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Mesoscopic dynamics of copolymer melts: From density dynamics
to external potential dynamics using nonlocal kinetic coupling

N. M. Maurits and J. G. E. M. Fraaije
Groningen Biomolecular Sciences and Biotechnology Institute, Bioson Research Institute, University
of Groningen, Department of Biophysical Chemistry, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 10 March 1997; accepted 9 July 1997

In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional
method, which is derived from generalized time-dependent Ginzburg—Landau theory. The method
is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using
a local coupling approximation. We discuss the general theory of time evolution of density variables
with general kinetic coefficients developed by Kawasaki and Sekimoto, and especially the limits of
the theory that yield the local coupling approximation, the collective Rouse dynamics model, and
the reptation dynamics model. We show how a simple approximation to the Rouse dynamics model
leads to a feasible numerical model that includes the essential physical features of nonlocal kinetic
coupling. This results in a dynamic equation for the external potential instead of the density which
allows us to perform calculations of microphase separation in copolymer melts with increased
relevance to experimental results. As may be expected from a numerical model that includes
nonlocal kinetic coupling, the numerical results show an increased computational efficiency, less
defects in the final morphology, and a faster increase of the order parameter compared to local
kinetic coupling. © 1997 American Institute of Physids§0021-960807)50339-4

I. INTRODUCTION energy in the order parameters, as is commonly done in
Ginzburg—Landau models, but rather use a single chain in-

. ; . .~ verse density functional description for the chemical poten-
vides a numerical method for the calculation of polymer IIq'tials. The chemical potential is split into an ideal part; the

uid morphology dynamics in 3-bThe method is a modifi- external potential resulting from Gaussian single chain sta-

cation of model B>® i.e., a generalized time-dependent . . _ . . .
. stics, and a nonideal part; the mean-field potential resulting
Ginzburg—Landau theory for conserved order parameter g . o . .

rom interchain interactions. The densiyarticle concentra-

the following general fornt:
99 tion) fields and external potential fields are coupled bijec-

The dynamic mean-field density functional theory pro-

ap(r) M p tively through the density functional. Previously, we studied
ot :le jv;/”'J(r’rl)“J(rl)drl the random terr,the Gaussian chain density functionl,
" and the relation with fourth-order expansidiSome results
71 0L 45(r,1q) of numerical calculations of phase separatioincompress-
B le fv CSpy(ry) dry+m(r.b), ible block copolymer melts were discussed in Ref. 1. In Ref.
15 the method was extended to compressible polymer sys-
D3(rr)=Ve- A(r,r) Ve, D tems.

with particle concentration fields (r) (I=1,...M), Onsager In this paper we improve upon the important assumption
kinetic coefficientsA,;, intrinsic chemical potentials, Qf a local gxchange kinetic mechanism in the dynamic mean-
=6F/8p,(r) (F is the free energy B~ 1=kgT, and noise field density functional method. The local exchange form for

fields 7(r,t). The noise has a Gaussian distribution with € Onsager kinetic coefficients was mainly used in Ref. 1
moments dictated by a fluctuation-dissipation theofefn. because of its simplicity and computational efficiency. The

In Refs. 2, 3, and 7—12, and references cited therein, oncal form mimics the exchange effects in the nonlinear re-
can find numerous examples of computer simulations ofime. However, the assumption of locality is not rigorously
time-dependent Ginzburg—Landau models for two- or threeCOrTect as is shown in a number of theorefital’ and ex-
component incompressible liquids with linear transport coetPerimental studie&’~*°The kinetic coefficient is predicted to
ficients and relatively simple phenomenological models fohave a decay-length of roughly the coil size in both the case
the free energy. The goal of mesoscopic modeling is to obof reptatiorf”*and Rouse dynamicé:?In Refs. 2325 the
tain a theory of ordering phenomena in polymer |iquid5,early state of spinodal decomposition is studied experimen-
based on a molecular description. We use a free-energy funélly for various homopolymer blends by small angle neutron
tional, derived for a collection of Gaussian chains in a meantSANS) or x-ray (SAXS) scattering, which allows observa-
field environment. In this approach we try to retain as mucHion of the dynamic structure factor. For large spatial fre-
as possible of the underlying molecular detail, i.e., the archiquencies the normalized Onsager coefficient behavior is
tecture and composition of the chain molecules are imporfound to be similar to predictions from Cahn—Hilliard—Cook
tant. To this end, we do not use an expansion of the freéCHC) theory in the reptation regimé&-19232429n Ref. 23
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5880 N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts

