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Using concepts of hierarchical multiscale modeling, we report development of a
mesoscopic model for single-wall carbon nanotubes with parameters completely
derived from full atomistic simulations. The parameters in the mesoscopic model are
fit to reproduce elastic, fracture, and adhesion properties of carbon nanotubes, in this
article demonstrated for (5,5) carbon nanotubes. The mesoscale model enables
modeling of the dynamics of systems with hundreds of ultralong carbon nanotubes
over time scales approaching microseconds. We apply our mesoscopic model to study
self-assembly processes, including self-folding, bundle formation, as well as the
response of bundles of carbon nanotubes to severe mechanical stimulation under
compression, bending, and tension. Our results with mesoscale modeling corroborate
earlier results, suggesting a novel self-folding mechanism, leading to creation of
racket-shaped carbon nanotube structures, provided that the aspect ratio of the carbon
nanotube is sufficiently large. We find that the persistence length of the (5,5) carbon
nanotube is on the order of a few micrometers in the temperature regime from 300 to
1000 K.

I. INTRODUCTION

Carbon nanotubes (CNTs) constitute a prominent ex-
ample of nanomaterials, with many potential applications
that could take advantage of their unique mechanical,
electrical, and optical properties.1–6 A fundamental un-
derstanding of the properties of individual CNTs, assem-
blies of CNTs in bundles or nanopillars,7 or CNTs in
conjunction with biological molecules such as DNA8

may enable new technologies and to engineer CNT-
based devices.

In particular, the mechanical properties of CNTs could
be important in many applications, including cases in
which the primary role of CNTs is not related to their
mechanical properties. Nevertheless, a thorough under-
standing of the mechanical properties is essential in de-
signing manufacturing processes or to ensure reliability
during operation of devices.

The interactions of individual CNTs can play a critical
role in application and during fabrication processes and
may pose significant challenges compared with macro-
scopic classical engineering applications. This is because
at the nanoscale, weak dispersive van der Waals inter-
actions (vdW) play a more prominent role and often gov-
ern the mechanics or self-assembly dynamics of those

materials. The interplay of such adhesive forces with
covalent bonding within CNTs is not well understood for
many CNT systems.

A. Review: Modeling of mechanical behavior

of CNTs

The mechanics of carbon nanotubes has been dis-
cussed in various articles published over the last decade,
from both a continuum and an atomistic perspective.9–13

Most studies in the literature that focused on CNTs have
considered only small-aspect ratio CNTs or a small num-
ber of interacting CNTs. In contrast, experiments have
shown that single wall carbon nanotubes (SWNTs) can
grow to lengths above 700 nm with a diameter of 0.9 nm,
resulting in an aspect ratio as large as about 800.2 CNTs
with ultrasmall diameters approaching 0.4 nm have been
shown to be stable, both in experiments and by compu-
tation.14,15

In a classical article by Yacobsen and co-workers, the
behavior of single, freestanding single-wall carbon nano-
tubes (SWNTs) under compressive loading was investi-
gated using classical, molecular-dynamics (MD) with
empirical potentials.16 The longest tube considered was 6
nm with a diameter of 1 nm. The authors developed a
continuum shell model to describe the buckling modes of
the CNTs.

Ozaki and co-workers17 investigated SWNTs under
axial compression using tight binding (TB) MD methods
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and system sizes up to a few thousand atoms. In their
studies, the length of the nanotubes was limited to about
14 nm with a diameter of 0.67 nm. A ripple shell buck-
ling was observed once the SWNT was put in compres-
sive loading. The details of the ripple buckling (e.g., the
ripple wavelength) were found to be strongly dependent
on the temperature, and the stress under large strain and
zero temperature depends on the helicity. SWNTs under
tensile and compressive loading were studied by Dereli
and Ozdogan18 using a TB-MD scheme in an attempt to
obtain the stress–strain curve, theoretical strength, and
Poisson’s ratio for SWNTs. The authors modeled CNTs
with about 400 atoms, featuring a total length of 20 lay-
ers, corresponding to a few nanometers.

Ru19 considered buckling of a double-walled carbon
nanotube embedded in an elastic medium under com-
pressive loading using a double-shell continuum me-
chanics model. The main finding was that critical buck-
ling strain for MWNTs may be reduced compared to
SWNTs, indicating that MWNT could even be more sus-
ceptible to axial buckling than SWNTs. Other research
focused on the mechanical properties of CNTs filled with
small molecules. The authors in Ref. 20 investigated
compression of CNTs filled with nano-particles and mol-
ecules (e.g., C60, NH4). The longest tube considered had
a length around 20 nm.

Research has also been carried out to investigate the
elastic properties of CNTs. As recently shown by Hod
and coworkers,21 SWNTs can be bent into closed-ring
structures (“nano-rings”). The Tersoff–Brenner potential
was used within a classical MD scheme to study the
elastic properties of such CNT ring structures. There are
also investigations focused on the interaction between
different CNTs and their adhesive properties. It was
shown that when SWNTs are formed into bundles due to
van der Waals (vdW) interaction,22 their cross-section
shape can change significantly. The change in shape can
modify the flexural rigidity and promote bending or other
forms of elastic deformation. Interactions of CNTs with
surfaces can also change their shape.23 The shape change
can also affect the electrical conductivity of CNTs,
clearly indicating the immediate link of CNT mechanics
and other nonmechanics applications. Failure mecha-
nisms such as fracture nucleation in SWNTs under ten-
sion have been discussed using combined continuum-
atomistic approaches.9,24–26

Several other studies using molecular dynamics have
been carried out to develop a molecular level understand-
ing of the failure processes, using a variety of atomistic
modeling techniques.9,10,27–31

B. Mechanics of assemblies of CNTs

A rigorous understanding of the mechanical behavior
of CNTs originating from the atomistic or molecular

origin and the properties of assemblies of a large number
of CNTs has not been established up to date. However,
this scale is critical in enabling technological applica-
tions and usage of CNTs as basis for new materials.

