Mesoscale vertical velocities generated by stress changes in the boundary layer: linear theory*

G. A. Dalu ${ }^{1,3}$, M. Baldi ${ }^{2,4}$, R. A. Pielke ${ }^{2}$, J. T. Lee ${ }^{2}$, and M. Colacino ${ }^{3}$
${ }^{1}$ Cooperative Institute for Research in the Atmosphere, CIRA-CSU, Foothill, Campus, Fort Collins, CO 80523, USA
${ }^{2}$ Department of Atmospheric Science, CSU, Foothill Campus, Fort Collins, CO 80523, USA
${ }^{3}$ Institute for Atmospheric Physics, IFA-CNR, P.le L. Sturzo 31, Rome, Italy 00144
${ }^{4}$ Area Ricerca Frascati, ARF-CNR, Via G. Galilei, CP 27, Frascati-Rome, Italy 00044

Received December 6, 1990; revised May 28, 1991; accepted July 12, 1991

Abstract

We evaluate the mesoscale vertical velocity induced by stress changes in the surface layer as a function of the size of the rough patch in relation to environmental parameters. The nature of the flow perturbation strongly depends on the relation between the width of the rough patch and the two natural scales of the flow, i.e. the inverse inertia wave number and the inverse of the Scorer parameter. When the width of the rough patch is comparable to the inverse inertia wave number or larger, the atmospheric perturbation is trapped, the vertical scale equals the depth of the stress surface layer, and the horizontal scale equals the Rossby radius. When the width of the rough patch is larger than the inverse of the Scorer parameter, but smaller than the inverse inertia wave number, the atmospheric perturbation is a hydrostatic gravity wave with a vertical wave number equal to the Scorer parameter. When the width of the rough patch is comparable to the inverse of the Scorer parameter, the atmospheric perturbation is a propagating lee wave with a vertical wave number equal to the Scorer parameter. When the ambient flow is strong over a small rough patch, the flow is irrotational. The same limitations, inherent to the linear gravity waves excited by the forcing in the atmosphere (e.g. mountain waves, gravity waves initiated by convection, etc.), apply to the mesoscale perturbation induced by a rough patch.

Introduction

When an air mass approaches a region where there is a substantial increase of the shearing stress in the surface layer, the air speed decelerates in the lower layer. The resulting horizontal convergence is associated with rising motion. Such situations are typical, for example, in

[^0]coastal urban areas when onshore flow occurs. However, it may also be of significance in inland urban areas, either because of the contrast with surrounding agricultural rural areas or when there is a contrast between prairie and wooded areas. Under supportive synoptic conditions the developed vertical velocities may trigger convective clouds. The features of the induced vertical velocity may also be of importance in dispersing pollutants.

In this paper we approach the problem of the vertical velocity which arises because of horizontal inhomogeneities in the surface shearing stress in the atmospheric planetary boundary layer. This study is an extension in more general terms of a previous paper (Dalu et al. 1988), where we reported on the waves generated by a change in surface roughness (CSR).

Hunt and Simpson (1982) provided an excellent review of the studies, reported by that time, concerning flow perturbations induced by a roughness change. Furthermore, Belcher et al. (1990) and Hunt et al. (1991) presented solutions concerning the flow perturbation induced by roughness changes within and around the stress layer. Our work generally agrees with these results, however it is less detailed in the structure of the perturbation within the stress layer because we are more concerned with the flow perturbation in the free atmosphere above. Additional studies reporting on the impact of a sudden change in the surface roughness on the horizontal flow are given by Pendergrass and Arya (1984).

Claussen (1987) computed, using a model simulation, the vertical velocity due to a CSR. However, the computed vertical velocities were, in general, very sensitive to the horizontal grid resolution, which must often be reduced to several hundred meters in order to appropriately resolve the related vertical velocity. Using a very coarse horizontal resolution, Vukovich and Dunn (1978), in their numerical model simulation of the St. Louis urban area, suggested that the surface roughness has only a small effect on the circulation for the wind speeds used in their study. Alestalo and Savijarvi (1985), using a hydrostatic two-dimensional model with a grid interval of 4 km simulated the airflow in the Baltic shore region of Finland
and found a maximum for the vertical velocity of order of $1 \mathrm{~cm} \mathrm{~s}^{-1}$, due to the CSR. They attributed the reported increase of precipitation in that area, in the absence of thermal forcing, to the vertical velocity induced by the CSR. Pielke (1974) evaluated the magnitude of vertical velocity caused by a CSR over Florida using a 11 km horizontal-resolution model. Although the magnitudes were small ($\approx 0.1 \mathrm{~cm} \mathrm{~s}^{-1}$), it was concluded that shallow warm-rain clouds over the southeast coast of Florida could result from this mechanism. Finally, Roeloffzen et al. (1986) presented a steady state model calculation of secondary flow patterns forced by a CSR. Adopting a neutral boundary layer and using a refined grid resolution, they suggest that frictional effects involved with a CSR at a coast line, can lead to a secondary circulation on the mesoscale. They suggest that this forcing is a factor in the observed coastal frontogenesis active in the early fall along the coast of the Netherlands.

