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coastal urban areas when onshore flow occurs. However,
it may also be of significance in inland urban areas, either
because of the contrast with surrounding agricultural
rural areas or when there is a contrast between prairie
and wooded areas. Under supportive synoptic conditions
the developed vertical velocities may trigger convective
clouds. The features of the induced vertical velocity may
also be of importance in dispersing pollutants.

In this paper we approach the problem of the vertical
velocity which arises because of horizontal inhomogenei-
ties in the surface shearing stress in the atmospheric plan-
etary boundary layer. This study is an extension in more
general terms of a previous paper (Dalu et al. 1988), where
we reported on the waves generated by a change in sur-
face roughness (CSR).

Hunt and Simpson (1982) provided an excellent review
of the studies, reported by that time, concerning flow
perturbations induced by a roughness change. Further-
more, Belcher et al. (1990) and Hunt et al. (1991) present-
ed solutions concerning the flow perturbation induced by
roughness changes within and around the stress layer.
Our work generally agrees with these results, however it
is less detailed in the structure of the perturbation within
the stress layer because we are more concerned with the
flow perturbation in the free atmosphere above. Addi-
tional studies reporting on the impact of a sudden change
in the surface roughness on the horizontal flow are given
by Pendergrass and Arya (1984).

Claussen (1987) computed, using a model simulation,
the vertical velocity due to a CSR. However, the comput-
ed vertical velocities were, in general, very sensitive to the
horizontal grid resolution, which must often be reduced
to several hundred meters in order to appropriately re-
solve the related vertical velocity. Using a very coarse
horizontal resolution, Vukovich and Dunn (1978), in their
numerical model simulation of the St. Louis urban area,
suggested that the surface roughness has only a small
effect on the circulation for the wind speeds used in their
study. Alestalo and Savijarvi (1985), using a hydrostatic
two-dimensional model with a grid interval of 4 km sim-
ulated the airflow in the Baltic shore region of Finland

Introduction

When an air mass approaches a region where there is a
substantial increase of the shearing stress in the surface
layer, the air speed decelerates in the lower layer. The
resulting horizontal convergence is associated with rising
motion. Such situations are typical, for example, in
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Abstract. We evaluate the mesoscale vertical velocity
induced by stress changes in the surface layer as a
function of the size of the rough patch in relation to
environmental parameters. The nature of the flow per-
turbation strongly depends on the relation between
the width of the rough patch and the two natural scales
of the flow, i.e. the inverse inertia wave number and the
inverse of the Scorer parameter. When the width of the
rough patch is comparable to the inverse inertia wave
number or larger, the atmospheric perturbation is
trapped, the vertical scale equals the depth of the stress
surface layer, and the horizontal scale equals the Ross-
by radius. When the width of the rough patch is larger
than the inverse of the Scorer parameter, but smaller
than the inverse inertia wave number, the atmospheric
perturbation is a hydrostatic gravity wave with a verti-
cal wave number equal to the Scorer parameter. When
the width of the rough patch is comparable to the
inverse of the Scorer parameter, the atmospheric per-
turbation is a propagating lee wave with a vertical
wave number equal to the Scorer parameter. When the
ambient flow is strong over a small rough patch, the
flow is irrotational. The same limitations, inherent to
the linear gravity waves excited by the forcing in the
atmosphere (e.g. mountain waves, gravity waves ini-
tiated by convection, etc.), apply to the mesoscale per-
turbation induced by a rough patch.
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and found a maximum for the vertical velocity of order of In the wave number region V2 (k) > 0, the waves propagate
1 cm s -1, due to the CSR. They attributed the reported away from the perturbing source with a vertical wave
increase of precipitation in that area, in the absence of number equal to Ill' The vertical wave number III for the
thermal forcing, to the vertical velocity induced by the propagating waves is:
CSR..Pielke (1974) evaluated the ma~nitud.e of vertical

~ 2-k2 velocIty caused b~ a CSR over Flonda usmg a ~ 1 km III (k) = v (k) = k -2 2' ~

horizontal-resolution model. Although the magnItudes k -ko

were sm~ll (~ 0.1 cm s -1), it was concluded that shall.<>w Note. The theory of the mesoscale vertical velocity in-
warm-ram clouds ov~r the so~theast. coast of Flonda duced by a rough patch is formulated within the frame-
could result from this mechanIsm. Fmally, Roel?ffzen work of the well-established gravity wave theory; there-
et al. (1986) presented a steady state model calculati.on of fore solutions in the presence of variable I, shear in the
secondary flow patterns force~ by a CSR. A~opting a ambient flow, regions of neutral stability, and critical lev-
~eutral boundary layer a.nd. usmg a refi~ed gnd re~olu- els can be easily treated, because the related mathematical
tion, they suggest that fnctional effects mvolved wIth a tools are already in the literature.
CSR at a coast line, can lead to a secondary circulation on
the mesoscale. They suggest that this forcing is a factor in
the observed coastal frontogenesis active in the early fall
along the coast of the Netherlands.

