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Mesoscopic dynamics of copolymer melts: From density dynamics
to external potential dynamics using nonlocal kinetic coupling

N. M. Maurits and J. G. E. M. Fraaije
Groningen Biomolecular Sciences and Biotechnology Institute, Bioson Research Institute, University
of Groningen, Department of Biophysical Chemistry, Nijenborgh 4, 9747 AG Groningen, The Netherlands

~Received 10 March 1997; accepted 9 July 1997!

In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional
method, which is derived from generalized time-dependent Ginzburg–Landau theory. The method
is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using
a local coupling approximation. We discuss the general theory of time evolution of density variables
with general kinetic coefficients developed by Kawasaki and Sekimoto, and especially the limits of
the theory that yield the local coupling approximation, the collective Rouse dynamics model, and
the reptation dynamics model. We show how a simple approximation to the Rouse dynamics model
leads to a feasible numerical model that includes the essential physical features of nonlocal kinetic
coupling. This results in a dynamic equation for the external potential instead of the density which
allows us to perform calculations of microphase separation in copolymer melts with increased
relevance to experimental results. As may be expected from a numerical model that includes
nonlocal kinetic coupling, the numerical results show an increased computational efficiency, less
defects in the final morphology, and a faster increase of the order parameter compared to local
kinetic coupling. © 1997 American Institute of Physics.@S0021-9606~97!50339-4#

I. INTRODUCTION

The dynamic mean-field density functional theory pro-
vides a numerical method for the calculation of polymer liq-
uid morphology dynamics in 3-D.1 The method is a modifi-
cation of model B,2,3 i.e., a generalized time-dependent
Ginzburg–Landau theory for conserved order parameter of
the following general form:4

]r I~r !

]t
5 (

J51

M E
V

D IJ~r ,r1!mJ~r1!dr1

2b21(
J51

M E
V

dD IJ~r ,r1!

drJ~r1!
dr11h I~r ,t !,

D IJ~r ,r1!5¹ r•L IJ~r ,r1!¹ r1
~1!

with particle concentration fieldsr I(r ) (I 51,...,M ), Onsager
kinetic coefficientsL IJ , intrinsic chemical potentialsm I

[dF/dr I(r ) ~F is the free energy!, b215kBT, and noise
fields h I(r ,t). The noise has a Gaussian distribution with
moments dictated by a fluctuation-dissipation theorem.4–6

In Refs. 2, 3, and 7–12, and references cited therein, one
can find numerous examples of computer simulations of
time-dependent Ginzburg–Landau models for two- or three-
component incompressible liquids with linear transport coef-
ficients and relatively simple phenomenological models for
the free energy. The goal of mesoscopic modeling is to ob-
tain a theory of ordering phenomena in polymer liquids,
based on a molecular description. We use a free-energy func-
tional, derived for a collection of Gaussian chains in a mean-
field environment. In this approach we try to retain as much
as possible of the underlying molecular detail, i.e., the archi-
tecture and composition of the chain molecules are impor-
tant. To this end, we do not use an expansion of the free

energy in the order parameters, as is commonly done in
Ginzburg–Landau models, but rather use a single chain in-
verse density functional description for the chemical poten-
tials. The chemical potential is split into an ideal part; the
external potential resulting from Gaussian single chain sta-
tistics, and a nonideal part; the mean-field potential resulting
from interchain interactions. The density~particle concentra-
tion! fields and external potential fields are coupled bijec-
tively through the density functional. Previously, we studied
the random term,4 the Gaussian chain density functional,13

and the relation with fourth-order expansions.14 Some results
of numerical calculations of phase separation inincompress-
ible block copolymer melts were discussed in Ref. 1. In Ref.
15 the method was extended to compressible polymer sys-
tems.

In this paper we improve upon the important assumption
of a local exchange kinetic mechanism in the dynamic mean-
field density functional method. The local exchange form for
the Onsager kinetic coefficients was mainly used in Ref. 1
because of its simplicity and computational efficiency. The
local form mimics the exchange effects in the nonlinear re-
gime. However, the assumption of locality is not rigorously
correct as is shown in a number of theoretical16–22 and ex-
perimental studies.23–26The kinetic coefficient is predicted to
have a decay-length of roughly the coil size in both the case
of reptation27,28and Rouse dynamics.18,22 In Refs. 23–25 the
early state of spinodal decomposition is studied experimen-
tally for various homopolymer blends by small angle neutron
~SANS! or x-ray ~SAXS! scattering, which allows observa-
tion of the dynamic structure factor. For large spatial fre-
quencies the normalized Onsager coefficient behavior is
found to be similar to predictions from Cahn–Hilliard–Cook
~CHC! theory in the reptation regime.16–19,23,24,26In Ref. 23
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deviations from exponential behavior occur that are attrib-
uted to the measurement being close to the glass transition
temperature. In Ref. 24 the range of the Onsager coefficient
is found to be time dependent and increases to values larger
than Rg , due to entanglement effects. The Onsager coeffi-
cient is studied over a wider range of spatial frequencies in
Ref. 25; the results clearly demonstrate theq dependence of
the coefficient, in semi-quantitative agreement with theoret-
ical predictions. In Ref. 26, the Onsager coefficient is found
to agree very well with predictions from Ref. 17 over a large
frequency range, whereas the agreement to predictions from
Refs. 28 and 29 is only found for very large frequencies.
Several other authors have studied the ordering process of
block ~co!polymers using SANS or SAXS techniques,30–36

but only a few of them have made the connection to linear-
ized CHC theory as explained in Refs. 16–18. In Ref. 31 no
apparentq dependence is found for the Onsager coefficient,
whereas in Ref. 32 a reasonable correspondence is found to
estimated values for the Onsager coefficient that were ex-
tracted from CHC theory. It is argued in Ref. 34 that, in
general, experimental results are hard to compare to~linear-
ized! CHC theory because there are several severe theoretical
limitations.