Full atomistic models have proven to be a quite useful
approach in understanding the mechanical behavior of
CNTs.9,10,27–31 However, such models are limited to very
short time- and length-scales so that a direct comparison
with experimental scales is often extremely difficult or
impossible.

To overcome those limitations, we propose developing
a mesoscale model of CNTs by reducing some of the
atomistic degrees of freedom, representing CNTs as a
collection of beads connected by spring-like molecular
multi-body interatomic potentials. These interaction po-
tentials describe the resistance to tensile load, bending,
and interaction between different CNTs. Our mesoscale
model is capable of treating the deformation physics of
large assemblies of carbon nanotubes corresponding to
systems with millions of atoms, while incorporating non-
linear elasticity, fracture behavior, and adhesion proper-
ties between different CNTs, ranging through time scales
of several microseconds. With parameters rigorously de-
rived from full atomistic simulations, our mesoscale
model provides a first-principles-based description of
CNTs. Because of the accessible time and length scales,
such models may significantly contribute to development
of a fundamental understanding of cross-scale interac-
tions.

Bead-type models have been implemented for several
other molecular systems and applications.32–35 Meso-
scale models, with information about chemistry of bond
rupture, enable modeling of the complex interaction of
chemical bonds of different strengths. Mesoscale models
may also enable studies of CNTs interacting with matrix
materials, which is so far mainly addressed using experi-
mental techniques.36

C. Motivation and outline

The focal points of this paper are self-assembly proc-
esses of CNTs, as well as properties and response of
self-assembled structures under mechanical stimula-
tion.37 Self-assembly processes of CNTs play critical
roles in manufacturing nanodevices, as has been demon-
strated in several experimental studies.

For example, growth of nano-pillars of CNTs has re-
cently been reported, involving MWCNTs of lengths up
to 500 nm and more.7 Similar mechanisms have been
reported in other works discussing self-assembly proc-
esses of MWCNTs creating structures with lengths of
several micrometers to meters.38 In several recent stud-
ies, self-assembly of nanostructures has been discussed
in light of combination with biological mechanisms
and concepts.39 Several other self-assembly processes
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involving CNTs have been reported.40,41 Our modeling is
further motivated by recent MD results that suggest the
existence of self-folded racket-like CNT structures,42,43

as shown in Fig. 1. So far, only full atomistic studies
have been carried out and have been somewhat limited
by the accessible time scale, in particular in describing
the slow motions of the ultralong CNTs.

Computer models that allow straightforward access to
the properties and mechanisms of large-scale assembles
of CNTs could provide immediate help in engineering
those structures and materials.

The outline of this paper is as follows. In Sec. II, we
discuss a series of full atomistic calculations to determine
fundamental mechanical parameters of a (5,5) single-
wall CNT, including tensile stiffness, bending stiffness,
persistence length, and adhesion properties. In Sec. III,
we discuss a simple mesoscopic model and derivation of
parameters for this model from full atomistic studies.
Section IV is dedicated to application of the mesoscale
model to demonstrate its usefulness. Examples include
studies of self-folding mechanics, self-assembly of two
CNTs into conglomerated structures, and self-assembly
and properties of bundles of CNTs. The results and im-
plications of this model are discussed in Sec. V.

II. ELASTIC AND FRACTURE PROPERTIES:

ATOMISTIC MODELING

In this section, we describe a series of mechanical
loading cases to determine parameters for our meso-
scopic model. These studies consist of the following
three loading cases: (i) tensile loading, to determine
Young’s modulus, change of Young’s modulus as a

function of deformation, and fracture stress and strain;
(ii) bending to determine the bending stiffness of CNTs;
and (iii) an assembly of two CNTs to determine their
adhesion energy. The different loading cases are summa-
rized in Figs. 2(a) and 2(b).

All studies were carried out using (5,5) armchair single
wall CNTs (SWCNTs). This particular CNT is chosen
based on earlier full atomistic studies of tubes with this
geometry42,43 (see Fig. 1).

A. Classical molecular dynamics

simulation method

The atomistic studies were carried out using classical
MD.44 MD predicts the motion of a large number of
atoms by numerically integrating the equations of motion
governed by interatomic interaction. Normally, it is nec-
essary to rely on classical MD to simulate system sizes
above a few thousand atoms and time-scales on the order
of nanoseconds, as such system sizes and time scales are
still far beyond the capabilities of quantum mechanics
based methods.

Interatomic potentials are the core of classical MD
methods. During recent decades, numerous potentials de-
scribing atomic interaction in various materials with dif-
ferent levels of accuracy have been proposed, each hav-
ing unique problems and strengths. For covalently
bonded materials like carbon or silicon, bond-order
multi-body potentials have been developed (e.g., Tersoff

FIG. 1. Full atomistic calculations of the properties of ultralong CNTs
as reported in Refs. 42 and 43. Above a critical aspect ratio, CNTs
self-fold into racket-like structures. It can be observed that the self-
aligned part connects to the free length of the CNT in a characteristic
way by crossing over at an angle of around 90°. We believe that this
phenomenon could be explained due to the reduced energy by increas-
ing the contact length in this characteristic manner.

FIG. 2. (a, b) Mechanical lading cases of the CNT to derive param-
eters for the mesoscopic model. (c) Setup for the indentation bending
test carried out with the mesoscopic model. (d) Setup for compression
experiments of bundles of CNTs.
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potential or Stillinger–Weber potential45,46). These
multi-body potentials capture not only pair-wise interac-
tions but also additional contributions from the local geo-
metric configuration of the neighboring atoms. Here we
use the Tersoff potential45 to describe the interatomic
bonding of C–C atoms. The Tersoff potential has proven
to be a reliable empirical potential to describe the bond-
ing inside carbon nanotubes, in particular around the
equilibrium position. For the vdW interaction between
non-bonding atoms, we use Lennard–Jones 12:6 poten-
tial15 with parameters � �3.851 Å and � � 0.0040 eV.

