain wall state.

Figure 2. Phase diagrams of the equilibrium magnetization states for helical wires with di�erent geometrical 
and material properties. (a) �e evolution of the magnetization vector ξ∼m( ) on a unit sphere for di�erent 
magnetization states in a helical wire. (b–f) Schematics of the equilibrium magnetization states which appear for 
di�erent values of the mDMI in the rotated ψ–frame {e1, e2, e3}: quasitangential state ( = .0 8 , σ = 0.5,  0T

I = , 
= +1 ), elliptical helicoidal state ( 0 8 = . , σ = 0.5,  1 2T

I = . , 1 = + ), cycloidal state ( = .0 9 , σ = 0.6, 
1 2T

I = . , 1= + ), helicoidal state ( 0 1= . , σ = 0.6, 2 1T
I = . , 1 = − ) and periodical DW state ( = . 0 7, 

σ = 0.3,  0 6T
I = . ,  = +1). (g) Phase diagrams of the equilibrium magnetization states for helical wires with 

di�erent geometrical parameters (reduced curvature   and torsion σ) and iDMI with di�erent strength T
I . 

(g1–g3) Phase diagrams for 1 8T
I = . , 2 0T

I = .  and 2 1T
I = . , respectively. Symbols correspond to the results 

of numerical simulations: green diamonds represent the homogeneous quasitangential state; purple, red and 
orange circles indicate to the cycloidal, helicoidal and elliptical helicoidal states, respectively; shaded region 
correspond to the periodical DW state.
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•	  T
I

T
I,c=  [Fig. 2(g2)]: the boundary and instability curves coincide and the elliptical helicoidal state 

becomes a ground state of the magnetic helix, while for straight wires ( 0= ) the helicoidal state exists.
•	 T

I
T
I,c >  [Fig. 2(g3)]: the boundary between the quasitangential and periodical states reappears. However, the 

interplay between the geometrical and magnetic chiralities leads to the swap of magnetic phases (green-shaded 
region is at the top of the phase diagram), compare Fig. 2(g1,g3). Further increase of T

I  leads to the shi� of the 
quasitangential phase to the region of large positive values of the reduced torsion σ and curvature  .

In the following we discuss in details the magnetization states which appear in a helical wire due to the in�u-
ence of the mDMI:

 (i) �e geometrically-induced anisotropy prevents the appearance of the equilibrium strictly tangential state 
and cause the tilt of the magnetization by the angle ψ with respect to the tangential direction. In the case 
when the iDMI is absent ( 0T

I = ) the tilt angle ψ−1 for the clockwise helix ( 1= − ) is equal to the tilt 
angle ψ+1 for the counterclockwise helix ( 1= + ). At the same time, when the iDMI is present ( ≠ 0T

I ) 
the tilt angles ψ−1 and ψ+1 are di�erent resulting in a di�erent average remanent magnetizations for both 
types of helices ^⟨ ⟩ ψ α= +± ± ±m z sin( )1 1 1 , with α σ= ± | |± arctan( / )1  . �us, by measuring the ratio 
between the average remanence for clockwise and counterclockwise helices it is possible to access the value 
of the iDMI:




ψ σ ψ

ψ σ ψ
=
| |

| |
= |

+

−
|.+

−

+ +

− −

⟨ ⟩

⟨ ⟩

m

m
r

sin cos

sin cos (9)
m

1

1

1 1

1 1

For instance, in the case of clockwise and counterclockwise helices with  0 5= . , |σ| = 0.3,  = 0T
I  the ratio 

is equal to 1, while for  0 6T
I = .  the ratio rm = 0.71. In the same time, in the case of periodical state, the 

average remanent magnetization along the helix wire will be absent 〈mz〉 = 0.
 (ii) Alternatively, it is possible to access the value for iDMI from the analysis of the microscopic images of the 