In the near future we intend to study the dynamic struc-
ture factor numerically and compare our results to the experi-
ments mentioned above, especially with regard to the later
stages of demixing where classical linear theory is not appli-
cable. Since experimental results show that kinetic coupling
is nonlocal, we require an efficient method to include nonlo-
cal kinetic coupling in our computational algorithms; such a
method is demonstrated in the present paper.

We employ the general dynamical theory of polymer
melt morphology that was derived by Kawasaki and
Sekimoto.27–29 The Kawasaki–Sekimoto derivation is based
on a rigorous projection formalism and neglects elastic ef-
fects. For a detailed discussion of the projection formalism
applied to collective concentration and stress variables, we
refer to Ref. 37. By chosing different forms for the mobili-
ties, the local coupling approximation, the collective Rouse
dynamics model, and the reptation dynamics model can be
derived.

The collective Rouse dynamics model has been de-
scribed in detail,38 but has to our knowledge never been used
before in its full extent to describe phase-separation dynam-
ics in inhomogeneous copolymer melts. We show how an
approximation to the Rouse dynamics model leads to a fea-
sible numerical model that avoids calculation of two-body
correlators at every time step. The new model describes the
dynamics of the external potential field instead of the density
field and will be called the external potential dynamics
~EPD! model. The new model possesses all the relevant fea-
tures of nonlocal kinetic coupling, and can readily be applied
to both homogeneous and inhomogeneous systems of any
polymer composition. We have not yet succeeded in comple-
menting the new model with an equally efficient algorithm
for calculating the correlated Langevin noise. The Langevin
noise should have a precise correlation, dictated by a
fluctuation-dissipation theorem. In the new EPD model the

noise correlation is formally described by an inverse corre-
lation function which is difficult to calculate numerically at
the moment~see Sec. V!. In the calculations we now use
uncorrelated white noise sources. Despite this drawback, we
believe that the new EPD model has great promise for the
future and provides a first step toward increasing the rel-
evance of our calculations to experimental results.

For demonstration purposes we tested the EPD model on
the morphology dynamics in a diblock copolymer melt—this
is a system we studied previously with a local kinetic cou-
pling model.1,15 The results indicate that the nonlocal cou-
pling is computationally more efficient and leads to faster
morphology dynamics, compared with the earlier local cou-
pling model. The overall features of the morphology on
length scales larger than the coil size are conserved and the
number of defects decreases as may be expected if nonlocal
kinetic coupling effects are added to the dynamics model.

II. THEORY

A. Derivation of dynamic equations with nonlocal
kinetic coupling

1. Mean-field density functional theory

We first recapitulate part of the dynamic mean-field den-
sity functional theory as explained in detail in Ref. 1.

We consider a melt of volumeV, containingn Gaussian
chains, each of lengthN. There areZ particle concentration
fieldsr I(r ) (I 5 1,...,Z), Z external potentialsUI(r ), andZ
intrinsic chemical potentialsm I(r ).

Imagine that on a coarse-grained time scale, there is a
certain collective particle concentration fieldr I(r ) of the
beads~statistical units consisting of a fluctuating string of
5–15 monomers! of type I . Given this concentration field, a
free-energy functionalF@r# is defined as follows:

F@r#52b21n ln F1b21 ln n!

2(
I
E UI~r !r I~r !dr1Fnid@r#. ~2!

Fnid@r# is the mean-field contribution from the nonideal in-
teractions.F is the partition functional for the ideal Gaussian
chains in the external fieldUI given by

F[Trc e2b@HG1(s51
N Us~Rs!#, ~3!

whereHG is the Gaussian chain Hamiltonian

HG5
b213

2a2 (
s52

N

~Rs2Rs21!2, ~4!

with a the Gaussian bond length parameter. The trace Trc is
limited to the integration over the coordinates of one chain

Trc~• !5N E
VN

~• !)
s51

N

dRs . ~5!

N is a normalization constant. The free-energy functional is
derived from a optimization criterium1 which introduces the
external potential fieldUI as a Lagrange multiplier field. The
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relation between the external potentials and the concentration
fields is bijective and given by a density functional for ideal
Gaussian chains:

r I@U#~r !5n (
s851

N

d Is8
K Trc cd~r2Rs8!. ~6!

d Is8
K is a Kronecker delta function with value 1 if beads8 is

of type I and 0 otherwise.c is the single chain configuration
distribution function

c5
1

F
e2b@HG1(s51

N Us~Rs!#. ~7!

The intrinsic chemical potentialsm I are defined by the
functional derivatives of the free energy:

m I~r ![
dF

dr I~r !
52UI~r !1

dFnid

dr I~r !
. ~8!