deviations from exponential behavior occur that are attribnoise correlation is formally described by an inverse corre-
uted to the measurement being close to the glass transitidation function which is difficult to calculate numerically at
temperature. In Ref. 24 the range of the Onsager coefficierthe moment(see Sec. ¥ In the calculations we now use
is found to be time dependent and increases to values largancorrelated white noise sources. Despite this drawback, we
than Ry, due to entanglement effects. The Onsager coeffibelieve that the new EPD model has great promise for the
cient is studied over a wider range of spatial frequencies ifuture and provides a first step toward increasing the rel-
Ref. 25; the results clearly demonstrate thdependence of evance of our calculations to experimental results.
the coefficient, in semi-quantitative agreement with theoret-  For demonstration purposes we tested the EPD model on
ical predictions. In Ref. 26, the Onsager coefficient is foundthe morphology dynamics in a diblock copolymer melt—this
to agree very well with predictions from Ref. 17 over a largeis a system we studied previously with a local kinetic cou-
frequency range, whereas the agreement to predictions fropling model**® The results indicate that the nonlocal cou-
Refs. 28 and 29 is only found for very large frequenciespling is computationally more efficient and leads to faster
Several other authors have studied the ordering process oforphology dynamics, compared with the earlier local cou-
block (co)polymers using SANS or SAXS techniqu¥2®  pling model. The overall features of the morphology on
but only a few of them have made the connection to lineariength scales larger than the coil size are conserved and the
ized CHC theory as explained in Refs. 16—18. In Ref. 31 ndwumber of defects decreases as may be expected if nonlocal
apparenty dependence is found for the Onsager coefficientkinetic coupling effects are added to the dynamics model.
whereas in Ref. 32 a reasonable correspondence is found to
estimated values for the Onsager coefficient that were e)TI THEORY
tracted from CHC theory. It is argued in Ref. 34 that, in ™~
general, experimental results are hard to comparéirtear-  A. Derivation of dynamic equations with nonlocal
ized CHC theory because there are several severe theoretidgnetic coupling
limitations.

In the near future we intend to study the dynamic struc-1. Mean-field density functional theory

ture factor nl_JmericaIIy and compare our results to the experi- e first recapitulate part of the dynamic mean-field den-
ments mentioned above, especially with regard to the Iategity functional theory as explained in detail in Ref. 1.
stages of demixing where classical linear theory is not appli- ~ \we consider a melt of volum¥, containingn Gaussian

is nonlocal, we require an efficient method to include nonlo<ie|ds p,(r) (I = 1,...Z), Z external potential&),(r), andZ

cal kinetic coupling in our computational algorithms; such ajntrinsic chemical potentialg, (r).

method is demonstrated in the present paper. Imagine that on a coarse-grained time scale, there is a
We employ the general dynamical theory of polymercertain collective particle concentration fiefg(r) of the

melt morphology that was derived by Kawasaki andpeads(statistical units consisting of a fluctuating string of

Sekimoto’’~?* The Kawasaki—Sekimoto derivation is baseds_15 monomejsof type|. Given this concentration field, a

on a rigorous projection formalism and neglects elastic effree_energy functional[ p] is defined as follows:

fects. For a detailed discussion of the projection formalism R .

applied to collective concentration and stress variables, we Flp]=—8 "nIn &+ Inn!

refer to Ref. 37. By chosing different forms for the mobili-

ties, the local coupling approximation, the collective Rouse —2 f U,(r)p,(r)dr+F"9 p]. 2
dynamics model, and the reptation dynamics model can be !
derived. F"9 p] is the mean-field contribution from the nonideal in-

The collective Rouse dynamics model has been deteractions® is the partition functional for the ideal Gaussian
scribed in detaif® but has to our knowledge never been usedchains in the external fielt), given by
before in its full extent to describe phase-separation dynam-
ics in inhomogeneous copolymer melts. We show how an
approximation to the Rouse dynamics model leads to a fegyhereHC® is the Gaussian chain Hamiltonian
sible numerical model that avoids calculation of two-body N
correlators at every time step. The new model describes the G_ﬂ713 D 2
dynamics of the external potential field instead of the density H== 2a’ &, (Rs=Rs-1)", @

field and will be called the external potential dynamics . . .
P y with a the Gaussian bond length parameter. The tragdsTr

(EPD) model. The new model possesses all the relevant fea. ited he i X h di f hai
tures of nonlocal kinetic coupling, and can readily be applie imited to the integration over the coordinates of one chain

to both homogeneous and inhomogeneous systems of any N

polymer composition. We have not yet succeeded in comple- Trc(')=d¢’”'f N(~)H dRs. 5
menting the new model with an equally efficient algorithm Ve st

for calculating the correlated Langevin noise. The Langevin/ " is a normalization constant. The free-energy functional is
noise should have a precise correlation, dictated by aerived from a optimization criteriuhwhich introduces the
fluctuation-dissipation theorem. In the new EPD model theexternal potential field), as a Lagrange multiplier field. The

d=Tr, e—ﬁ[HG+z§:1us(Rs)], @)

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997
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relation between the external potentials and the concentration p; ~ Ip;
fields is bijective and given by a density functional for ideal Ms(r,r")=n R M=
Gaussian chains:
& i % SKo(r—R
LU =03 8, Tre yalr—Ry). ©) 7R, & 20T
K o = M”f N ] :
;¢ I a Kronecker delta function with value 1 if bealis v g N
of typel and O otherwisey is the single chain configuration TRe 21 5,K55(r— Ro)
distribution function N s=
1 M M

V=3 e AHC+=LL ULRYT 7) H i

The intrinsic chemical potentialg, are defined by the I\7IN1 I\A/INN
functional derivatives of the free energy: N

SF SFNid a > 85,81 —Ry)
N=——=-U(rn+ . 8 IRy o=, ¢

Iu‘|( ) 5p|(r) |( ) 5p|(r) ( ) s'=1 dR dR

Formally, the nonideal free energy can be split into two 9 N ' N
parts: R 21 8, 8(r'—Ry)