when ko<lkl<l {5)

The governing equation for the linear problem

If we assume that the process is stationary, two-dimen-
sional and Boussinesq, then the primitive equations in
linear form can be reduced to a Scorer-type equation for
the vertical velocity in non-homogeneous form:

'k2-k2\ f0 zzk2 J -wzz+(12-k2)w=- .
,/ (!U

Because of the linearization the perturbations may be
underestimated, however, since the solutions are continu-
ous, there are no limitations due to grid-size. For a
derivation of Eq. (1) see Eliassen (1977). The hat denotes
the Fourier transform of the variable, k is the horizontal
wave number, ko=f/U is the inertial wave number (f is
the Coriolis parameter, U is the ambient flow perpendic-
ular to the change in surface roughness, and Uz is its
shear), 't" is the resulting shear stress, and I is the Scorer

parameter:

r N2 r- (-

(1)

Green functions and boundary condition

The advantage of writing the solution in terms of Green
functions is that a variety of different vertical profiles of
the stress can be easily studied through a simple convolu-
tion integral. Using Green function theory (Stakgold,
1979), we seek solutions, g(k, z-z'), associated with the
governing Eq. (1) for a point source forcing [)(x', z'),
which satisfies the boundary conditions:

g(k, z-z') = 0 when z = o. (6)

Then the vertical velocity for a given forcing is:

A
(k ) - Jzd ' A(k ' ) G2 (k) izz (k, z')

w z- Z g z-z, 0' (!:U

1 00

=;.. w(x,z)=~ f dkw(k,z)expixk. (7)
2n -'",

The Green function for the upward propagating wave,
which satisfies the radiation condition (Sommerfeld,
1912, 1948) and the boundary condition, is:

1

.41 (k,z-z') = 2~ [exp i(kx+ Jl1(k)lz-z'l)

-expi(kx+Jl1(k)lz+z'I)].

The second term is the mode reflected by the ground.

(8)

af)

oz'
Uzzl:l = ~ -~ with N2 = (2)U2

where N is the Brunt- Vaisala frequency and 1i is the buoy-
ancy of the environment. Equation (1) can rewritten as:

If.wzz + V2 (k) W = G2 (k) ~ (3)

with

9BC(k,z) = -lim
I%'-0

= exp i(kx + /11 (k) z)

which is the Green function for a radiative wave in the
mountain wave problem (Smith, 1979).

The Green function for the upward trapped wave is:

9o(k,z-z')=- 2 ~

(k) [exp(ikx-Jlo(k)lz-z'l)
Jlo (10)

-exp(ikx- Jlo (k) I z+z'I)]

Again, the second term is the mode reflected by the

ground.

12-k2 k2.
v2(k)=k2k~ and G2(k) = k~'

In the wave number region where V2 (k) < 0, the waves are
trapped around the perturbing source within an e-folding
vertical distance equal to /lo 1. The vertical wave number,
/lo, for the trapped waves is:

[i~
/lo(k)=liv(k)I=lkIVk~ (4)

whenO<lkl<ko or when 1<lkl<oo.

Remark. For ver!fication, we derive the boundary value

Green function, 9BC (k, z):
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Remark. For verification, we derive the boundary value The w,.. (k, z) waves propagate away from the top of the
Green function, 9BC(k,z): stress layer: (17)

.() 1r
L w (Jup(k,z-z') J%,=O9BC(k,z) = -Jim
I%'-0

= exp (ikx +.uo(k) z) (11)

which is the Green function for the trapped wave in the
mountain problem (Smith, 1979).

Wit! (k,z) = t {sin (,ullz-hl +kx) -sin (,ullz+ hi +kx)}.

The tilde denotes the cosine Fourier transform:
00

F(k) = fdxF(x)cos(kx)
0

'200
F(x) = -JdkP(k)cos(kx).