The time step was chosen to be on the order of 10−15

seconds. Whereas the vdW interaction features a larger
cutoff of 15 Å, the Tersoff potential has a cutoff of 2.1 Å.
The MD calculations were preformed using the IMD
(Institute for Theoretical and Applied Physics Molecular
Dynamics Code) code.47,48

B. Tensile loading

1. Elastic properties

The computational experiments to model tensile de-
formation of a CNT is implemented by keeping one end
of the CNT fixed, while slowly displacing the other end
in the axial direction of the tube. The loading case is
shown in Fig. 2(a).

As the tube was stretched, we calculated the virial
stress49 averaged over the complete tube volume. We
assumed a circular cross-sectional area AC � �r2, as-
suming that R ≈ 3.5 Å. The stress tensor component in
the loading direction was used to extract information
about the stress as a function of applied uniaxial strain.
The stress–strain curve was then used to determine
Young’s modulus E, defined as

E��� =
��

��
≈

��

��
. (1)

Note that Young’s modulus is typically dependent on the
strain �, showing a decrease with increasing strain due to
softening of chemical bonds as their breaking point is
reached. This phenomenon is referred to as hyperelastic-
ity. Young’s modulus is independent of the length of the
molecule.

For small deformation, we estimated Young’s modulus
of the (5,5) CNT to be around E ≈ 2 TPa. Figure 3 depicts
the stress–strain plot (a) and an analysis of the Young’s
modulus as a function of strain (b). The stress–strain plot
shown in Fig. 3(a) contains results of calculations carried
out with three different displacement loading rates, 1.6,
0.4, and 0.2 km/s (corresponding to strain rates of 1.25 ×
1011, 3.2 × 1010, and 1.6 × 1010 s−1). Whereas the result
differs significantly for the largest loading rate, the re-
sults for the slower rates are similar, indicating conver-
gence of the fracture properties. Figure 3(b) depicts the
result only for the loading rate 0.2 km/s.

2. Fracture properties

Deformation of the CNTs is elastic only for small
deformation. When extremely large strains were applied
to the carbon nanotube, we observed formation of defects
that eventually lead to fracture of the carbon nanotube.
The fracture strain of the CNT was �F ≈ 32%, as can be
verified in Fig. 3. Fracture of the CNT is accompanied by
a zero slope in the stress–strain plot, a behavior also
found in atomic crystals.

Fracture of the CNT initiates by generation of local-
ized shear defects in the hexagonal lattice of the CNT,
somewhat reminiscent of Stone–Wales defects.28,50,51

FIG. 3. (a) Stress versus strain and (b) local Young’s modulus for
stretching a (5,5) CNT using the Tersoff potential. Young’s modulus
decreases with increasing strain but shows a small and shallow peak
close to the breaking point. The dotted line is the tangent stress–strain
law for small deformation. The stress–strain plot contains results with
three different loading rates, 1.6, 0.4, and 0.2 km/s. While the result
differs significantly for the largest loading rate, the results for the
slower rates are similar. The dark line is the result using the meso-
scopic model. (b) Result for the loading rate 0.2 km/s.
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These mechanisms occur within a fraction of a percent

strain away from the peak in tensile stress in the stress–
strain plot [Fig. 3(a)]. These localized defects quickly

lead to formation of microcracks that lead to macro-

scopic failure of the carbon nanotube. The hexagonal

lattice remains intact up to strains very close to macro-

scopic failure. Several snapshots of the atomistic fracture

mechanics are shown in Fig. 4.

The change in slope in the stress–strain plot [Fig. 3(a),

deviation from linear elastic regime starting at around

5% tensile strain] is due to homogeneous deformation of

the entire lattice in the CNT, not to development of local

defects.

C. Bending modulus and persistence length

1. Cantilever bending test

Similar to the tensile test, we performed a simple com-

putational experiment to describe the bending of a

CNT by clamping it at the outermost left boundary and

applying a force at the right end of the CNT, as shown in

Fig. 2(b).

Atoms within a region of 5 Å in the outermost, left part

of the CNT are held fixed in all directions, resembling

the clamped boundary condition used in continuum

theory. By measuring the bending displacement d, the

bending stiffness EI is then given by

EI =
FappL

3

3d
. (2)

From the clamped bending test, we find that EI �

6.65 × 10−26 Nm2 for the (5,5) CNT.

2. Persistence length

Because we are interested in the molecular dynamics

of ultralong CNTs at elevated temperature, entropic ef-

fects may begin to play an important role. The persis-

tence length describes the molecular length at which the

thermal energy becomes sufficient to induce significant

bending in the CNT, even without application of external

forces.

The persistence length is defined as

� =
EI

kBT
, (3)

where kB is the Boltzmann constant, and T is the tem-

perature. At T � 300 K, we find the persistence length

� ≈ 1.61 × 10−5 m, reducing to a few micrometers at

temperature around 1000 K.

This result suggests that most CNTs produced by ex-

perimental techniques are below the persistence length.

CNTs with larger diameter or multiwalled CNTs typi-

cally have an even larger bending stiffness, leading to

larger persistence length.

We note that the CNT is a few orders of magnitude

stiffer than many biological molecules (for example, the

bending stiffness of a tropocollagen molecule is EI �

9.71 × 10−29 Nm2).52

D. Interaction of multiple CNTs:

Adhesion properties

Because we are interested in the self-assembly of

CNTs, we investigated the interaction of multiple CNTs.

Primary interaction forces are weak dispersive interac-

tions, such as van der Waals forces. We assume that no

covalent bonds may form between different CNTs.