. s'=
FMYp]=Fp]+Fp],
(12

whereF® contains the excluded volume interactions, &d

the cohesive interactions. In Ref. 15 we have discussed dif-**)=Trc - ¢ is the (normalized ensemble average over
ferent models to account for the excluded volume interacthe single chain distribution functiogt. Equation(12) is ob-
tions. In the present papéef. Ref. 15, we employ an idea tained from the general equatidB.20 in Kawasaki's and
which is originally from Helfan® for the nonideal free en- Sekimoto's first papéf by chainwise diagonalizing the mas-

ergy. The Helfand free energy is similar to ter ensemble averaged mobility, . {p(t)} [Eq. (2.18 from
Ref. 27]. In the following section we briefly recall the vari-
FN 5] =Foef Hﬁf Z Y _2 ” 2dr ous chain dynamics regimes that determine the choice for the
P PIT2 11 Por ' mobility coefficientsM ¢ .
9 The Langevin noise can be added formally by applica-

tion of the fluctuation-dissipation theorem for collective fluc-

where k is a compressibility parameteE®® is the free . brief di : fth lculation i
energy resulting from the cohesive interactions, which contuations. For a brief discussion of the calculation issues we

tains the exchange parametefse; (with Ae,=0 and 'efer to Sec. V.
A€;-,=0) only. The intrinsic chemical potential is now

given by B. Approximations in different chain dynamics
regimes
,u|(r)=—U,(r)+2 vafu(|f—r'|)PJ(r')dr' In the local coupling modeM is the identity matrix

times a constant mobility ye,= BDca,» SO that all nondi-
agonal termd s . are zeroM,qdoes not depend on the
*KH V'; vapa(r)- 10 chain lengthN and the kinetic coupling between different
beads is completely neglected. This is the approximation
In general, a penalty function will allow small density ;sed in our previous papérs®~°and also in earlier esti-
fluctuations around the mean bulk density. In this approachmates for the Onsager coefficient in Rouse dynarHics.
xy IS a global constant, independent of composition, thaMany dynamic models based on Ginzburg—Landau-type
can be related to experimental values of isothermal COMfree-energy functional§Cahn—Hilliard, Flory—Huggins—de
pressibility*° Gennes, or variants thereoff for block copolymarske use
of even a simpler approximation in which the Onsager coef-
ficient is assumed to be a constdfur references see Ref.

2. Equations for morphology dynamics 14.
The local coupling theoryusing the instantaneous bare
We study the dynamics equation mobility matrix in Rouse dynamics as in Ref.)dgads to a
apy(r,t) very simp_le expression for the collegtive dyna_m(sx_ae b_e-
P =—2 f M s(r,r")py(r")dr’, (11 low), but it must be stressed that this approximation is not
bV physically consistent. A physically consistent model requires
where that the mobility matriXM is a constant matriki 1, such that

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997



5882 N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts

Mss =M chair= BDyo -

In the Rouse model the total friction As far as we know there has been no attempt to use the full

of a chain moving in an external force field scales with theequation for Rouse dynamics for inhomogeneous phase-

chain lengthN; hence we expect thdd ¢~ N~

1. Since we

separating systems due to the computational burden of cal-

have coarse-grained time with respect to the internal chaigulatingP;(r,r’) at every time step. In the next section we
correlation times, the details of the internal forces play noshow how a feasible numerical model can be derived that

role whatsoever for the collective dynamics. Therefany
single chain modelGaussian, freely jointed chain, eteust
yield the same functional form for the Onsager coefficiént.

incorporates all important physical features of nonlocal ki-
netic coupling.
The dynamic equations are closed by the expression for

This is the regime of collective Rouse dynamics which wagthe intrinsic chemical potenti@8), which includes the highly

described in detaiffor homogeneous systeinis Ref. 38.

nonlinear and nonlocahversedensity functionalJ[ p] [see

The reptation regime is also relatively simple, since inEq. (6)]. An explicit expression for the inverse density func-
this case the beads are constrained to move along the pol§ional is not known, so that even in the simplest case of the
mer tube axis. This regime is studied extensively in Refs. 2docal coupling model a general analytical solution for the

and 29.

The various approximations lead to the following collec-

tive dynamics:

J
=DV (1 OV (1) local coupling,

13

dp
a_tI:BDroE Vr'f Pia(r,r )V py(r’)dr’
3 v
(14)

(92

Rouse,

dynamics is impossible to give.