The governing equation for the linear problem

If we assume that the process is stationary, two-dimensional and Boussinesq, then the primitive equations in linear form can be reduced to a Scorer-type equation for the vertical velocity in non-homogeneous form:
$\left.\frac{k^{2}-k_{0}^{2}}{k^{2}}\right) \hat{w}_{z z}+\left(l^{2}-k^{2}\right) \hat{w}=-\frac{\hat{\tau}_{z z}}{\varrho U}$.
Because of the linearization the perturbations may be underestimated, however, since the solutions are continuous, there are no limitations due to grid-size. For a derivation of Eq. (1) see Eliassen (1977). The hat denotes the Fourier transform of the variable, k is the horizontal wave number, $k_{0}=f / U$ is the inertial wave number (f is the Coriolis parameter, U is the ambient flow perpendicular to the change in surface roughness, and U_{z} is its shear), τ is the resulting shear stress, and l is the Scorer parameter:
$l^{2}=\frac{N^{2}}{U^{2}}-\frac{U_{z z}}{\eta}$ with $N^{2}=\frac{\partial \check{b}}{\partial z}$,
where N is the Brunt-Väisäla frequency and \bar{b} is the buoyancy of the environment. Equation (1) can rewritten as:
$\hat{w}_{z z}+v^{2}(k) \hat{w}=G^{2}(k) \frac{\hat{t}_{z z}}{\varrho U}$
with
$v^{2}(k)=k^{2} \frac{l^{2}-k^{2}}{k^{2}-k_{0}^{2}} \quad$ and $\quad G^{2}(k)=\frac{k^{2}}{k^{2}-k_{0}^{2}}$.
In the wave number region where $v^{2}(k)<0$, the waves are trapped around the perturbing source within an e-folding vertical distance equal to μ_{0}^{-1}. The vertical wave number, μ_{0}, for the trapped waves is:
$\mu_{0}(k)=|i v(k)|=|k| \sqrt{\frac{l^{2}-k^{2}}{k_{0}^{2}-k^{2}}}$
when $0<|k|<k_{0} \quad$ or when $\quad l<|k|<\infty$.

In the wave number region $v^{2}(k)>0$, the waves propagate away from the perturbing source with a vertical wave number equal to μ_{1}. The vertical wave number μ_{1} for the propagating waves is:
$\mu_{1}(k)=v(k)=k \sqrt{\frac{l^{2}-k^{2}}{k^{2}-k_{0}^{2}}} \quad$ when $\quad k_{0}<|k|<l$.
Note. The theory of the mesoscale vertical velocity induced by a rough patch is formulated within the framework of the well-established gravity wave theory; therefore solutions in the presence of variable l, shear in the ambient flow, regions of neutral stability, and critical levels can be easily treated, because the related mathematical tools are already in the literature.

Green functions and boundary condition

The advantage of writing the solution in terms of Green functions is that a variety of different vertical profiles of the stress can be easily studied through a simple convolution integral. Using Green function theory (Stakgold, 1979), we seek solutions, $\hat{g}\left(k, z-z^{\prime}\right)$, associated with the governing Eq. (1) for a point source forcing $\delta\left(\mathrm{x}^{\prime}, \mathrm{z}^{\prime}\right)$, which satisfies the boundary conditions:
$\hat{g}\left(k, z-z^{\prime}\right)=0 \quad$ when $\quad z=0$.
Then the vertical velocity for a given forcing is:

$$
\begin{align*}
& \hat{w}(k, z)=\int_{0}^{z} \mathrm{~d} z^{\prime} \hat{g}\left(k, z-z^{\prime}\right) \frac{G^{2}(k) \hat{\tau}_{z z}\left(k, z^{\prime}\right)}{\varrho U} \\
& \Rightarrow w(x, z)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} k \hat{w}(k, z) \exp i x k . \tag{7}
\end{align*}
$$