Formally, the nonideal free energy can be split into two
parts:

Fnid@r#5Fc@r#1Fe@r#,

whereFe contains the excluded volume interactions, andFc

the cohesive interactions. In Ref. 15 we have discussed dif-
ferent models to account for the excluded volume interac-
tions. In the present paper~cf. Ref. 15!, we employ an idea
which is originally from Helfand39 for the nonideal free en-
ergy. The Helfand free energy is similar to

Fnid@r#5Fc,ex@r#1
kH

2 E S (
I

n Ir I2(
I

n Ir0I D 2

dr ,

~9!

where kH is a compressibility parameter.Fc,ex is the free
energy resulting from the cohesive interactions, which con-
tains the exchange parametersDe IJ ~with De II 50 and
De IJÞI>0! only. The intrinsic chemical potential is now
given by

m I~r !52UI~r !1(
J
E

V
De IJ~ ur2r 8u!rJ~r 8!dr 8

1kHn I(
J

nJrJ~r !. ~10!

In general, a penalty function will allow small density
fluctuations around the mean bulk density. In this approach,
kH is a global constant, independent of composition, that
can be related to experimental values of isothermal com-
pressibility.40

2. Equations for morphology dynamics

We study the dynamics equation

]r I~r ,t !

]t
52(

J
E

V
MIJ~r ,r 8!mJ~r 8!dr 8, ~11!

where

MIJ~r ,r 8!5nK ]r̂ I

]R
•M̂•

]r̂J

]R L

5nN E
VN

cS ]

]R1
(
s51

N

d Is
K d~r2Rs!

A
]

]RN
(
s51

N

d Is
K d~r2Rs!

D
•S M̂11 ••• M̂1N

A A

M̂N1 ••• M̂NN

D
•S ]

]R1
(

s851

N

dJs8
K d~r 82Rs8!

A
]

]RN
(

s851

N

dJs8
K d~r 82Rs8!

D dR1•••dRN .

~12!

^•••&5Trc •••c is the ~normalized! ensemble average over
the single chain distribution functionc. Equation~12! is ob-
tained from the general equation~2.20! in Kawasaki’s and
Sekimoto’s first paper27 by chainwise diagonalizing the mas-
ter ensemble averaged mobilityL rr 8$r(t)% @Eq. ~2.18! from
Ref. 27#. In the following section we briefly recall the vari-
ous chain dynamics regimes that determine the choice for the
mobility coefficientsM̂ss8 .

The Langevin noise can be added formally by applica-
tion of the fluctuation-dissipation theorem for collective fluc-
tuations. For a brief discussion of the calculation issues we
refer to Sec. V.

B. Approximations in different chain dynamics
regimes

In the local coupling modelM̂ is the identity matrix
times a constant mobilityMbead5bD lca, so that all nondi-
agonal termsMs,s8Þs are zero.Mbeaddoes not depend on the
chain lengthN and the kinetic coupling between different
beads is completely neglected. This is the approximation
used in our previous papers1,4,13–15and also in earlier esti-
mates for the Onsager coefficient in Rouse dynamics.41

Many dynamic models based on Ginzburg–Landau-type
free-energy functionals~Cahn–Hilliard, Flory–Huggins–de
Gennes, or variants thereoff for block copolymers! make use
of even a simpler approximation in which the Onsager coef-
ficient is assumed to be a constant~for references see Ref.
14!.

The local coupling theory~using the instantaneous bare
mobility matrix in Rouse dynamics as in Ref. 41! leads to a
very simple expression for the collective dynamics~see be-
low!, but it must be stressed that this approximation is not
physically consistent. A physically consistent model requires

that the mobility matrixM̂ is a constant matrixM1, such that
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Mss85M chain5bD ro . In the Rouse model the total friction
of a chain moving in an external force field scales with the
chain lengthN; hence we expect thatM chain;N21. Since we
have coarse-grained time with respect to the internal chain
correlation times, the details of the internal forces play no
role whatsoever for the collective dynamics. Thereforeany
single chain model~Gaussian, freely jointed chain, etc.! must
yield the same functional form for the Onsager coefficient.18

This is the regime of collective Rouse dynamics which was
described in detail~for homogeneous systems! in Ref. 38.

The reptation regime is also relatively simple, since in
this case the beads are constrained to move along the poly-
mer tube axis. This regime is studied extensively in Refs. 28
and 29.

The various approximations lead to the following collec-
tive dynamics:

]r I

]t
5bD lca¹ r•r I~r ,t !¹ rm I~r ,t ! local coupling,

~13!

]r I

]t
5bD ro(

J
¹ r•E

V
PIJ~r ,r 8!¹ r8mJ~r 8!dr 8 Rouse,

~14!

]rs

]t
52bDcE

V
E

0

N

ds8F ]2

]s]s8
Pss8~r ,r 8!Gms8~r 8!dr 8

reptation.

~15!