We briefly recapitulate the limit of the homogeneous
system for the different dynamics models. In case of weakly
inhomogenous polymer melts, relations for the Onsager co-
efficient can be derived by linearization in all models. Using
translational invariance, and denoting=|q|, the dynamic
equations in Fourier space are then given by

)

Ip(Q) _ 22 A(q ),U«J(q , (20

ot

which defines the Onsager coefficient; . According to the
three dynamic models, the Onsager coefficient for a homo-

Frera geneoushomopolymemelt is given by

e —po. [ [ as| oo

95 Psg(r,r )}UJS (r’)dr’

reptation. Dicapo local coupling
2(x+e *=1)
(15) Alq) = D,opoN R E— Rouse
The reptation equatiofiL5) is taken from Ref. 28 for a con- a2py 2(1—e %)
tinuous chain; the other equations can be derived by insertion 0oz~ = reptation.

of M in (11). The equation for local coupling dynamics is the © 6 X
same as we used beforéhe general equation for collective (22)
Rouse dynamic$14) reduces to the equation for Rouse dy-
namics as given in Ref. 38 for homogeneous systddgss
the diffusion constant along the tube axis as defined in Re
28; the friction constant of reptative motion is given by
kgT/D.. As is known from Refs. 17 and 3®.~N"1. In
Ref. 27 Kawasaki and Sekimoto have derived the gener
master equation for morphology dynamigkl). In Ref. 28
they have given a simpler derivation for reptation dynamics
In the Appendix we show that a similar derivation can be
given for the collective Rouse dynamics modely andP,;

Here,x=Na?q?/6 andpy=nN/V is the initial average den-
fsr[y The Debye function+ e~ *—1)/x? in the Onsager co-
efficient for Rouse dynamics applies to large chains where
N>1; for homopolymer chains of arbitrary Iength the geo-
Jpetric sum in Eq(18) amounts topo(20N 11— 2w?—2Nw
+N+Nw?)/[N(wo—1)?]. The Onsager coefficient for the
collective Rouse dynamics model is discussed in detail in
Ref. 38. Notice that the reptation equatidi®) reduces to

) dp N dps
are two-body correlators defined Kgf. Ref. 28: E:J S o
0
Pso (r,r')=n(8(r—Rg) 8(r' —Rg1)), (16 —D
N N = T J',U»(r )[Pnn—Pon—Pnot Pool(r,r')dr’
Pi(r,r’ Eg E S8y Pss (r,r"). 17)

~ (22

In the homogeneous melt the two-body correla®ygr,r’)

for a homopolymer. From the Onsager coefficients for the
are given byP?J(|

three dynamic models in a homogeneous homopolymer melt,
we can conclude that, given a certain chemical potential gra-

_ K& wls=s| 18 dient, the dynamics is essgntiglly proportionaptpfor both
q) E E Is JS @ (18 the local coupling approximation and the Rouse model. In
- the reptation regime, the change of the density is propor-
w=e 347 (190  tional to py/N and the dynamics is slower.

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997
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pling. We use two important properties from density
functional theory as summarized in the beginning of Sec. II:
(i) The density functionap[U] is bijective, which means
that there also exists a bijective transformation of the dynam-
ics betweenU and p space. Therefore we can select the
space which is most convenient for calculatiofis. Further-
more, the derivative of the density functional with respect to
the external potential is the two-body correlaB®y, which

is precisely the nonlocal transport coefficient in the dynamics
equation:

opi(r) ,
5UI(r!):_BP|J(r1r ) (23)

The collective Rouse dynamics is transformed fromto

FIG. 1. Normalized Onsager coefficients(q)/A(0) in a homogeneous U space by application of the chain rule:
homopolymer melt for Rouse dynami¢s-) and reptation dynamice-—— ’

_ i 2~2 ,
) as a function oNa“q°/6. 5P|(r t) _2 f 5p|(r t) &UJ(I’ 1)
SUL(r't)  at

The functional forms of Pincd$ and Kawasaki and
Sekimotg?®2° for A(q) in the reptation regime are the =—ﬁ2 J'p (rr ) (r Y (24)
same. Bindéf and later Leibig and Fredrickséh(who used M '
the Kawasaki—Sekimoto expressjonave found the same
Onsager coefficient for Rouse dynamics as in Ezfl).
Binder argues that both for Rouse and reptation dynamic
A(Qq) is proportional to the Debye function, but this is not in J(r t)
agreement with our findings. However, thedependencies 2 j P(r,r’) —————
of the two different nonlocal forms for reptation and Rouse ’
dynamics do not differ very much, as can be seen from the
normalized Onsager coefficients(q)/A(0) in Fig. 1. Al- :_Drog Vr'f Pia(r,r" )V ps(r')dr'. (25
most all experimental results fordependent Onsager coef-
ficients (see Sec.)lare compared to Cahn—Hilliard—Cook We can rewrite Eq(25) in operator notation for all as
theory in the reptation regime. It would be interesting tofollows:
make a systematic comparison to the theory for collective
Rouse dynamics as well.

Combining this result with Eq.14) we find for the collective
gouse dynamics

U
Pﬁz—DmVPV;u. (26)
I1l. EXTERNAL POTENTIAL DYNAMICS MODEL . .
Here the element®,; of matrix P are linear operators de-
We will further study the collective Rouse dynamics fined by
model in order to derive a tractable numerical model for
phase-separation dynamics. This will allow us to increase the P (')EJ Pyy(r,r’)(-)dr’ (27)
relevance of our numerical calculations to experimental re- 7 1 '
sults which show that kinetic coupling is nonlocal instead of
hind U={U4(r),... Ux(n)}T and p={us(r),... uz(r)}7. The

local. We have not yet found a way to cast the collective vl .
reptation dynamics in a similarly efficient numerical model. operator Eq(26) is still exact. Since the correlator matik