The Green function for the upward propagating wave, which satisfies the radiation condition (Sommerfeld, $1912,1948)$ and the boundary condition, is:

$$
\begin{align*}
\hat{g}_{1}\left(k, z-z^{\prime}\right)=\frac{1}{2 i \mu_{1}(k)} & {\left[\exp i\left(k x+\mu_{1}(k)\left|z-z^{\prime}\right|\right)\right.} \tag{8}\\
& \left.-\exp i\left(k x+\mu_{1}(k)\left|z+z^{\prime}\right|\right)\right] .
\end{align*}
$$

The second term is the mode reflected by the ground.

Remark. For verification, we derive the boundary value Green function, $\hat{g}_{B C}(k, z)$:

$$
\begin{aligned}
\hat{g}_{B C}(k, z) & =-\lim _{z^{\prime} \rightarrow 0}\left[\frac{\partial}{\partial z^{\prime}} \hat{g}_{u p}\left(k, z-z^{\prime}\right)\right]_{z^{\prime}=0} \\
& =\exp i\left(k x+\mu_{1}(k) z\right)
\end{aligned}
$$

which is the Green function for a radiative wave in the mountain wave problem (Smith, 1979).

The Green function for the upward trapped wave is:

$$
\begin{align*}
\hat{g}_{0}\left(k, z-z^{\prime}\right)=-\frac{1}{2 \mu_{0}(k)} & {\left[\exp \left(i k x-\mu_{0}(k)\left|z-z^{\prime}\right|\right)\right.} \tag{10}\\
& \left.-\exp \left(i k x-\mu_{0}(k)\left|z+z^{\prime}\right|\right)\right]
\end{align*}
$$

Again, the second term is the mode reflected by the ground.

Remark. For verification, we derive the boundary value Green function, $\hat{g}_{B C}(k, z)$:

$$
\begin{align*}
\hat{g}_{B C}(k, z) & =-\lim _{z^{\prime} \rightarrow 0}\left[\frac{\partial}{\partial z^{\prime}} \hat{g}_{u p}\left(k, z-z^{\prime}\right)\right]_{z^{\prime}=0} \\
& =\exp \left(i k x+\mu_{0}(k) z\right) \tag{11}
\end{align*}
$$

which is the Green function for the trapped wave in the mountain problem (Smith, 1979).

Atmospheric response to stress changes

in the surface layer

The stress has the same direction and opposes the ambient flow; furthermore, for simplicity, we assume that the stress decays linearly with altitude within the stress layer (which has depth h):
$\tau(x, z)=\tau_{0} H e(h-z) \frac{l-z}{l_{1}} F(x)$
where τ_{0} is the surface shear stress, $F(x)$ is its horizontal distribution, and He is the Heaviside function. The mesoscale perturbation depends mainly on the intensity of the stress and on its depth, and weakly on its vertical distribution. The relation between the surface stress τ_{0}, the wind intensity U, the surface drag C_{D}, and the shear velocity u^{*} is given by (Panofsky and Dutton, 1984):
$C_{D}=\frac{u^{* 2}}{U^{2}}=\frac{\tau_{0}}{\varrho U^{2}}=O\left(\frac{x^{2}}{\left(\ln z / z_{0}\right)^{2}}\right)$.
Here x is the von Karman constant and z_{0} is the surface roughness. The atmospheric response to a horizontal distribution of the stress $(F(x)$ is assumed to be an even function) is given by:

$$
\begin{align*}
w(x, z)= & I_{0}+I_{1}+I_{0_{2}}=-\bar{w} \frac{2}{\pi}\left\{\int_{0}^{k_{0}} \mathrm{~d} k G_{0}(k) w_{\mu_{0}}(k, z) \tilde{F}(k)\right. \\
& +\int_{k_{0}}^{l} \mathrm{~d} k G_{1}(k) w_{\mu_{1}}(k, z) \tilde{F}(k) \\
& \left.+\int_{l}^{\infty} \mathrm{d} k G_{0}(k) w_{\mu_{0}}(k, z) \tilde{F}(k)\right\} \text { with } \\
\bar{w}= & \frac{\tau_{0}}{\varrho U} \frac{1}{l h}=\frac{u^{* 2}}{U} \frac{1}{l h}=\frac{C_{D} U^{2}}{h N} \tag{14}
\end{align*}
$$