The reptation equation~15! is taken from Ref. 28 for a con-
tinuous chain; the other equations can be derived by insertion
of M̂ in ~11!. The equation for local coupling dynamics is the
same as we used before;1 the general equation for collective
Rouse dynamics~14! reduces to the equation for Rouse dy-
namics as given in Ref. 38 for homogeneous systems.Dc is
the diffusion constant along the tube axis as defined in Ref.
28; the friction constant of reptative motion is given by
kBT/Dc . As is known from Refs. 17 and 38,Dc;N21. In
Ref. 27 Kawasaki and Sekimoto have derived the general
master equation for morphology dynamics~11!. In Ref. 28
they have given a simpler derivation for reptation dynamics.
In the Appendix we show that a similar derivation can be
given for the collective Rouse dynamics model.Pss8 andPIJ

are two-body correlators defined by~cf. Ref. 28!:

Pss8~r ,r 8![n^d~r2Rs!d~r 82Rs8!&, ~16!

PIJ~r ,r 8![(
s51

N

(
s851

N

d Is
K dJs8

K Pss8~r ,r 8!. ~17!

In the homogeneous melt the two-body correlatorsPIJ(r ,r 8)
are given byPIJ

0 (ur2r 8u), with Fourier transform

PIJ
0 ~q!5

n

V (
s51

N

(
s851

N

d Is
K dJs8

K v us2s8u, ~18!

v5e2a2q2/6. ~19!

As far as we know there has been no attempt to use the full
equation for Rouse dynamics for inhomogeneous phase-
separating systems due to the computational burden of cal-
culatingPIJ(r ,r 8) at every time step. In the next section we
show how a feasible numerical model can be derived that
incorporates all important physical features of nonlocal ki-
netic coupling.

The dynamic equations are closed by the expression for
the intrinsic chemical potential~8!, which includes the highly
nonlinear and nonlocalinversedensity functionalU@r# @see
Eq. ~6!#. An explicit expression for the inverse density func-
tional is not known, so that even in the simplest case of the
local coupling model a general analytical solution for the
dynamics is impossible to give.

We briefly recapitulate the limit of the homogeneous
system for the different dynamics models. In case of weakly
inhomogenous polymer melts, relations for the Onsager co-
efficient can be derived by linearization in all models. Using
translational invariance, and denotingq5uqu, the dynamic
equations in Fourier space are then given by

]r I~q!

]t
52q2(

J
L IJ~q!

mJ~q!

kT
, ~20!

which defines the Onsager coefficientL IJ . According to the
three dynamic models, the Onsager coefficient for a homo-
geneoushomopolymermelt is given by

L~q!55
D lcar0 local coupling

D ror0N
2~x1e2x21!

x2 Rouse

Dc

a2r0

6

2~12e2x!

x
reptation.

~21!

Here,x5Na2q2/6 andr05nN/V is the initial average den-
sity. The Debye function (x1e2x21)/x2 in the Onsager co-
efficient for Rouse dynamics applies to large chains where
N@1; for homopolymer chains of arbitrary length the geo-
metric sum in Eq.~18! amounts tor0(2vN1122v222Nv
1N1Nv2)/@N(v21)2#. The Onsager coefficient for the
collective Rouse dynamics model is discussed in detail in
Ref. 38. Notice that the reptation equation~15! reduces to

]r

]t
5E

0

N

ds
]rs

]t

5
2Dc

kBT E m~r 8!@PNN2P0N2PN01P00#~r ,r 8!dr 8

~22!

for a homopolymer. From the Onsager coefficients for the
three dynamic models in a homogeneous homopolymer melt,
we can conclude that, given a certain chemical potential gra-
dient, the dynamics is essentially proportional tor0 for both
the local coupling approximation and the Rouse model. In
the reptation regime, the change of the density is propor-
tional to r0 /N and the dynamics is slower.
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The functional forms of Pincus17 and Kawasaki and
Sekimoto21,28,29 for L(q) in the reptation regime are the
same. Binder18 and later Leibig and Fredrickson22 ~who used
the Kawasaki–Sekimoto expression! have found the same
Onsager coefficient for Rouse dynamics as in Eq.~21!.
Binder argues that both for Rouse and reptation dynamics
L(q) is proportional to the Debye function, but this is not in
agreement with our findings. However, theq dependencies
of the two different nonlocal forms for reptation and Rouse
dynamics do not differ very much, as can be seen from the
normalized Onsager coefficientsL(q)/L(0) in Fig. 1. Al-
most all experimental results forq-dependent Onsager coef-
ficients ~see Sec. I! are compared to Cahn–Hilliard–Cook
theory in the reptation regime. It would be interesting to
make a systematic comparison to the theory for collective
Rouse dynamics as well.

III. EXTERNAL POTENTIAL DYNAMICS MODEL

We will further study the collective Rouse dynamics
model in order to derive a tractable numerical model for
phase-separation dynamics. This will allow us to increase the
relevance of our numerical calculations to experimental re-
sults which show that kinetic coupling is nonlocal instead of
local. We have not yet found a way to cast the collective
reptation dynamics in a similarly efficient numerical model.
From a computational point of view, the equation for the
collective Rouse dynamics as in Eq.~14! has a major draw-
back. It requires the renewed calculation of the correlators
Pss8(r ,r 8), which are N2 six-dimensional functions, each
time step. This procedure is computationally very intensive
and requires more storage than is available on most contem-
porary computers.