From a computational point of view, the equation for the OCCUrs both on the left- and right-hand side of E26), es-
. ; . . sentially both the forces and the fluxes are transformed from
collective Rouse dynamics as in Hd4) has a major draw-

U to p space. In the linear regime the operat®rand PV
back. It requires the renewed calculation of the correlators
2 commute for the dot inner product since the two-body corr-
Pss(r,r’), which areN“ six-dimensional functions, each

time step. This procedure is computationally very intensiveelators are translationally invariant, and Eg6) reduces to

and requires more storage than is available on most contem- aU

porary computers. P—=-D,PVu (28
Here, the objective is to derive an equation of motion for

the auxiliary fieldU from the collective dynamics of the The entire relation can now be expressedUnspace by

concentration fielp. As we will make clear below, the ad- applying the inverse operat® ! which exists since the

ditional approximations are modest, while the new model-U relationship is bijective. This results in

leads to an enormous reduction in computational costs com-

pared to the full collective Rouse dynamics model and pos- U - D,V 29

sesses the essential physical features of nonlocal kinetic cou- o ro

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997
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Homogeneous Inhomogeneous Since the linear regime is automatically included as a
limiting case, it is ensured that the proper Onsager coeffi-
cients for the homogeneous systef2$) are contained in the
new model.

Precise estimates for the errors that are introduced by
approximation(30) are not easy to give, except for some
simple systems. For the collective diffusion of polymers of
length N=1 (i.e., free monomejs Pq4(r,r')=
p(r')é(r—r"), and the approximation amounts to replacing
V-pVu=V2u+V Inp-Vu by V2u. This is quite reason-
able in regions where concentration deviations relative to the
FIG. 2. lllustration of the gradient§ndicated by arrowsV,P;(r,r’) and homogeneous background are smalp(po<1), i.e., in re-

V,.P,,(r,r') in a homogeneous systefieft figure) and an inhomogeneous 9iONs away from interfaces.

system(right figure. In the inhomogeneous case two symmetric polymers In conclusion, we now arrive at the external potential
(of which one is oriented perpendicular toward the interfacel one asym- dynamics(EPD) model:

metric polymer are indicated.

(9—U|=—D V2 (32
ot roV M-

We can extend the application area of E2P) to nonlinear  This is the desired equation of motion for the external poten-
regimes if we assume that the gradients of the two coorditial field U, which replaces the equation of moti¢iv) for

nates in the two-body correlators are opposite: the density fieldp. Even though this model has a remarkably
simple structure, it still possesses all the important features
V P(r,r’)==V.Py(r,r’). (30) of nonlocal kinetic coupling. Notice that the Onsager coeffi-

cients are local and diagonal th space. Hence, the kinetics

Approximation(30) also results in Eq(29), as can be most is ideal in this space. This increases the speed of the numeri-
easily understood as follows. If we apply assumptign), cal computations considerably because the cumbersome cal-
the right-hand side of E¢25) can be rewritten to: culation of the correlators is not necessary. Although some

problems remain with respect to the Langevin ndge Sec.
V), we believe that the external potential dynamics model is
V.- f Py(r,r")Ve usy(r)dr’ very useful to incorporate the effects of nonlocal kinetic cou-
pling in mesoscopic dynamics algorithms, and will get us
one step closer to correctly reproducing experimental results.
:f ViP(rr’)-Veuy(rdr’
IV. ANALYSIS

= —J VoP(r,r’)- Ve wsy(r')dr’ In the following three examples we will employ linear-
ization and perturbation analysis to gain further insight into

) o the various dynamics models and to show that the Rouse
== | Ve Pu(rr) Ve py(r)dr dynamics model and especially the simplified EPD model
exhibit the physical features of nonlocal kinetic coupling.
+f P,J(r,r’)Vrz,MJ(r’)dr’ _Incompress_ible melt&irst consider the classical case of
an incompressible blend of homopolymeksand B. Since

the system is incompressible, a fluctuation in one of the con-
=J P,J(r,r’)Vrz,MJ(r’)dr’. (31 centration variables has to be compensated by an opposite
fluctuation in the other variable. This introduces very special

For the final in this derivati h lied th dynamic correlations. The collective Rouse dynamics is gov-
or the final step in this derivation we have applied theg g by two equations:

Gauss theorem and omitted the surface integral. Hence, ap-

proximation(30) also leads to Eq28) and thus to Eq(29). Ipa , , , ,
Figure 2 helps to understand the physics behind approxi- ot PPV | Paa(r,r)Viua(r’)+A(r")ldr’,
mation (30). In a homogeneous phase the correlations only (33

depend on the distan¢e—r’| due to the translational invari-

ance and the gradients are exactly opposite. Therefore, ap- ﬂ:lgDmV.f Peg(r,r")V[ wg(r’ )+ (r")]dr’.
proximation(30) is exact in the linear regime. In @onlin- at

ean phase-separated system positions () exist for which (34
r andr’ are in different phases. If neithernorr’ is in the  Notice that the cross correlato®s,g andPg, are zero in the

interface, the gradients in EQB0) are always oppositéal-  single chain mean-field model. We have introduced an addi-
though thay may differ in size, depending on the symmetntional Lagrange parameter fieldin order to apply the in-
of the chain and approximatiorf30) is justifiable. compressibility constraint:
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Ja+Js=0. (35)  taneous dynamic correlation imposed by the Lagrange pa-
i ) rameter field\. We will return to this topic in Sec. V.
Here, J, is the flux of componentl, given by Block copolymer interfacedext consider a segregated