The variable \bar{w} is the amplitude of the perturbation of the vertical velocity. Here,
$G_{0}(k)=-\frac{l G^{2}(k)}{\mu_{0}(k)}=\frac{l k}{\sqrt{\left(k_{0}^{2}-k^{2}\right)\left(l^{2}-\mathrm{k}^{2}\right)}}$
and
$G_{1}(k)=-\frac{l G^{2}(k)}{\mu_{1}(k)}=\frac{l k}{\sqrt{\left(k^{2}-k_{0}^{2}\right)\left(l^{2}-\mathrm{k}^{2}\right)}}$
The $w_{\mu_{0}}(k, z)$ waves are trapped around the top of the stress layer:

$$
\begin{align*}
& w_{\mu_{0}}(k, z) \tag{16}\\
& \quad=\frac{1}{2}\left\{\exp \left(-\mu_{0}|z-h|\right)-\exp \left(-\mu_{0}|z+h|\right)\right\} \cos (k x)
\end{align*}
$$

The $w_{\mu_{1}}(k, z)$ waves propagate away from the top of the stress layer:
$w_{\mu_{1}}(k, z)=\frac{1}{2}\left\{\sin \left(\mu_{1}|z-h|+k x\right)-\sin \left(\mu_{1}|z+h|+k x\right)\right\}$.
The tilde denotes the cosine Fourier transform:

$$
\begin{aligned}
& \tilde{F}(k)=\int_{0}^{\infty} \mathrm{d} x F(x) \cos (k x) \\
& \quad F(x)=\frac{2}{\pi} \int_{0}^{\infty} \mathrm{d} k \widetilde{F}(k) \cos (k x)
\end{aligned}
$$

Vertical velocity excited by a bell shaped stress

We assume that $C_{D}=3 \times 10^{-3}, h=300 \mathrm{~m}$, and that the environment parameters have the values $N=10^{-2} \mathrm{~s}^{-1}$ and $f=10^{-4} \mathrm{~s}^{-1}$. We evaluate the vertical velocity induced by a rough patch with a horizontal extension a in relation to the ambient wave number k_{0} and l. A bellshaped distribution of the stress is ideal for this kind of analysis [as shown by Queney (1947) and by Smith (1979) for the vertical velocity induced by a bell shape mountain]:
$\tau_{z z}(x, z)=\frac{\tau_{0} \delta(z-h)}{h^{2}} \frac{a^{2}}{a^{2}+x^{2}}$
$\Rightarrow \tilde{\tau}_{z z}(k, z)=\frac{\tau_{0} \delta(z-h)}{h^{2}} \frac{\pi a}{2} \exp (-a k) ;$

Fig. 1. a Contours of vertical velocity induced by a bell shaped distributed surface stress, when the inverse of the inertial wave number is smaller than the width of the rough patch; $k_{0} a=3$, $a=100 \mathrm{~km}$, under weak flow condition ($U=3 \mathrm{~m} / \mathrm{s}, \bar{w}=1 \mathrm{~cm} / \mathrm{s}$ and $\Delta \bar{w}=0.1 \mathrm{~cm} / \mathrm{s}$). b When the ambient flow is $U=10 \mathrm{~m} / \mathrm{s}$, then $k_{0} a=1, \bar{w}=10 \mathrm{~cm} / \mathrm{s}$ and $\Delta \bar{w}=1 \mathrm{~cm} / \mathrm{s}$. Dashed lines represent negative contour lines
here δ is the Dirac function. From Eq. (14) the vertical velocity is given by:

$$
\begin{align*}
w(x, z)=I_{0_{1}}+ & I_{1}+I_{0_{2}} \\
=-\bar{w}\{ & \left\{\int_{0}^{k_{0}} \mathrm{~d} k G_{0}(k) w_{\mu_{0}}(k, z) a \exp (-a k)\right. \\
& +\int_{k_{0}}^{l} \mathrm{~d} k G_{1}(k) w_{\mu_{1}}(k, z) a \exp (-a k) \\
& \left.+\int_{l}^{\infty} \mathrm{d} k G_{0}(k) w_{\mu_{0}}(k, z) a \exp (-a k)\right\} \tag{19}
\end{align*}
$$

When $l a \gg k_{0} a \gg 1, I_{0_{1}} \gg I_{1}+I_{0_{2}}$; the perturbation is a horizontally and vertically trapped inertia wave.