Here, the objective is to derive an equation of motion for
the auxiliary field U from the collective dynamics of the
concentration fieldr. As we will make clear below, the ad-
ditional approximations are modest, while the new model
leads to an enormous reduction in computational costs com-
pared to the full collective Rouse dynamics model and pos-
sesses the essential physical features of nonlocal kinetic cou-

pling. We use two important properties from density
functional theory as summarized in the beginning of Sec. II:
~i! The density functionalr@U# is bijective, which means
that there also exists a bijective transformation of the dynam-
ics betweenU and r space. Therefore we can select the
space which is most convenient for calculations.~ii ! Further-
more, the derivative of the density functional with respect to
the external potential is the two-body correlatorPIJ , which
is precisely the nonlocal transport coefficient in the dynamics
equation:

dr I~r !

dUI~r 8!
[2bPIJ~r ,r 8!. ~23!

The collective Rouse dynamics is transformed fromr to
U space by application of the chain rule:

]r I~r ,t !

]t
5(

J
E dr I~r ,t !

dUJ~r 8,t !

]UJ~r 8,t !

]t
dr 8

52b(
J
E PIJ~r ,r 8!

]UJ~r 8,t !

]t
dr 8. ~24!

Combining this result with Eq.~14! we find for the collective
Rouse dynamics

(
J
E PIJ~r ,r 8!

]UJ~r 8,t !

]t
dr 8

52D ro(
J

¹ r•E PIJ~r ,r 8!¹ r8mJ~r 8!dr 8. ~25!

We can rewrite Eq.~25! in operator notation for allI as
follows:

P
]U

]t
52D ro¹•P¹m. ~26!

Here the elementsPIJ of matrix P are linear operators de-
fined by

PIJ~• ![E PIJ~r ,r 8!~• !dr 8. ~27!

U[$U1(r ),... ,UZ(r )%T and m[$m1(r ),... ,mZ(r )%T. The
operator Eq.~26! is still exact. Since the correlator matrixP
occurs both on the left- and right-hand side of Eq.~26!, es-
sentially both the forces and the fluxes are transformed from
U to r space. In the linear regime the operators¹ and P¹
commute for the dot inner product since the two-body corr-
elators are translationally invariant, and Eq.~26! reduces to

P
]U

]t
52D roP¹2m. ~28!

The entire relation can now be expressed inU space by
applying the inverse operatorP21 which exists since ther
2U relationship is bijective. This results in

]U

]t
52D ro¹

2m. ~29!

FIG. 1. Normalized Onsager coefficientsL(q)/L(0) in a homogeneous
homopolymer melt for Rouse dynamics~—! and reptation dynamics~–––
––! as a function ofNa2q2/6.
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We can extend the application area of Eq.~29! to nonlinear
regimes if we assume that the gradients of the two coordi-
nates in the two-body correlators are opposite:

¹ rPIJ~r ,r 8!52¹ r8PIJ~r ,r 8!. ~30!

Approximation~30! also results in Eq.~29!, as can be most
easily understood as follows. If we apply assumption~30!,
the right-hand side of Eq.~25! can be rewritten to:

¹ r•E PIJ~r ,r 8!¹ r8mJ~r 8!dr 8

5E ¹ rPIJ~r ,r 8!–¹ r8mJ~r 8!dr 8

52E ¹ r8PIJ~r ,r 8!–¹ r8mJ~r 8!dr 8

52E ¹ r8•PIJ~r ,r 8!¹ r8mJ~r 8!dr 8

1E PIJ~r ,r 8!¹ r8
2 mJ~r 8!dr 8

5E PIJ~r ,r 8!¹ r8
2 mJ~r 8!dr 8. ~31!

For the final step in this derivation we have applied the
Gauss theorem and omitted the surface integral. Hence, ap-
proximation~30! also leads to Eq.~28! and thus to Eq.~29!.

Figure 2 helps to understand the physics behind approxi-
mation ~30!. In a homogeneous phase the correlations only
depend on the distanceur2r 8u due to the translational invari-
ance and the gradients are exactly opposite. Therefore, ap-
proximation~30! is exact in the linear regime. In a~nonlin-
ear! phase-separated system positions (r ,r 8) exist for which
r and r 8 are in different phases. If neitherr nor r 8 is in the
interface, the gradients in Eq.~30! are always opposite~al-
though thay may differ in size, depending on the symmetry
of the chain! and approximation~30! is justifiable.

Since the linear regime is automatically included as a
limiting case, it is ensured that the proper Onsager coeffi-
cients for the homogeneous systems~21! are contained in the
new model.

Precise estimates for the errors that are introduced by
approximation~30! are not easy to give, except for some
simple systems. For the collective diffusion of polymers of
length N51 ~i.e., free monomers! P11(r ,r 8)5
r(r 8)d(r2r 8), and the approximation amounts to replacing
1
r¹•r¹m5¹2m1¹ ln r•¹m by ¹2m. This is quite reason-
able in regions where concentration deviations relative to the
homogeneous background are small (Dr/r0,1), i.e., in re-
gions away from interfaces.

In conclusion, we now arrive at the external potential
dynamics~EPD! model:

]UI

]t
52D ro¹

2m I . ~32!

This is the desired equation of motion for the external poten-
tial field U, which replaces the equation of motion~14! for
the density fieldr. Even though this model has a remarkably
simple structure, it still possesses all the important features
of nonlocal kinetic coupling. Notice that the Onsager coeffi-
cients are local and diagonal inU space. Hence, the kinetics
is ideal in this space. This increases the speed of the numeri-
cal computations considerably because the cumbersome cal-
culation of the correlators is not necessary. Although some
problems remain with respect to the Langevin noise~see Sec.
V!, we believe that the external potential dynamics model is
very useful to incorporate the effects of nonlocal kinetic cou-
pling in mesoscopic dynamics algorithms, and will get us
one step closer to correctly reproducing experimental results.