JPu(r,r)Vm (r')+A(r")]dr’. For simplicity, we have a_g piock copolymer melt. Suppose that the system is ini-
assurngd that the molecular volumes and individual fr|ct|'ontia"y in equilibrium in a state segregated strongly enough to
coefficients of all beads are the same. The set of equations,.|,de all A-type beads from th@-phase and alB-type

can be solved fok (as in Refs. 16 and 28which results in  eaqs from theé\-phase. In that case, the probability that two

the exchange dynamics A-type beads of a single chain are in separate phases is zero;
I(pa—pg) Paa(ra.rg)=0 for all rs in the A-phase and altg in the
TzZ,BD,OV- f P(r,r" )V pa— pgl(r')dr’, B-phase. Similarly, Pgg(ra,rg)=0, Pag(ra,rg)#0 and

(36) Pga(rg,ra) #0. Since fluctuations can be passed from one
phase to another by the two-body correlatBrss and Pga
dpatpg) only, these terms control the interface dynamics both in the
TZO' (37 collective Rouse model and the reptation madebuppose
) ) that the chemical potentigh,(r) of componentA is per-
Herepa— pg is the order parametep,,— ug is the exchange  tyrhed by A ua(r)=(r). In the original collective Rouse
chemical potential, an€ is the exchange transport coeffi- dynamics model14) this results in a response of the con-
cient defined by centration variables after a small time intervel of

| Pt ApATR AT, [ Pasta Vo dtrdra, @1

:f Paa(r I )[Paa+Pgg]l X(r',r")

X Pga(r”,r™f(r"ydr’ dr” dr"”. (39)

APB(rB)“AtVrB'f Pea(re.ra) Ve g(ra)dra, (42

. . . ) while according to the simplified external potential dynamics
It is obvious that in the general nonlinear case Eg6) and model (28)

(37) cannot be solved numerically. However, in the linear

regime(36) reduces to a very simple equation. The Onsager 5

coefficient for the diffusion of the order paramefef. Eq. AAOA(VA)"‘A'EJ Paa(ra T2 Vi ¢(ra)dry, (43)
(20)] is essentially proportional to the structure factor of the

homogeneous ideal melis can easily be seen if the incom- 2 o

pressibility constraint is applied in Fourier space APB(rB)OCAtf PBA(VBJA)VrA‘f’(rA)drA- (44)

2D _ iJr i (39 Since approximatiori30) seems reasonable in the case of a
A(Q)  PRa Pas strongly segregated block copolymer melt, EG&l), (42),
and (43), (44) are practically identical. Notice that the two-
body correlator$?,; are those of the inhomogeneous system.
Hence, we expect that the interface dynamics is reproduced
correctly in the EPD model.

2D,, PO+ PO+ P35+ PYs . Block copolymer melt near walFinally, consider a ho-

AQ) = P%AF’%B— PgBP(B)A 238 ) (40 mogeneous block copolymer melabove the microphase

transition) which is suddenly brought into contact with a wall

wheresg‘1 is the inverse structure factor. Hence, expressiorat timet=0. Such a situation arises when colloidal particles
(40) allows for direct comparison between our numerical cal-are dispersed in the melt, or when the melt is exposed to air
culations and experimental results. So far the analysis is trasr other fluids. We suppose that tAeblock adsorbs prefer-
ditional: the form of Eqs(36) and (37) is the same as for entially over theB block, such that an adsorption profile
incompressible reptation dynamitNotice however that develops eventually. Equilibrium adsorption profiles for
the precisey dependence is different, see E1). We stress  polymers adsorbed from solution have been calculated exten-
that the simplified EPD model yields exactly the same resultsively by the Wageningen school using self-consistent field
since in the linear regime the original collective Rouse dy-lattice modelé? In this case, the equilibrium profile is a
namics mode[21) and EPD model are identical. decaying sinusoidal, with alternatiry and B blocks. The

At the moment it is not yet possible to directly use theordering decreases toward the bulk and #elock is in
exchange equatior(86) and(37) for numerical calculations; contact with the surface. Similar profiles have been obtained
the transport coefficients in the full Rouse model cannot baising Monte Carlo and cluster growth probability models
evaluated in any way. We have found that it is much morgsee, e.g., Refs. 43-45lt is illustrative to see what the
convenient to introduce a compressibility in the free-energydifferent dynamics models predict for the diffusion toward
model, either by a well-chosen equation of state or a harthe surface. The equilibrium adsorption profiles for the dif-
monic penalty functio?®® Both models remove the instan- ferent models are sketched in Fig. 3.