1. Equilibrium distance between two CNTs

The equilibrium distance of the CNTs is denoted by

�D. The parameter �D is determined from full atomistic

simulations and is found to be �D ≈ 10.5 Å. We have

also confirmed that assemblies of several CNTs form

FIG. 4. Fracture mechanics of a (5,5) CNT, modeled using the Tersoff

potential. (a)–(d) Atomistic mechanics as the lateral tensile strain is

increased. Fracture initiates by generation of localized shear defects in

the hexagonal lattice of the CNT, somewhat reminiscent of 5-7 Stone–
Wales defects,28,50,51 indicated in (c) by the lines, showing the 7-mem-

bered ring next to the 5-membered ring. These localized defects

quickly lead to formation of microcracks that lead to macroscopic

disintegration of the carbon nanotube. (d) Formation of a linear C-

atom chain at the final stages of fracture. Failure initiates close to the

boundaries of the CNT, possibly due to the clamped boundary condi-

tions.
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triangular lattices. Our molecular dynamics simulation

results suggest that pair-wise interaction between differ-

ent CNTs represents a reasonable model.

2. Adhesion energy

The adhesion energy of two (5,5) tubes is determined

to be EL � 2.31 × 10−10 J/m.

III. MESOSCALE MODEL DEVELOPMENT

Here we discuss our method in deriving parameters for

a mesoscale bead-type model of CNTs from full atom-

istic calculations (see the schematic illustration in Fig. 5).

This derivation is based completely on the results re-

ported in Sec. II, without additional empirical or fitting

parameters.

A. Model development: Training from

pure atomistic results using energy and

force matching

Our goal is to develop a simple mesoscopic model to

perform large-scale studies of the mechanics of CNTs.

We express the total energy of the system as

E = ET + EB + Eweak , (4)

where ET is the energy stored in chemical bonds due to

stretching along the axial direction, EB is the energy due

to bending of the CNT, and Eweak constitutes weak

(vdW) interactions. The total energy contribution of each

part is given by the sum over all pair-wise and triple

(angular) interactions in the system; thus

ET,weak = �
pairs

�l�r� , (5)

for the tensile and weak interactions (both summed pair-

wise), and

EB = �
angles

�B�	� , (6)

summed over all triples of particles in the systems. The

bending energy is given by

�B�	� =
1

2
kB�	 − 	0�2

, (7)

with kB as the spring constant relating to the bending

stiffness and 	 as the bending angle between three par-

ticles. Calculation of the angle thus requires consider-

ation of the position of three atoms. The molecular po-

tential is thus a three-body potential.

We approximate the nonlinear stress–strain behavior

under tensile loading with a bilinear model that has been

used successfully in earlier studies of fracture53,54 [the

function ET is given by integrating FT(r) along the radial

distance]. The force between two particles is FT(r) �

−��T(r)/�r, where

−
d�T

dr
�r� = H�rbreak − r� �kT

�0�
�r − r0� if r 
 r1

kT
�1�

�r − r̃1� if r � r1

.

(8)

In Eq. (8), H(r − rbreak) is the Heaviside function H(a),

which is defined to be zero for a < 0, and one for a � 0,

and kT
(0) as well as kT

(1) for the small and large-deformation

spring constants. The parameter r̃1 � r1 − kT
(0)/kT

(1) (r1 −
r0) is obtained from force continuity conditions.

This model is chosen to reproduce the nonlinear elastic

and fracture behavior of carbon nanotubes. The availabil-

ity of two spring constants enables modeling changes in

the elastic properties due to increasing deformation. The

Heaviside function allows description of the drop of

forces to zero at the initiation of fracture of the carbon

nanotube.

In addition, we assume weak, dispersive interactions

between either different parts of each molecule or differ-

ent molecules, defined by a Lennard–Jones 12:6 (LJ)

function

�weak�r� = 4����

r
�12

− ��

r
�6� , (9)

with � as the distance parameter and � describing the

energy well depth at equilibrium. The LJ potential has

been shown to be a good model for such dispersive in-

teractions (see, for example, Ref. 55).

1. Equilibrium distances of beads and

corresponding masses

The mass of each bead is determined by assuming a

homogeneous distribution of mass in the molecular

model. Given the homogeneous structure of CNTs, this is

a reasonable approximation. We assume an equilibrium

FIG. 5. Atomistic and corresponding mesoscopic model of a CNT

(schematic). (a) The atomistic representation of the CNT is replaced by

(b) a collection of beads interacting with various molecular potentials.
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distance of two particles of r0 � 10 Å. The mass per unit

length in a (5,5) CNT is given by

��5,5� = 195.323 amu�Å . (10)

Based on this mass density and the equilibrium distance

between particle, the mass of a single particle is given by

M (5,5)
r0�10Å

� 1953.23 amu.

2. Dispersive and nonbonding interactions

The LJ parameters are chosen to reproduce the adhe-

sion energy determined from full atomistic simulations.

In all these considerations, we assume that a pair-wise

interaction between different particles is sufficient and

that there are no multi-body contributions.

Based on these assumptions, we model the interactions

between different molecules using a LJ 12:6 potential.

The equilibrium bond distance is related to the dis-

tance �D between two CNTs in contact by vdW inter-

actions. With

� = tan
−1� r0

2�D
� , (11)

we arrive at a relationship between �D and the angle �
that depends on the geometry of the mesoscopic system,

D =
�D

cos�
. (12)

The distance parameter � is then given by

� =
D

�6
2

≈ 11.63 Å , (13)

where D is the equilibrium bond distance.

The potential minimum is at r � D and is given by −�.