Due to the exponential decay of the Fourier transform of the bell function for increasing values of the wave number, when the rough patch is large and the ambient flow is very weak, the contributions of the second and third integrals are negligible in comparison to the contribution of the first integral:

$$
\left.\begin{array}{rl}
w(x, z) \approx I_{0_{1}}=\bar{w} \frac{a}{2 k_{0}} \int_{0}^{\infty} \mathrm{d} k k\left[\exp -\mathrm{k}\left(a+\frac{N}{f}|z+h|\right)\right. \\
& \left.-\exp -\mathrm{k}\left(a+\frac{N}{f}|z-h|\right)\right] \cos (k x) \\
= & \bar{w} \frac{a}{2 k_{0}}\left\{\frac{\left(a+\frac{N}{f}|z+h|\right)^{2}-x^{2}}{\left[\left(a+\frac{N}{f}|z+h|\right)^{2}+x^{2}\right]^{2}}\right. \\
\left(a+\frac{N}{f}|z-h|\right)^{2}-x^{2} \tag{20}\\
{\left[\left(a+\frac{N}{f}|z-h|\right)^{2}+x^{2}\right]^{2}}
\end{array}\right)
$$

This solution represents an intertia wave which is horizontally and vertically trapped, as shown in Fig. 1 a. When the inertial wave number is large (in Fig. 1 a $k_{0} a=3$ and $a=100 \mathrm{~km}$) the air particles are displaced upward and northward within a Rossby radius distance upstream of the rough patch, then the restoring Coriolis force brings them back to the previous location through an intertial oscillation. The maximum intensity of the perturbation occurs at $z=h$, and monotonically decreases above it as in the Ekman solution.

When $l a \gg k_{0} a=O(1), I_{0_{1}} \gg I_{1}+I_{0_{2}}$; the perturbation is a vertically trapped inertia wave.
In this case, the second integral does not contribute significantly because of rapid oscillations of the sine argument;

Fig. 2. a Vertical velocity isolines when the inverse of the Scorer parameter is smaller than the width of the rough patch, $l a=3$, $a=1 \mathrm{~km}$, under weak flow condition ($U=3 \mathrm{~m} / \mathrm{s}, \bar{w}=1 \mathrm{~cm} / \mathrm{s}$ and $\Delta \bar{w}=0.1 \mathrm{~cm} / \mathrm{s})$. b When the ambient flow is $U=10 \mathrm{~m} / \mathrm{s}$, then $l a=1, \bar{w}=10 \mathrm{~cm} / \mathrm{s}$, and $\Delta \bar{w}=1 \mathrm{~cm} / \mathrm{s}$. c When the ambient flow is strong ($U=30 \mathrm{~m} / \mathrm{s}$), then $l a=0.3, \bar{w}=100 \mathrm{~cm} / \mathrm{s}$ and $\Delta \bar{w}=10 \mathrm{~cm} / \mathrm{s}$. Dashed lines represent negative contours

the third integral does not contribute because of the exponential decay, thus

$$
\begin{align*}
w(x, z) \approx I_{0_{1}}= & \bar{w} \\
\frac{a}{2} \int_{0}^{k_{0}} \mathrm{~d} k & k \tag{21}\\
& \left.\begin{array}{l}
\left.\sqrt{k_{0}^{2}-k^{2}}\right) \\
\\
\\
\end{array} \quad-\exp -k\left(a+\frac{l|z-h|}{\sqrt{k_{0}^{2}-k^{2}}}\right)\right] \cos (k x)
\end{align*}
$$

This solution represents a number of vertically trapped inertial oscillations (Fig. 1 b). Again, the perturbation decays monotonically with altitude above the stress layer.

When $l a \gg 1 \gtrdot k_{0} a, I_{1} \gtrdot I_{0_{1}}+I_{0_{2}}$; the perturbation is a hydrostatic gravity wave.