By following a similar procedure, we find that the Onsager
coefficient for the diffusion of the order parameter in a
phase-separatingopolymermelt is given by
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FIG. 3. Equilibrium adsorption profiles for a diblock copolymer melt near a
wall in case of local couplindupper figur¢ and Rouse dynamicdower £ 4. Time evolution of volume-averaged order parametas a function

figure). The A block adsorbs preferentially. of 7in a compressiblé\gBg block copolymer meltusing Helfand's penalty
model with x;,=10) for the local kinetic coupling modgl———- and the

. ] ] external potential dynamics modetl-).
First consider the local coupling modé\. adsorbs rap-

idly to the surface and forms an adjacent depletion layer.
Since the coupling is local, thiaitial depletion layer has a using Helfand’s penalty model{,= 10).** The initial sys-

monomer length scale. Due to the decreasencentration, tem is always homogeneous. Numerically, after discretizing
the B concentration locally increases and starts to act as the dynamic equation&2) on a grid, we use the following
barrier for further diffusion ofA. The final state is meta- dimensionless Crank—Nicolson equations for each compo-
stable and consists of ai monomer layer and repeating nentl (for details see earlier papérs):
blocks ofB andA. We have performed some simulations in K+1_ 1 K+1_

. . ; +(1- +
our group(using the local coupling modethat support this (BUI =387z = (BU)I + (1= DA 7z + 7 (45)

result(data not shown Although the final profile is in equi-
librium, it is not physically relevant; to our knowledge there Here,z denotes the discretized diffusion part at time leivel

are no experimental results of preferential adsorption wher@nd (CUbIC) grid positionr

the adsorbed block forms a monomer size adsorption layer.

The experiments always indicate that the first layer has a Zr=2 2 da[DaDa]rq,qu.
a q

thickness of the order of the radius of gyration of the ad-
sorbed blocKsee references in Ref. AHence, we conclude D, is the discretized diffusion operator in grid directian

that the local coupling model is not valid for interface prob- and Miq Is evaluated at gnd positiog. A is a scaled time
lems. step(r=Dsh? or 7=D h?t whereh is the grid sizg The

Next consider the predictions of the collective RouseCrank—Nicolson equations are solved iteratively at every
dynamics model. This model incorporates nonlocal kineticime step using a steepest descent method. The dimension-
coupling on a polymer coil length scale. The immediate redess variables for the time integration are the noise scaling
sponse of the\ block has the same length scale. The depleparameterQ)=»~*h3=100 (the number of beads per grid
tion layer now starts at a distaneeaN*? away from the cell), A7=0.5, y=0.0 or 1.0(y is the exchange parameter
surface. The final profile is a decaying sinusoidal as exthat accounts for the cohesive interactions as defined in Refs.
pected, where the first layer is @block of approximately 1 and 15, anda/h=1.15430.77',‘r is the numerical noise. The
the (block) coil size. Hence, the collective Rouse dynamicsactual (continuou$ noise distribution for the EPD model

(and the simplified EPD variantorrectly predicts the physi- JU
|

cally relevant result. == D oVu+ 7, (46)

according to the fluctuation-dissipation theorem, can be

V. NUMERICAL RESULTS AND DISCUSSION
shown to be(in operator notation

We performed a numerical simulation, using EPD model
(32) that incorporates nonlocal kinetic coupling. In our cal- (m(r,1))=0, 47
culations, we neglect the higher-order contribution of the L s 21, .
second(drift) term on the right-hand side of E¢l), which (m(r,0),my(r",t"))==2B"D VP (r,r )5(t—t(4)é)

can even be proven to be zero for the simplest kinetic mod-
els. As we mentioned earlier, it is convenient to perform aAt the moment it is impossible to calculate the noise accord-

compressible simulation. To make a comparison with previing to the above distribution for inhomogeneous melts.
ous simulation results, we have studied the compressible miFherefore, we apply;|* with correlations according to local
crophase separation dynamics in AgBg copolymer melt, coupling kinetics. Although we realize that, in principle, we
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the molecular volume. The effects of a change in order due
to microphase separation and/or total density fluctuations are
captured byw. In Fig. 4 we plotted the time evolution of

in a simulation using the local coupling approximatigil
parameters as in Ref. 1&nd the nonlocal coupling approxi-
mation in the Rouse dynamics regime. The phase separation
was initiated with a quench frong=0 to y=1.0 at7=50.

We find that the simulation in the Rouse dynamics regime
remains stable and that the order parameter increases faster
shortly after the quench and stabilizes at a higher value than
in the simulation that uses a local coupling approximation.
The pictures of the simulation results indeed show larger
structures and less defec¢tee Fig. 5 as may be expected if
nonlocal kinetic coupling effects are included in the dynam-
ics model. Because of the increased simulation times and the
disappearance of defects, the influence of the periodic
boundary conditions becomes apparent. We have made sure
that all operators are discretized isotropicdbge also Ref.

13), therefore the patterns do not show any preference for
grid directions.