Per unit cell of bonds in this setup, the energy per unit

length is given by

EL =
2

r0

��weak�D� + �weak�D̃� + . . .� , (14)

where

�weak�D� = −� . (15)

The distance to second nearest neighbors is

D̃ =
�D

cos��̃�
, (16)

where

�̃ = tan
−1� 3r0

2�D
� . (17)

Similar calculations can be done for the third, fourth, etc.

nearest neighbors.

The numerical value for adhesive strength of two (5,5)

CNTs from MD simulation is EL � 2.31 × 10−10 J/m.

The parameter � in the mesoscopic model is chosen so

that the atomistic and mesoscopic model feature the same

adhesion energy per unit length. For nearest neighbors

only, we find

� =
E1r0

2
. (18)

For more than one nearest neighbors in the case of larger

cutoff radius,

� =
ELr0

2
��1 + ��2�

+ ��3�
+ . . .�−1

� , (19)

where � � �weak (D̃) / �weak (D). We define term (1 +

�(2) + � (3) + . . . + �(N)) � 
(N) and find that 
(6) ≈ 1.0988,

leading to � ≈ 15.1 kcal/mol, with a cutoff distance at

rcut � 60 Å.

The maximum force to break a “weak” dispersive

bond between two CNTs is given by

Fmax,LJ =
���

�
, (20)

where � ≈ 2.394 is a numerical constant. From Eq. (20),

we estimate Fmax,LJ ≈ 3.866 kcal/mol/Å, corresponding

to approximately 268.62 pN. This leads to an adhesion

shear strength per unit length

�max =
Fmax,LJ

�L
≈ 26.86 pN�Å . (21)

3. Tensile spring parameter

The tensile spring constant is determined from various

calculations of stretch versus deformation while being

constrained to the regime of small loads and conse-

quently small displacements.

The nonlinear elastic effects observed in MD calcula-

tions are included by defining the parameter kT depen-

dent on deformation state. We note that material nonlin-

earities may be crucial in capturing the essential fracture

and deformation physics, representing the chemical ef-

fects as atomic bonds are stretched and broken.53,54,56

To develop the atomic interactions, we fit the force-

stretch response to the stress-strain response obtained in

full atomistic calculations [see Eq. (8b)]. The spring con-

stant kT
(0) for small deformation calculated from Young’s

modulus for small deformation is

kT
�0�

=
Ac

L0

E . (22)

We find that kT
(0) ≈ 1000 kcal/mol/Å2. For large defor-

mation, the parameter kT
(1) ≈ 700 kcal/mol/Å2 is deter-

mined by fitting the mesoscopic stress–strain results to

the MD stress–strain curve.

The goal is to reproduce the small-strain elastic re-

sponse up to approximately 5% tensile strain, as well as
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the fracture strength and fracture strain. This simple meo-

scopic bilinear model using kT
(0) and kT

(1) some of the

hyperelastic effects and the fracture behavior to be cap-

tured. We note that the choice of kT
(1) is largely dictated

by the quantitative values of the fracture strain and frac-

ture stress.

The model allows information about breaking of

chemical bonds to be transported into the mesoscopic

molecular scale model.

4. Bending spring parameter

Using an argument of energy conservation between

the atomistic and the mesoscale model, we arrive at an

expression for the bending stiffness parameter

kB =
48�EI�d2

8r0
3
���	0�2

, (23)

where � � 2 tan−1(d/r0) and d � Fappl 8r3
0 /(48�EI ). Note

that � is the angle corresponding to the displacement d

resulting from an applied force Fappl. We find that kB ≈

14300 kcal/mol/rad2. These expressions are valid for

small deformation.

B. Summary of the mesoscopic model and its

numerical implementation

Table I summarizes all parameters used in the meso-

scopic model.

The models are implemented in the massively paral-

lelized modeling code LAMMPS57 (http://www.cs.sandia.

gov/∼sjplimp/lammps.html), capable of running on large

computing clusters. The example calculations reported

here are carried out on single CPU Linux workstations.

The LAMMPS code was extended to enable treatment of

the molecular interactions discussed in Sec. III. A and

other loading conditions as described later.

IV. APPLICATIONS AND NUMERICAL RESULTS

Here we report applications of the mesoscale model to

describe the mechanics and self-assembly of CNTs. We

focus on three cases: (i) a simple validation calculation to

compare the mesoscale model to the full atomistic re-

sults; (ii) a study of self-folding of CNTs, the stability of

self-folded CNTs, and self-assembly of two CNTs; and

(iii) a study of bundles of CNTs subject to compressive

and tensile loading, as well as the response to nanoin-

dentation.

A. Validation: Tensile test of a long CNT

The first calculation was a validation of the mesoscale

model. We implemented the loading case shown in

Fig. 2(a) (tensile loading of a single CNT). The stress

versus strain as obtained using the mesoscopic model is

shown in Fig. 3 (dark line). The fracture strain and frac-

ture stress agree well with the full atomistic result.

B. Self-folding of CNTs and

self-assembly processes

1. Self-assembly of a single tube: Self-folding

into racket-structures

Large-aspect ratio CNTs are extremely flexible and

can be deformed into almost arbitrary shapes with rela-

tively small energetical effort. Different CNTs attract

each other via vdW forces. If different parts of the tube

come sufficiently close, these attractive forces should

also be present and can form self-folded structures of

CNTs. Such self-folded structures of CNTs with ex-

tremely large aspect ratio were first observed in MD

simulations of (5,5) CNTs using a hybrid Tersoff/LJ

model.42 It was suggested that different parts of highly

flexible CNTs can be brought into contact either by ther-

mal fluctuations that lead to bending of the tube or by

bending resulting from application of external forces.

Here we used the mesoscopic model to investigate the

stability and self-assembly properties of such racket-like

self-folded CNTs. To induce self-folding, we applied an

external force to the ends of the CNT, following the

procedure described in Ref. 42. Once two regions of the

CNT are in contact, the long-range vdW interactions lead

to an attractive force that causes the parts of the tube to

align. As a result, self-folded racket-like structures are

formed. Results of mesoscale simulations are shown in

Fig. 6 for two different CNT lengths. Our mesoscopic

model is capable of reproducing the results of full MD

simulations at a fraction of the computational cost.