1t 0

Atmospheric response to stress changes
in the surface layer Vertical velocity excited by a bell shaped stress

The stress has the same direction and opposes the ambi-
ent flow; furthermore, for simplicity, we assume that the
stress decays linearly with altitude within the stress layer
(which has depth h):

We assume that CD= 3 x 10-3, h = 300 m, and that the

environment parameters have the values N=10-2S-1
and f = 10-4 s-1. We evaluate the vertical velocity in-

duced by a rough patch with a horizontal extension a in
relation to the ambient wave number ko and 1. A bell-
shaped distribution of the stress is ideal for this kind of
analysis [as shown by Queney (1947) and by Smith (1979)
for the vertical velocity induced by a bell shape moun-

tain]:

.(x,Z) = .oHe(h-z) (12)

a2:o~(~-h)'tzz (x, z) =

=> izz (k, z) = (18)

where 'to is the surface shear stress, F (x) is its horizontal
distribution, and He is the Heaviside function. The
mesoscale perturbation depends mainly on the intensity
of the stress and on its depth, and weakly on its vertical
distribution. The relation between the surface stress 'to,
the wind intensity U, the surface drag CD, and the shear
velocity u* is given by (Panofsky and Dutton, 1984):

U*2 't ( ,,2 )C ---~ -0 (13)

D -U2 -e U2 -(1nz/zo)2'

Here" is the von Karman constant and Zo is the surface
roughness. The atmospheric response to a horizontal dis-
tribution of the stress (F (x) is assumed to be an even
function) is given by:

5.0 I. C ""' ". ! I" ..

\

9\E
=.2.5
N

2 {kO -
w (X, Z) =10+11 +102= -W n ! dkGo(k)WflO(k,z)F(k)

I

+ fdkG1(k) wfl,(k, z)F(k)
ko

+ 1 dk Go(k) wflo(k, Z) F(k)} with

-=~~=~~=~ (14)W e U Ih U Ih hN.

The variable w is the amplitude of the perturbation of the
vertical velocity. Here,

r -I G2~ = I k

Jlo(~)

a 0
5.0

:"", .

~ 2.51

Go(k) = --

J(k~ -k2) (12 -k2)
and (15)

-1000 -500 0 500 1000

b X(km)

Fig. 1. a Contours of vertical velocity induced by a bell shaped

distributed surface stress, when the inverse of the inertial wave
number is smaller than the width of the rough patch; ko a = 3,
a = 100 km, under weak flow condition (U = 3 mis, W = 1 cm/s and

L1w = 0.1 cm/s). b When the ambient flow is U = 10 mis, then

ko a = 1, W = 10 cm/s and L1w = 1 cm/s. Dashed lines represent neg-

ative contour lines

IG2(k) lk
G1 (k) = -111(k) .J(k2-k~)(12-k2)

The w!'o(k,z) waves are trapped around the top of the
stress layer:

w!'o(k,z) (16)

=! {exp( -l1olz-hl) -exp( -l1olz+ hi)} cos(kx).

, c=
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here l5 is the Dirac function. From Eq. (14) the vertical
velocity is given by:

w (x, z) =10,+11+102

{ kO = -w ! dkGo(k)w/lo(k,z)a exp( -ak)

I

+ J dk G1(k)w/l,(k,z)a exp( -ak)
ko

+ 1dk Go(k) w/lo(k,z)a eXp(-ak)} (19)

When la~koa~1, 1o,~11+102; the perturbation is a
horizontally and vertically trapped inertia wave.

Due to the exponential decay of the Fourier transform of
the bell function for increasing values of the wave num-
ber, when the rough patch is large and the ambient flow
is very weak, the contributions of the second and third
integrals are negligible in comparison to the contribution
of the first integral:

(20)

This solution represents an intertia wave which is hori-
zontally and vertically trapped, as shown in Fig. 1 a.
When the inertial wave number is large (in Fig. 1 a
koa=3 and a = 100 km) the air particles are displaced

upward and northward within a Rossby radius distance
upstream of the rough patch, then the restoring Coriolis
force brings them back to the previous location through
an intertial oscillation. The maximum intensity of the
perturbation occurs at z = h, and monotonically decreas-

es above it as in the Ekman solution.

When la ~koa =0(1), 101 ~11 +102; the perturbation is a
vertically trapped inertia wave.

In this case, the second integral does not contribute signif-
icantly because of rapid oscillations of the sine argument;

Fig. 2. a Vertical velocity isolines when the inverse of the Scorer
parameter is smaller than the width of the rough patch, I a = 3,
a = 1 kIn, under weak flow condition (U = 3 mis, w = 1 cm/s and

Aw=0.1 cm/s). b When the ambient flow is U=10m/s, then
I a = 1, w = 10 cm/s, and Aw = 1 cm/s. c When tqe ambient flow isstrong(U 

= 30 m/s), thenla = 0.3, w =100 cm/sand Aw =10cm/s.