periodical magnetic states taken by using microscopic techniques, e.g. Lorentz electron microscopy35, 
electron holography36, magnetic transmission X-ray microscope (MTXM)37,38 and X-ray magnetic circular 
dichroism photoelectron emission microscope (XMCD-PEEM). We illustrate this possibility for an 
exemplarily choosen XMCD-PEEM-like experiment. We note that the XMCD-PEEM was used to study 
magnetic states in curved architectures with a spatial resolution of 50 nm39,40. Still, to apply the present 
proposal in practical settings, we will necessarily need to work with a helix of several periods. �is is 
required to perform a reliable Fourier analysis. �erefore, realistically, the method might be applied to 
helices with a length of about 10 µm. �e comparison with the case of a straight wire reveals the possibility 
to distinguish all types of equilibrium magnetization states in helical wires, Fig. 3(a–c). Analysis of the 
space Fourier spectra of the calculated XMCD-PEEM-like signals allow to determine the magnetic and 
geometrical periods: in the case of a straight wire, there is only one peak in the Fourier spectrum, which 
represents the magnetic period of the helicoidal state, λm, Fig. 3(d1). In the case of a helical wire, the 
existence of one peak reveals that the magnetic wire is in the homogeneous quasitangential state and the 
position of the peak provides access to the geometrical period, λg, of the wire Fig. 3(d2). �e existence of 
three peaks is a clear manifestation of the periodical magnetization state in a helical wire, because of the 
beating between the geometrical and magnetic modulations of the helical wire, Fig. 3(d3). Meanwhile, the 
central peak could be used for distinguishing the value of mDMI strength .

Accessing spin textures of geometrically curved magnetic thin �lms39,41–44, hollow cylinders37,40,45–50 and 
wires35,51–54 has become now a dynamic research �eld23,55. In our work, we performed a detailed study of the inter-
play between the intrinsic and extrinsic chiral interactions of 3D curvilinear objects within a 1D anisotropic 
Heisenberg magnet with intrinsic DMI. We established that the chiral properties of the magnetic system are 
necessarily determined by a single vector of the mesoscale DMI. �e mDMI is a result of the interplay between 
intrinsic spin-orbit- and extrinsic curvature-driven DMI terms and depends both on the material and geometri-
cal parameters. We illustrated our approach on the example of a helix wire. By changing material and geometrical 
parameters we identi�ed and investigated two stationary states: homogeneous quasitangential and periodical 
elliptic helicoidal states. Similarly to the case of straight wire with biaxial anisotropy, the periodical domain wall 
state appears near the boundary between two phases as a metastable state. We proposed an approach how these 
states could be veri�ed in experiments based on integral and microscopic observations. �e appearance of each 
state can be determined by measuring of the average values of the magnetization components and/or by establish-
ing space Fourier spectra of the coordinate-dependent magnetic signals from nanohelices. �us we propose a 
method to create new arti�cial chiral nanostructures with de�ned properties from standard magnetic materials 
by using geometrical manipulations51,55–62, which can be used in the development of the novel spintronics and 
spin-orbitronics devices. In this respect, the great development in nanotechnology, e.g. high-quality thin �lms 
growing approach, glancing angular deposition technology58,62, self-assembling methods and strain engineering 
techniques56,57,59, gives promise that these e�ects can be explored experimentally. It should be emphasized, that 
our model could be generalized for arbitrary 1D geometry and material parameters of experimentally obtained 
samples, by using proper parametrization with taking into account possible coordinate dependence of material 
parameters. More speci�cally, as the experimentally realized sculptured 3D cobalt nanowires do not have any 
intrinsic DMI35, our theory could be applied with  0I =  and predicts the homogeneously magnetized quasitan-
gential state for the same geometry (in the limit of ultrathin wire). Subsequent theoretical study of 1D 
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helimagnetic nanowires require investigation of non-local magnetostatical e�ects, �eld-driven switching between 
states with di�erent magnetic symmetry.

Data availability. �e datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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