At the intersection of the straight aligned part and the

bent region, we observe a characteristic crossover of the

lower and upper part of the tube, forming an angle close

to 90°. This feature was also observed in full atomistic

studies of the same system (see Fig. 1).

The stability of the folded structure is governed by the

balance of energy required to bend the CNT and energy

gained by formation of weak vdW “bonds.” The bending

energy is proportional to EI, and the adhesion energy is

TABLE I. Summary of mesoscopic parameters derived from atomistic

modeling, corresponding to Eqs. (10), (13), (14), and (15), as well as

the discussion presented throughout Sec. IV.

Parameter Numerical value

Equilibrium bead distance r0 (in Å) 10.00

Tensile stiffness parameter kT
(0) (in kcal/mol/Å2) 1000.00

Tensile stiffness parameter kT
(1) (in kcal/mol/Å2) 700.00

Hyperelastic parameter r1 (in Å) 10.50

Fracture parameter rbreak (in Å) 13.20

Equilibrium angle 	0 (in degrees) 180.00

Bending stiffness parameter kB (in kcal/mol/Å2) 14300.00

Dispersive parameter � (in kcal/mol) 15.10

Dispersive parameter � (in Å) 9.35
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proportional to �. In the following, �0 denotes the adhe-

sion energy of two CNTs in vacuum (see the calculation

presented in Sec. II. D). To assess the stability of the

self-folded CNT, it is essential to understand how

changes in the adhesion energy influence the structure.

The mesocale model is used to investigate the stability

of the folded structure when the adhesion strength is

varied. Such variations may be induced by putting the

folded CNT into solution, which effectively changes the

value of �. The contact length is defined as Lc, and the

free length is defined as Lf � L – 2Lc with the total length

L (see the schematic illustration in Fig. 7). Figure 8

shows the contact length and free length of CNT adhe-

sion in a racket-like structure as a function of varying �.

The results are shown normalized with respect to �0, the

original adhesion strength for (5,5) CNTs in vacuum.

The results suggest that for �1 � 0.265�0, the critical

length for stability of the racket-like CNT is L� ≈ 300 nm.

As a first order approximation, we assume that

L� ∼
EI

�
. (24)

The physical motivation is based on the fact that the

critical length is given by a competition of bending en-

ergy (proportional to EI) and adhesion energy (propor-

tional to �). Note that the scaling law used in Eq. (15) can

also be obtained from beam elasticity analysis. For CNTs

with identical bending stiffness, the simple scaling law

given by Eq. (24) can be used to estimate the critical

CNT length for the original adhesion strength for differ-

ent conditions. For example, for variations in length,

L�,0 ∼
�1

�0

L�,1 . (25)

For the present case, we estimate L� ≈ 78.75 nm. Simi-

larly, for fixed adhesion strength but variations in the

bending stiffness (for example, due to changes in radius,

or under consideration of multi-wall CNTs),

L�,0 ∼
EI0

EI1

L�,1 . (26)

The scaling laws given in Eqs. (24)–(26) provide some

insight into the stability of racket-type structures for dif-

ferent bond lengths.

We also investigated the stability of racket-like CNT

structures with respect to temperature changes. We fo-

cused on changes of the adhesion length Lc as a function

of temperature. From the mesoscale simulations, we find

that the average adhesion length can be expressed as a

combination of a median value Lc,m(T) and fluctuations

in the adhesion length, denoted by �Lc(T)

Lc = Lc,m�T � ± �Lc�T � , (27)

providing a simple description of the opening-closing

breathing mode found in the simulations (see Fig. 9).

From simulations with slowly increasing temperature

(temperature control using a Nosé–Hoover algorithm),

we observe that fluctuations of the adhesion length

�Lc(T) increase with temperature, along with an increase

in the average adhesion length Lc,m(T). These results are

shown in Fig. 9.

We note that the quantity Lc,max � Lc,m(T) + �Lc(T)

FIG. 6. Snapshots of folded CNTs, for different molecular lengths:

(a) 200 nm and (b) 300 nm. The self-folded structure obtained by

mesoscale modeling is quite similar to the results obtained from full

atomistic studies (see Fig. 1).

FIG. 7. Geometry of the racket-like CNT structure (schematic draw-

ing). The contact length is defined as Lc, the free length is defined as

Lf � L – 2Lc with the total CNT length L.

FIG. 8. Contact length and free length of a racket CNT as a function

of adhesive strength. This result suggests that even if the adhesion

strength is reduced (e.g.,due to solvents), the folded structure remains

stable. If the adhesion strength is increased, the contact length in-

creases, approaching half the CNT length for extremely large values.

The CNT unfolds for � ≈ 0.265�0.
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may be critical for unfolding due to thermal motion of the

CNT. For example, for � � 0.4�0, we find a 20% in-

crease over a 2000 K temperature interval. Additional

results are shown in the inlay in Fig. 9. This suggests that

temperature increase could induce unfolding of the

racket-like structure, only if the adhesion length is close

to the critical CNT length so that the decrease in adhesion

length can lead to the instability. This result further con-

firms earlier claims that self-folded structures can be ex-

tremely stable, with evaporation occurring before unfold-

ing if the CNT is long enough, thus providing significant

contact length.42

We also carried out calculations of CNTs in vacuum

where no external forces or velocity pushes applied to

investigate if the CNT would self-fold without mechani-

cal stimulation. In this case, we did not observe self-

folding of the CNT, even for lengths up to 1500 nm, and

over simulation times of 0.37 �s. Because this CNT

length is already larger than the longest types typically

found in experiments, we expect that the self-folding

process requires external stimulation. This behavior

can be explained by the fact that the CNT is still around

one order of magnitude below its persistence length (� ≈

1.61 × 10−5 m versus 1500 nm).