Since we use a Crank—Nicolson scheme, it is not so
evident that this method should lead to increased computa-
tional efficiency, compared to the original density dynamics
algorithms. However, we find in our numerical experiments
that the nonlocal kinetic coupling algorithm requires less it-
erations to converge than the local kinetic coupling algo-
rithm. We also performed some simulations using explicit
integration schemes; they also remained stable and con-
verged(data not shown

VI. CONCLUSION

In this paper we have recapitulated some existing models
for density dynamics that incorporate nonlocal kinetic cou-
pling effects. A general model by Kawasaki and Sekimoto
has been analyzed for different dynamics modklsal cou-
pling regime, Rouse dynamics regime, and reptation regime
The Rouse dynamics model cannot be used as such for nu-
merical calculations, since it involves the repeated calcula-
tion of two-body correlators which is computationally too
intensive. We have shown, however, how a simple approxi-

(b) mation leads to a feasible numerical model that includes all
important physical features of nonlocal kinetic coupling. We
FIG. 5. Morphology of a compressiblegBg block copolymer melt ar  find that the new model describes the dynamics in terms of
=800 (using Helfand's penalty model withc;=10). The melt was  the external potential instead of the density. This model has
?t;eggg?g ;t;fgnizgr‘d’il::ﬁ?:sﬁ;é'e?.' (& Local kinetic coupling model. 0 used to study the effects of nonlocal kinetic coupling on
numerical simulations of compressible copolymer liquids us-
ing the dynamic mean-field density functional method. So
far, we have not yet succeeded in implementing the noise
violate the fluctuation-dissipation theorem, we argue that th%\ccording to the fluctuation-dissipation theorem for the ex-
influence of the noise is small due to the relatively largeerna| potential dynamics. However, we found that we can
value of Q. Notice that the noise is applied at every time yse noise that is distributed according to local coupling dy-
step. We define an average measure of the order in the sy§amics[and even(smal) white noisd for practical calcula-
tem by tions.
1 We find that compared to earlier simulations that only
=V fv( oA+ 03)dr. (49)  took local coupling effects into account, the nonlocal cou-
pling effects cause the system to form less defects and larger
Here, §,=vp, is the dimensionless density field wherds  structures. The order parameter increases faster and the final
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ordering of the melt is increased with respect to local cou-  gp(r) 0//

pling simulations. Hence, the external potential dynamics o f pé(r—Rs)

model allows us to perform calculations of microphase sepa-

ration in copolymer melts with increased relevance to experi-

mental results. Incorporating nonlocal coupling effects also X Z fs(Rs)dRy---dRy.

leads to an increase in computational efficiency, due to faster N

numerical convergence in the time integration methods.  Similarly, in the thermodynamic limit, the external force
In conclusion, we have succeeded in incorporating-  field f5 can be replaced by minus the gradient of the chemical

local coupling effects, based on the Rouse dynamics modgbotential(cf. Eq. 2.11 in Ref. 2B8Bwhich results in

into our simulations. We have not only improved the physi-

z

cal relevance of our mesoscopic simulations in this way, but M: Mo/ f PS(r—Ry)
have also found a very simple numerical model for external ot N v
potential dynamics that leads to improved computational ef- NG (Ry)
ficiency. x> T R - dRy,.
I: aRSI
APPENDIX: DERIVATION COLLECTIVE ROUSE The concentration of-type particles is given iri6) by
DYNAMICS MODEL
- K~
In this section we present a simple derivation of the col- pir)= n< 521 5'5p5(r)> : (A1)

lective Rouse dynamics mod€l4), along the lines set out

for reptat|on dynamics in the second paper by Kawasaki and herefore
Sekimoto?® Suppose a polymer chain is under the influence 9 ¢ N P
of an external force fielf,, where the force may be different Lr,) =n> 5:<S<w>

for each bead. The total force equalE}_,f,. In the Rouse Jt s=1 Jt
regime the correlations due to internal forces refenuch N

faster than the coarse-grained collective dynamics. Hence, 2 | 5Ps(f)
after a certain time that is much larger than the internal re- s=1

laxation time, the chain will drift with a constant velocity

Varite, according to(cf. Eq. 5.6 in Ref. 45 —nZ 5| f o(r—Rs)
S
0
Varift= E fs. N o (Ry
N &1 X > %‘g)de“'dRN- (A2)
Here we have assumed that the total friction is lineaNjn =1 ¢

there is no hydrodynamic interaction between the beads anqotice that a derivative with respect to a 3D coordinate

the solvent flows freely through the polymer coil. It is im- should be interpreted as a gradient operator. We use the iden-
portant to realize thatll beads have the same systematiciities

velocity on average. N N
Next we define the microscopic density variable k Iu3(Rsr) s (Rgr)
> 2 Sy =2

B (A3)
ps(N=8(r—Ry). T o1 IRy 2, ORs

By application of the chain rule, the microscopic analog ofand
the equation of continuity is
aps(r) (9R5 f 5(r,_RSl)f(r,)dr,:f(Rsr) (A4)
P U e

to rewrite (A2) to
Given the external force field;, we replace the velocity

N
IR/ at by the drift velocityvy for the entire chairthis is ~ 9P1(T,) S J SS(r—Ry)
a valid procedure for the Rouse regimand we obtain at &N RV s
A N
aps(r) My K duy(Rgr)
= Y dr-Ry 2 fa(Ry) 3 9y g, dRu-dRy

In the thermodynamic limit, the microscopic variables can be
replaced by collective variabldsf. Eq. 2.11 in Ref. 28

N
s'=1 Sz
% J | wotr-ry

X Z 2 85, 8(r'—Rg))
s'=1

B0 (D) =ps )= 1| ps(r)R, Ry,
which leads to
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