IV. ANALYSIS

In the following three examples we will employ linear-
ization and perturbation analysis to gain further insight into
the various dynamics models and to show that the Rouse
dynamics model and especially the simplified EPD model
exhibit the physical features of nonlocal kinetic coupling.

Incompressible melts.First consider the classical case of
an incompressible blend of homopolymersA and B. Since
the system is incompressible, a fluctuation in one of the con-
centration variables has to be compensated by an opposite
fluctuation in the other variable. This introduces very special
dynamic correlations. The collective Rouse dynamics is gov-
erned by two equations:

]rA

]t
5bD ro¹•E PAA~r ,r 8!¹@mA~r 8!1l~r 8!#dr 8,

~33!

]rB

]t
5bD ro¹•E PBB~r ,r 8!¹@mB~r 8!1l~r 8!#dr 8.

~34!

Notice that the cross correlatorsPAB andPBA are zero in the
single chain mean-field model. We have introduced an addi-
tional Lagrange parameter fieldl in order to apply the in-
compressibility constraint:

FIG. 2. Illustration of the gradients~indicated by arrows! ¹ r PIJ(r ,r 8) and
¹ r 8PIJ(r ,r 8) in a homogeneous system~left figure! and an inhomogeneous
system~right figure!. In the inhomogeneous case two symmetric polymers
~of which one is oriented perpendicular toward the interface! and one asym-
metric polymer are indicated.

5884 N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997



JA1JB50. ~35!

Here, JI is the flux of component I , given by
*PII (r ,r 8)¹@m I(r 8)1l(r 8)#dr 8. For simplicity, we have
assumed that the molecular volumes and individual friction
coefficients of all beads are the same. The set of equations
can be solved forl ~as in Refs. 16 and 28!, which results in
the exchange dynamics

]~rA2rB!

]t
52bD ro¹•E P~r ,r 8!¹@mA2mB#~r 8!dr 8,

~36!

]~rA1rB!

]t
50. ~37!

HererA2rB is the order parameter,mA2mB is the exchange
chemical potential, andP is the exchange transport coeffi-
cient defined by

E P~r ,r 8! f ~r 8!dr 8

5E PAA~r ,r 8!@PAA1PBB#21~r 8,r 9!

3PBB~r 9,r-! f ~r-!dr 8 dr 9 dr-. ~38!

It is obvious that in the general nonlinear case Eqs.~36! and
~37! cannot be solved numerically. However, in the linear
regime~36! reduces to a very simple equation. The Onsager
coefficient for the diffusion of the order parameter@cf. Eq.
~20!# is essentially proportional to the structure factor of the
homogeneous ideal melt~as can easily be seen if the incom-
pressibility constraint is applied in Fourier space!:

2D ro

L~q!
5

1

PAA
0 1

1

PBB
0 . ~39!

By following a similar procedure, we find that the Onsager
coefficient for the diffusion of the order parameter in a
phase-separatingcopolymermelt is given by

2D ro

L~q!
5

PAA
0 1PAB

0 1PBB
0 1PBB

0

PAA
0 PBB

0 2PAB
0 PBA

0 5Sq
021, ~40!

whereSq
021 is the inverse structure factor. Hence, expression

~40! allows for direct comparison between our numerical cal-
culations and experimental results. So far the analysis is tra-
ditional: the form of Eqs.~36! and ~37! is the same as for
incompressible reptation dynamics.28 Notice however that
the preciseq dependence is different, see Eq.~21!. We stress
that the simplified EPD model yields exactly the same result,
since in the linear regime the original collective Rouse dy-
namics model~21! and EPD model are identical.

At the moment it is not yet possible to directly use the
exchange equations~36! and~37! for numerical calculations;
the transport coefficients in the full Rouse model cannot be
evaluated in any way. We have found that it is much more
convenient to introduce a compressibility in the free-energy
model, either by a well-chosen equation of state or a har-
monic penalty function.39,15 Both models remove the instan-

taneous dynamic correlation imposed by the Lagrange pa-
rameter fieldl. We will return to this topic in Sec. V.

Block copolymer interfaces.Next consider a segregated
A-B block copolymer melt. Suppose that the system is ini-
tially in equilibrium in a state segregated strongly enough to
exclude allA-type beads from theB-phase and allB-type
beads from theA-phase. In that case, the probability that two
A-type beads of a single chain are in separate phases is zero;
PAA(rA ,rB)50 for all rA in the A-phase and allrB in the
B-phase. Similarly, PBB(rA ,rB)50, PAB(rA ,rB)Þ0 and
PBA(rB ,rA)Þ0. Since fluctuations can be passed from one
phase to another by the two-body correlatorsPAB and PBA

only, these terms control the interface dynamics both in the
collective Rouse model and the reptation model.29 Suppose
that the chemical potentialmA(r ) of componentA is per-
turbed byDmA(r )5f(r ). In the original collective Rouse
dynamics model~14! this results in a response of the con-
centration variables after a small time intervalDt of

DrA~rA!}Dt¹ rA
•E PAA~rA ,rA8 !¹ r

A8
f~rA8 !drA8 , ~41!