We note that such parametric and systematic studies

would not have been possible with pure atomistic studies

due to constraints in both length and time scale. Addi-

tional investigations will be left to future studies.

2. Self-assembly of two CNTs

Our mesoscale model can also be used to study the

dynamic interaction of two CNTs approaching each other

at a constant velocity. Figure 10 shows the simulation

results of two CNTs rotated at 90° with respect to each

other. The two CNTs approach each other at a constant

speed. We find that the two CNTs eventually assemble

into a structure composed of two racket-like structures,

as shown in Fig. 10(e).

Such folding and assembly mechanisms may occur in

systems composed of a large number of CNTs.

FIG. 10. Dynamical assembly of two CNTs. In this model, two carbon

nanotubes oriented as indicated in (a) are moving toward each other at

constant speed. Once they approach each other, interactions between

the two tubes set in, leading to formation of two racket-like structures.

Eventually this assembly forms a rather stable conglomerated in which

the two radial heads of the racket-like structures assemble and align

due to the dispersive interactions.

FIG. 11. Bundles of CNTs. Cross-sectional view of a bundle of CNTs

forming a nanowire, with 81 CNTs. This material forms a two-

dimensional hexagonal structure. We note some crystal defects in this

case. This also shows the cross-sectional shape of the CNT nanowire.

The equilibrium shape features straight surface structures. Some crystal-

type defects such as twin grain boundaries exist in the equilibrated

structure. Similar structural features have been observed in all-

atomistic studies of bundles of CNTs.42

FIG. 9. Adhesion length as a function of temperature for three differ-

ent values of the adhesion strength. The higher the temperature, the

more fluctuations are observed in the adhesion length. The inlay plot

depicts the fluctuation width as a function of adhesion strength, as well

as the derivative of the adhesion length with respect to changes in

temperature.
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C. Behavior of CNT bundles under

mechanical stimulation

1. Compressive and tensile deformation of a

CNT bundle

In this section, we focus on the assembly and mechanics

of bundles of CNTs. Figure 11 depicts a cross-sectional

view of a CNT bundle, indicating that the tubes assemble

into a triangular lattice. This agrees with earlier results ob-

tained by full atomistic simulation.42

After equilibration of the structure, we applied com-

pressive loading as indicated in Fig. 3(d). The results of

this simulation are shown in Fig. 12. Figure 13 shows a

detailed view of the deformed structure.

Similar computational experiments have also been car-

ried out to model the deformation of CNT bundles under

tensile loading (results not shown). We found that the

maximum tensile strain of the CNT bundle is 29%, which

is close to that of a single CNT. Poisson’s ratio is � ≈

0.38 for small strain, reduces at larger strains, and ap-

proaches � ≈ 0.29 close to the breaking point.

2. Bending and fracture of a CNT bundle

Results of deforming a CNT bundle that consists of

9 (5,5) CNTs of 80 nm length each under loading of a

FIG. 12. Response of a CNT bundle to mechanical compressive loading (cross-sectional view of this bundle, see Fig. 10). Even for relatively small

strains, the structure starts to buckle, eventually leading to significantly deformed and buckled shapes. The figure shows several snapshots as the

compressive load is increased.

FIG. 13. Detailed view of a highly deformed CNT bundle under com-

pressive load.

FIG. 14. Bending of a CNT bundle due to an indenter leading to fracture. The CNT bundle consists of nine (5,5) CNTs of 80 nm length each

[loading case as shown in Fig. 1(c)]. (a–c) The bundle quickly goes into a bending mode, (d,e) leading to fracture of individual CNTs, (f) followed

by rupture of the entire bundle. After rupture of the entire bundle and after the indenter has passed, (g–i) the structure re-assembles into a

permanently (plastically) deformed shape. Note that in this case, the CNTs have fractured but are held together by dispersive interactions.
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spherical indenter are shown in Fig. 14. The loading case

is presented in Fig. 2(c).

The bundle quickly goes into a bending mode, leading

to fracture of individual CNTs [Fig. 14(e)], followed by

rupture of the entire bundle [Fig. 14(f)]. After rupture of

the entire bundle and after the indenter has passed, the

structure re-assembles into a permanently (plastically)

deformed shape [Fig. 14(i)]. Note that in this case, all

CNTs in the bundle have been fractured but are held

together by dispersive interactions.

Figure 15 shows a load–displacement curve for this

deformation case. After the indenter approaches the

bundle, we observe significant flattening of the cylindri-

cally shaped bundle (between points a and b). In this

regime, we find increased displacement without signifi-

cantly increased force. After point b, the bundle is com-

pletely flattened, leading to continuous force increase

when the indenter moves further into the bundle. At point

c, the maximum load is reached, leading to rupture of

individual CNTs in the bundle. As a consequence, the

force decreases with increasing indenter displacement

between points c and d. We observe an approximately

constant load between points d and e due to shear dis-

entanglement of the bundle. At point e, the indenter

has completely passed the bundle, leaving a zero net

force. The maximum indentation force is approximately

5 × 104 pN.

These studies allow detailed understanding of the mo-

lecular mechanisms leading to failure of bundles and

assemblies of CNTs. Clearly, atomistic models of these

cases are computationally much more expensive and

limited in terms of the accessible time scales. Additional

investigations are left for future work.

V. DISCUSSION, CONCLUSION AND OUTLOOK

In this paper, we have reported atomistic modeling to

calculate the elastic, plastic, and fracture properties of

individual CNTs, using a hierarchy of atomistic and me-

soscale modeling approaches. In this section, we sum-

marize the main contributions of this paper.