In this case, the trapped wave contribution is negligible in comparison to the contribution of a vertically propagating hydrostatic wave:

$$
\left.\left.\begin{array}{rl}
w(x, z) \approx I_{1}= & \bar{w} \frac{a}{2} \int_{0}^{\infty} \mathrm{d} k[\tag{22}
\end{array}\right] \sin (l|z+h|+k x) \quad-\sin (l|z-h|+k x)\right] \exp (-a k) .
$$

The hydrostatic gravity wave is shown in Fig. 2a. When the inverse of l is smaller than the extension of the rough patch ($l a=3$ and $a=1 \mathrm{~km}$ in Fig. 2a), the perturbation has a wave structure with a vertical wave number equal to l. The maximum intensity of the perturbation occurs at the center of the rough patch at $z=h$.

When la $a=O(1) \gg k_{0} a, I_{1}+I_{0_{2}}>I_{0_{1}}$; the perturbation is a non-hydrostatic lee wave.

For this situation, the contribution of the first integral $I_{0_{1}}$ is negligible, the vertical velocity is:
$w(x, z) \approx I_{1}+I_{0_{2}}$
However, most of the contribution is in the propagating non-hydrostatic wave:

The trapped wave decays exponentially with the distance from the top of the stress layer, therefore it interferes with the propagating wave only at $z \approx h$, while weakening the propagating wave upstream and strengthening the propagating wave downstream [the zero-order Neumann function is even, while the zero-order Struve function is odd, with the same asymptotic behavior (Abramowitz and Stegun, 1972)], thereby producing a wake of secondary cells downstream at the level of the top of the stress layer. The non-hydrostatic lee wave is shown in Fig. 2 b , for $l a=1$ and $a=1 \mathrm{~km}$). The maximum intensity of the perturbation occurs at the center of the rough patch at $z=\mathrm{h}$.

When $k_{0} a \ll l a \ll 1, I_{0_{2}} \gg I_{0_{1}}+I_{1}$, and the flow is irrotational.

When ambient flow is strong, k_{0} and l are small. Thus the contribution of the first and the second integrals are negligible and only the third integral contributes:

$$
\begin{align*}
& w(x, z)=I_{0_{2}}= \bar{w} \frac{a}{2} \int_{0}^{\infty} \mathrm{d} k[\exp (-(a+|z+h|) k) \\
&\quad-\exp (-(a+|z-h|) k)] \cos (k x) \\
&=\bar{w} \frac{a}{2}\left\{\frac{(a+|z+h|)}{\left[(a+|z+h|)^{2}+x^{2}\right]}\right. \\
&\left.-\frac{(a+|z-h|)}{\left[(a+|z-h|)^{2}+x^{2}\right]}\right\} \tag{24}
\end{align*}
$$

The perturbation is horizontally and vertically trapped, as shown in Fig. 2 c for $l a=0.3$ and $a=1 \mathrm{~km}$. The maximum intensity of the perturbation occurs at the center of the rough patch at $z=h$.

Conclusions

We have shown that a horizontal change in surface roughness can induce substantial vertical velocity. The vertical velocity can be in the form of either propagating or trapped waves; in both cases the perturbation can be physically relevant, since the maximum is placed at the top of the stress layer, i.e. in the region where it is impor-

$$
\begin{aligned}
& I_{1}= \bar{w} \frac{a}{2} \int_{0}^{l} \mathrm{~d} k \frac{l\left[\sin \left(\sqrt{l^{2}-k^{2}}|z+h|+k x\right)\right.}{\sqrt{l^{2}-k^{2}}} \frac{\left.\sin \left(\sqrt{l^{2}-k^{2}}|z-h|+k x\right)\right]}{} \exp (-a k) \\
& \approx \bar{w} \frac{\pi l a}{4} \exp (-1 \mathrm{a})\left\{\left[\sin (l|z+h|) J_{0}(l(x-|z+h|))+\cos (l|z+h|) H_{0}(l(x-|z+h|))\right]\right. \\
&\left.\quad-\left[\sin (l|z-h|) J_{0}(l(x-|z-h|))+\cos (l|z-h|) H_{0}(l(x-|z-h|))\right]\right\}
\end{aligned}
$$

The contribution of the trapped non-hydrostatic wave is:

$$
\begin{aligned}
I_{0_{2}} & =\bar{w} \frac{a}{2} \int_{l}^{\infty} \mathrm{d} k \frac{l\left[\exp -\left(\sqrt{k^{2}-l^{2}}|z+h|\right)-\exp -\left(\sqrt{ } k^{2}-l^{2}|z-h|\right)\right]}{\sqrt{k^{2}-l^{2}}} \exp (-a k) \cos (k x) \\
& \approx-\bar{w} \frac{\pi l a}{4} \exp (-l a) N_{0}(l x)\{\exp (-l|z+h|) \cdot \exp (-l|z-h|)\} \quad \text { when } \quad|l x| \gg 1
\end{aligned}
$$

tant to have positive vertical velocities in order to trigger cumulus convection.