DrB~rB!}Dt¹ rB
•E PBA~rB ,rA8 !¹ r

A8
f~rA8 !drA8 , ~42!

while according to the simplified external potential dynamics
model ~28!,

DrA~rA!}DtE PAA~rA ,rA8 !¹ r
A8

2
f~rA8 !drA8 , ~43!

DrB~rB!}DtE PBA~rB ,rA8 !¹ r
A8

2
f~rA8 !drA8 . ~44!

Since approximation~30! seems reasonable in the case of a
strongly segregated block copolymer melt, Eqs.~41!, ~42!,
and ~43!, ~44! are practically identical. Notice that the two-
body correlatorsPIJ are those of the inhomogeneous system.
Hence, we expect that the interface dynamics is reproduced
correctly in the EPD model.

Block copolymer melt near wall.Finally, consider a ho-
mogeneous block copolymer melt~above the microphase
transition! which is suddenly brought into contact with a wall
at time t50. Such a situation arises when colloidal particles
are dispersed in the melt, or when the melt is exposed to air
or other fluids. We suppose that theA block adsorbs prefer-
entially over theB block, such that an adsorption profile
develops eventually. Equilibrium adsorption profiles for
polymers adsorbed from solution have been calculated exten-
sively by the Wageningen school using self-consistent field
lattice models.42 In this case, the equilibrium profile is a
decaying sinusoidal, with alternatingA and B blocks. The
ordering decreases toward the bulk and theA block is in
contact with the surface. Similar profiles have been obtained
using Monte Carlo and cluster growth probability models
~see, e.g., Refs. 43–45!. It is illustrative to see what the
different dynamics models predict for the diffusion toward
the surface. The equilibrium adsorption profiles for the dif-
ferent models are sketched in Fig. 3.
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First consider the local coupling model.A adsorbs rap-
idly to the surface and forms an adjacent depletion layer.
Since the coupling is local, theinitial depletion layer has a
monomer length scale. Due to the decreasedA concentration,
the B concentration locally increases and starts to act as a
barrier for further diffusion ofA. The final state is meta-
stable and consists of anA monomer layer and repeating
blocks ofB andA. We have performed some simulations in
our group~using the local coupling model! that support this
result~data not shown!. Although the final profile is in equi-
librium, it is not physically relevant; to our knowledge there
are no experimental results of preferential adsorption where
the adsorbed block forms a monomer size adsorption layer.
The experiments always indicate that the first layer has a
thickness of the order of the radius of gyration of the ad-
sorbed block~see references in Ref. 42!. Hence, we conclude
that the local coupling model is not valid for interface prob-
lems.

Next consider the predictions of the collective Rouse
dynamics model. This model incorporates nonlocal kinetic
coupling on a polymer coil length scale. The immediate re-
sponse of theA block has the same length scale. The deple-
tion layer now starts at a distance;aN1/2 away from the
surface. The final profile is a decaying sinusoidal as ex-
pected, where the first layer is anA block of approximately
the ~block! coil size. Hence, the collective Rouse dynamics
~and the simplified EPD variant! correctly predicts the physi-
cally relevant result.

V. NUMERICAL RESULTS AND DISCUSSION

We performed a numerical simulation, using EPD model
~32! that incorporates nonlocal kinetic coupling. In our cal-
culations, we neglect the higher-order contribution of the
second~drift! term on the right-hand side of Eq.~1!, which
can even be proven to be zero for the simplest kinetic mod-
els. As we mentioned earlier, it is convenient to perform a
compressible simulation. To make a comparison with previ-
ous simulation results, we have studied the compressible mi-
crophase separation dynamics in anA8B8 copolymer melt,

using Helfand’s penalty model (kH8 510).15 The initial sys-
tem is always homogeneous. Numerically, after discretizing
the dynamic equations~32! on a grid, we use the following
dimensionless Crank–Nicolson equations for each compo-
nent I ~for details see earlier papers1,15!:

~bU ! Ir
k112 1

2DtzIr
k115~bU ! Ir

k 1~12 1
2!DtzIr

k 1h Ir
k .

~45!

Here,zr
k denotes the discretized diffusion part at time levelk

and ~cubic! grid positionr

zr5(
a

(
q

da@DaDa# rqbm I q
.

Da is the discretized diffusion operator in grid directiona
andm Iq is evaluated at grid positionq. Dt is a scaled time
step~t5D roh

2t or t5D lcah
2t whereh is the grid size!. The

Crank–Nicolson equations are solved iteratively at every
time step using a steepest descent method. The dimension-
less variables for the time integration are the noise scaling
parameterV5n21h35100 ~the number of beads per grid
cell!, Dt50.5, x50.0 or 1.0~x is the exchange parameter
that accounts for the cohesive interactions as defined in Refs.
1 and 15!, anda/h51.15430.h Ir

k is the numerical noise. The
actual~continuous! noise distribution for the EPD model

]UI

]t
52D ro¹

2m I1h I , ~46!

according to the fluctuation-dissipation theorem, can be
shown to be~in operator notation!:

^h I~r ,t !&50, ~47!

^h I~r ,t !,hJ~r 8,t8!&522b22D ro¹ r
2PIJ

21~r ,r 8!d~ t2t8!.
~48!