Dashed lines represent negative contours



652 G. A. Dalu et at... Mesoscale vertical velocities generated by stress changes in the boundary layer: Linear theory

the third integral does not contribute because of the expo- The trapped wave decays exponentially with the distance
nential decay, thus from the top of the stress layer, therefore it interferes with

the propagating wave only at z ~ h, while weakening the
_k- propagating wave upstream and strengthening the prop-.° agating wave downstream [the zero-order Neumann

\ function is even, while the zero-order Struve function is~ 3 L' (21) odd, with the same asymptotic behavior (Abramowitz

and Stegun, 1972)], thereby producing a wake of sec-
:': ondary cells downstream at the level of the top of the

,- , stress layer. The non-hydrostatic lee wave is shown in
Fig. 2 b, for 1 a = 1 and a = 1 km). The maximum intensity

0"- of the perturbation occurs at the center of the rough patch~~,. 0- at z = h.

a ko

w(x,z)~Io1=W2 !dk

L Jk~)

( liz-hi )J-exp -k a + "Jk~~ cos lkxl

This solution represents a number of vertically trapped
inertial oscillations (Fig. 1 b). Again, the perturbation de-
cays monotonically with altitude above the stress layer. When koa~la~1, Io2~Io,+I1, and theflow is

irrotational.

When ambient flow is strong, ko and I are small. Thus the
contribution of the first and the second integrals are neg-ligible 

and only the third integral contributes:

When I a ~ 1 ~ ko a, I 1 ~ 101 + 102; the perturbation is
a hydrostatic gravity wave.

In this case, the trapped wave contribution is negligible in
comparison to the contribution of a vertically propagat-
ing hydrostatic wave: aoo

w(x,z)=Io2=w2 !dk[exp(-(a+ Iz+hl)k)

-exp( -(a+ Iz-hl)k)] cos(kx)

-a { (a+lz+hl)

=w2 [(a+lz+hl)2+x2]

(a + Iz-hl) }-[(a + Iz-hl)2+X2] .(24)

The perturbation is horizontally and vertically trapped,
as shown in Fig. 2 c for 1 a = 0.3 and a = 1 km. The maxi-

mum intensity of the perturbation occurs at the center of
the rough patch at z = h.

aOO

W(x,z)~I1=W2 !dk[sin(llz+hl +kx) (22)

-sin(llz -hi +kx)] exp( -ak)

~

=~~ {[asin(/lz+hl)+xcos(/lz+hl)]

-[asin(/lz -hi) +xcos(/lz -hi)]}.

The hydrostatic gravity wave is shown in Fig. 2a. When
the inverse of 1 is smaller than the extension of the rough
patch (Ia = 3 and a = 1 km in Fig. 2 a), the perturbation

has a wave structure with a vertical wave number equal
to I. The maximum intensity of the perturbation occurs at
the center of the rough patch at z = h.

Conclusions

We have shown that a horizontal change in surface
roughness can induce substantial vertical velocity. The
vertical velocity can be in the form of either propagating
or trapped waves; in both cases the perturbation can be
physically relevant, since the maximum is placed at the
top of the stress layer, i.e. in the region where it is impor-

When I a =0 (1) ~koa, Ii +I02>Io,; the perturbation is a
non-hydrostatic lee wave.

For this situation, the contribution of the first integral 10,

is negligible, the vertical velocity is:

w(x,z)~I1+I02 (23)

However, most of the contribution is in the propagating
non-hydrostatic wave:

sin(JF-=k2lz~hl +kx)] exp( -ak)I =w~Jdk l[sin<J!::=Plz+hl+!!:.:!!:l1 2 0 Ji-:r=p

nla

~w-

4
exp( -la) {[sin(llz +hl) Jo (l(x-lz+ hi» + cos(llz +hl) Ho (l(x-lz+hl»]

-[sin(llz -hi) Jo(l(x-lz-hl» + cos(llz -hl)Ho(l(x-lz-hl»]}.

The contribution of the trapped non-hydrostatic wave is:

I =w~ooJdk l[exp-<jk2-=lilz+hl)exp- -(kz-lzlz-hill
02 2 I

exp( 

-ak) cos(kx)
.Jk2-P

nla

do

~-wexp( 

-1 a) No (Ix) {exp( -llz+hl) exp( -liz-hi)} when !lx! ~1,
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tant to have positive vertical velocities in order to trigger
cumulus convection.

The nature of these perturbations depends on the
width of the rough patch relative to natural scales associ-
ated with the magnitude of ko and I. The vertical scale is
related to the ambient Scorer parameter when there is
vertical propagation. The horizontal scale is related to the
Rossby radius for weak ambient flow over larger rough
patches. When the rough patch is small, the horizontal
scale is related to the inverse of the Scorer parameter.

The theory which we use is derived from mountain
wave theory (Queney, 1947; Eliassen, 1977; Smith, 1979).
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