The nature of these perturbations depends on the width of the rough patch relative to natural scales associated with the magnitude of k_{0} and l. The vertical scale is related to the ambient Scorer parameter when there is vertical propagation. The horizontal scale is related to the Rossby radius for weak ambient flow over larger rough patches. When the rough patch is small, the horizontal scale is related to the inverse of the Scorer parameter.

The theory which we use is derived from mountain wave theory (Queney, 1947; Eliassen, 1977; Smith, 1979).

Acknowledgements. This research was made possible by a grant from the National Science Foundation (ATM-89-15265) and from the Office of Naval Research (ONR) under contract (N00014-88-K-0029). G. A. Dalu, M. Baldi and M. Colacino acknowledges the support of the ENEL-CNR project (Rome, Italy) and of the Italian project Clima Territorio a Ambiente nel Mezzogiorno. M. Baldi acknowledge the support of NATO through their Scientific Exchange Program.

References

Alestalo, M., and H. Savijarvi, Mesoscale circulation in hydrostatical model: coastal convergence and orographic lifting, Tellus, 37 A, 156-162, 1985.
Abramowiz, M., and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1972.
Belcher, S. E., D. P. Xu, and J. C. R. Hunt, The response of turbulent boundary layer to arbitrarily distributed two-dimensional roughness changes, Q. J. Roy. Meteorol. Soc., 116, 611-635, 1990.

Claussen, M., The flow in a turbulent layer upstream of a change in surface roughness, Bound. Layer Meteorol., 40, 31-86, 1987.

Dalu, G. A., M. Segal, T. J. Lee, and R. A. Pielke, Atmospheric waves induced by change in surface roughness, Computer Techniques in Environmental Studies, 551-570, Ed. P. Zanetti, Sprin-ger-Verlag, Berlin, Heidelberg, New York, 1988.
Eliassen, A., Orographic waves and wave drag: Parameterization of physical effects in the atmosphere, ECMWF Seminars, 67-90, 1977.

Hunt, J. C. R., and J. E. Simpson, Atmospheric boundary layer over non-homogeneous terrain, Engineering Meterolog, Ed. E. J. Plate, Elsevier, 269-318, 1982.
Hunt, J. C. R., F. Tampieri, W. S. Weng, and D. J. Carruthers, Air flow turbulence over complex terrain: a colloquium and computational workshop, J. Fluid Mech., 227, 667-688, 1991
Panofsky, H. A., and J. A. Dutton, Atmospheric turbulence, John Wiley \& Sons, New York, 1984.
Pendergrass, W., and S. P. S. Arya, Dispersion in neutral boundary layer over a step change in surface roughness. Mean flow and turbulence, Atmos. Env., 7, 1267-1279, 1984.
Pielke, R. A., Three-dimensional numerical model of sea breeze over south Florida, Ph. D. thesis, Pen. State University, 1974.
Queney, P., Theory of perturbations in stratified currents with application to airflow over mountain barriers, The University of Chicago Press, Mis. Rep. 23, 1947
Roeleffzen, J. C., W. D. Van Den Berg, and J. Oerlemans, Frictional convergence at coastlines, Tellus, 38 A, 397-411, 1986.
Smith, B. R., The influence of mountains on the atmosphere, $A d v$. Geophys., 21, 87-230, 1979.
Sommerfeld, A., Die Greensche Funktion der Schwingungsgleichung, Jahresber. Dt. Math. Ver., 21, 1912.
Sommerfeld, A., Vorlesungen über theoretische Physik. Adademische Verlagsgesellschaft, Leipzig 6. Zweite neubearbeitete Auflage, pg. 191, 1948.
Stakgold, I., Green's Functions and Boundary Value Problems, John Wiley \& Sons, New York, 1979.
Vukovich, F. M., and J. W. Dunn, A theoretical study of the St. Louis heath island effect: Some parameters variations. J. Appl. Meteorol., 17, 1585-1594, 1978.

[^0]: * Paper presented at the workshop W 11.5 on "Physical, chemical and biological processes in the atmospheric boundary layer", EGS General Assembly, Copenhagen 23-27 April, 1990