We developed a simple mesoscopic model to describe

the mechanical properties and self-assembly mechanisms

of CNTs with ultra large aspect ratio. The parameters of

the mesoscopic model were derived completely from the

results of full atomistic modeling.

Our mesoscopic model is capable of reproducing the

full atomistic results of single tube tensile load cases (see

comparison shown in Fig. 3). The mesoscopic model can

reach time and length scales not accessible to the full

atomistic model but still includes information about the

fracture mechanics of individual CNTs.

We reported an analysis of the stability of self-folded

racket-like CNTs (see Fig. 6), in particular, focusing on

the stability due to variations of the adhesion strength.

We found that even when the adhesion strength is re-

duced, for example due to solvents, the self-folded struc-

ture is remarkably stable. Additional investigations shed

light on structural changes due to increased temperature

(Figs. 8 and 9). By systematically varying the adhesion

strength, it is possible to control the dynamic equilibrium

radius or adhesion length of the self-folded CNT. Such

variations could be induced by choosing different sol-

vents. This could lead to an application of the self-folded

CNT as a sensor for different chemical environments.

We showed that two CNTs moving toward each other

may assemble into a racket-like shape, forming conglom-

erated structures (see Fig. 10).

Studies of bundles of CNTs enable investigations of

the response to compressive, tensile, and bending load-

ing. We find that bundles of CNTs start to buckle once

the compressive strain reaches a critical value. The frac-

ture properties govern the response of a CNT bundle

under bending deformation, induced by an indenter. We

could link microscopic events with the overall shape of

the force–displacement curve (see Figs. 14 and 15).

We note that the mesoscopic model can be straight-

forwardly implemented for CNTs other than those stud-

ied here, including multiwalled CNTs.

We believe that reactive modeling that takes into ac-

count the complexity of chemical bonding may be criti-

cal to understanding the fracture and deformation behav-

ior of other nanoscale materials. Indeed, our results

suggest that it is critical to include the correct description

of the bond behavior and breaking processes at large

bond stretch, information stemming from the quantum

FIG. 15. Force versus displacement during indentation by a cylindri-

cal indenter. Flattening of the cylindrically shaped bundle occurs be-

tween points a and b, leading to increased displacement without sig-

nificantly increased force. After point b, the bundle is completely

flattened, leading to continuous force increase afterward. At point c,

the maximum load is reached, leading to rupture of individual CNTs

in the bundle. As a consequence, the force decreases with increasing

indenter displacement between points c and d. We observe an approxi-

mately constant load between points d and e due to shear disentangle-

ment of the bundle. At point e, the indenter has completely passed the

bundle, leaving a zero force. The maximum indentation force is ap-

proximately 5 × 1010 pN (point c).
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chemical details of bonding. In our current model, this

information is included in the Tersoff force field param-

eters,45 which in turn influence the parameter of the

mesoscopic model within a hierarchical multiscale

scheme. Without correct description of fracture proc-

esses, the large-deformation regime of CNTs that induces

fracture—as shown in studies of nanoindentation of CNT

bundles—cannot be described correctly.

We note that new reactive force fields represent an

alternative to Tersoff-type potentials as used in this

study. These force fields provide a more accurate de-

scription of the bond breaking and formation processes in

predominantly covalently bonded materials.58–60 We em-

phasize that our method can immediately be applied to

include atomistic results based on more accurate poten-

tials or even first-principles-based calculations. We leave

such studies to future work.

The agreement between the atomistic and mesoscale

models could be improved by using a more elaborate

Ansatz for the stretching potential than the bilinear tech-

nique, possibly using spline functions. This could im-

prove the agreement between the mesoscale model and

the atomistic model in particular at strain levels between

15% and 30% tensile strain. This may be particularly

useful when more accurate atomistic data, for example

obtained using reactive force fields, are used for the

training of the mesoscale parameters.

Compared to the full atomistic model, the mesoscopic

description is not capable to reproduce certain atomistic-

scale aspects of fracture and deformation. This includes

formation of 5–7 Stone-Wales-type defects or chemical

reactions that may occur during the deformation proc-

esses.

The simple mesoscale model reported here opens up

several possibilities for future studies, particularly at the

scale of CNT bundles, as well as applications that focus

on integrated composite structures. Results from meso-

scopic modeling could be used in the development of

new constitutive equations that can be used in continuum

or finite element studies. For example, the mesoscopic

model can be used to describe tensile experiments of

pulling and deformation of CNTs with extremely large

aspect ratios, naturally including the effects of entropy on

their elastic behavior.

We have demonstrated that it is unlikely that the self-

folding of CNTs into racket-structures will occur only

due to entropic fluctuations, because the most experi-

mentally synthesized CNTs are well below the persis-

tence length. Thus, thermal fluctuations are not suffi-

ciently large to induce contact of different areas of a

single tube. Our modeling clearly shows that such

contact is a critical condition to induce self-folding. We

believe that two length scales exist that characterize

the entropic properties of ultralong tubes. First, the

persistence length � describes the amount of thermal

fluctuations into bending modes, at a given temperature.

Secondly, there exists a critical length L� of CNTs to

allow stable self-folded structures. This length scale

is proportional to the bending stiffness and inversely

proportional to the adhesion energy, as discussed in

Sec. IV. B. 1. We find that typically L� < �, suggesting

that self-folding is possible at CNT lengths much below

the persistence length.

It remains an open question as to what the effects of

the folded structure are on optical or electronic proper-

ties. The head-radius is typically on the order of a few

tens of nanometers; thus interesting optical properties

may be induced by these new materials. Other self-

assembly processes—as demonstrated in Fig. 10—may

lead to interesting new materials and novel nanostruc-

tures. Techniques to functionalize the CNT surface and

induce covalent cross-links, preferred adhesion domains,

or other methods could help building complex nano-scale

structures and materials.
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