At the moment it is impossible to calculate the noise accord-
ing to the above distribution for inhomogeneous melts.
Therefore, we applyh lr

k with correlations according to local
coupling kinetics. Although we realize that, in principle, we

FIG. 3. Equilibrium adsorption profiles for a diblock copolymer melt near a
wall in case of local coupling~upper figure! and Rouse dynamics~lower
figure!. TheA block adsorbs preferentially.

FIG. 4. Time evolution of volume-averaged order parameterw as a function
of t in a compressibleA8B8 block copolymer melt~using Helfand’s penalty
model withkH8 510! for the local kinetic coupling model~–––––! and the
external potential dynamics model~—!.
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violate the fluctuation-dissipation theorem, we argue that the
influence of the noise is small due to the relatively large
value of V. Notice that the noise is applied at every time
step. We define an average measure of the order in the sys-
tem by

w[
1

V E
V
~uA

21uB
2 !dr . ~49!

Here,u I5nr I is the dimensionless density field wheren is

the molecular volume. The effects of a change in order due
to microphase separation and/or total density fluctuations are
captured byw. In Fig. 4 we plotted the time evolution ofw
in a simulation using the local coupling approximation~all
parameters as in Ref. 15! and the nonlocal coupling approxi-
mation in the Rouse dynamics regime. The phase separation
was initiated with a quench fromx50 to x51.0 att550.
We find that the simulation in the Rouse dynamics regime
remains stable and that the order parameter increases faster
shortly after the quench and stabilizes at a higher value than
in the simulation that uses a local coupling approximation.
The pictures of the simulation results indeed show larger
structures and less defects~see Fig. 5! as may be expected if
nonlocal kinetic coupling effects are included in the dynam-
ics model. Because of the increased simulation times and the
disappearance of defects, the influence of the periodic
boundary conditions becomes apparent. We have made sure
that all operators are discretized isotropically~see also Ref.
13!, therefore the patterns do not show any preference for
grid directions.

Since we use a Crank–Nicolson scheme, it is not so
evident that this method should lead to increased computa-
tional efficiency, compared to the original density dynamics
algorithms. However, we find in our numerical experiments
that the nonlocal kinetic coupling algorithm requires less it-
erations to converge than the local kinetic coupling algo-
rithm. We also performed some simulations using explicit
integration schemes; they also remained stable and con-
verged~data not shown!.

VI. CONCLUSION

In this paper we have recapitulated some existing models
for density dynamics that incorporate nonlocal kinetic cou-
pling effects. A general model by Kawasaki and Sekimoto
has been analyzed for different dynamics models~local cou-
pling regime, Rouse dynamics regime, and reptation regime!.
The Rouse dynamics model cannot be used as such for nu-
merical calculations, since it involves the repeated calcula-
tion of two-body correlators which is computationally too
intensive. We have shown, however, how a simple approxi-
mation leads to a feasible numerical model that includes all
important physical features of nonlocal kinetic coupling. We
find that the new model describes the dynamics in terms of
the external potential instead of the density. This model has
been used to study the effects of nonlocal kinetic coupling on
numerical simulations of compressible copolymer liquids us-
ing the dynamic mean-field density functional method. So
far, we have not yet succeeded in implementing the noise
according to the fluctuation-dissipation theorem for the ex-
ternal potential dynamics. However, we found that we can
use noise that is distributed according to local coupling dy-
namics@and even~small! white noise# for practical calcula-
tions.

We find that compared to earlier simulations that only
took local coupling effects into account, the nonlocal cou-
pling effects cause the system to form less defects and larger
structures. The order parameter increases faster and the final

FIG. 5. Morphology of a compressibleA8B8 block copolymer melt att
5800 ~using Helfand’s penalty model withkH8 510!. The melt was
quenched att550 fromx50.0 tox51.0.~a! Local kinetic coupling model.
~b! External potential dynamics model.
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ordering of the melt is increased with respect to local cou-
pling simulations. Hence, the external potential dynamics
model allows us to perform calculations of microphase sepa-
ration in copolymer melts with increased relevance to experi-
mental results. Incorporating nonlocal coupling effects also
leads to an increase in computational efficiency, due to faster
numerical convergence in the time integration methods.

In conclusion, we have succeeded in incorporatingnon-
local coupling effects, based on the Rouse dynamics model
into our simulations. We have not only improved the physi-
cal relevance of our mesoscopic simulations in this way, but
have also found a very simple numerical model for external
potential dynamics that leads to improved computational ef-
ficiency.

APPENDIX: DERIVATION COLLECTIVE ROUSE
DYNAMICS MODEL

In this section we present a simple derivation of the col-
lective Rouse dynamics model~14!, along the lines set out
for reptation dynamics in the second paper by Kawasaki and
Sekimoto.28 Suppose a polymer chain is under the influence
of an external force fieldfs , where the force may be different
for each beads. The total force equals(s51

N fs . In the Rouse
regime the correlations due to internal forces relax~much!
faster than the coarse-grained collective dynamics. Hence,
after a certain time that is much larger than the internal re-
laxation time, the chain will drift with a constant velocity
vdrift , according to~cf. Eq. 5.6 in Ref. 46!

vdrift5
M0

N (
s51

N

fs .

Here we have assumed that the total friction is linear inN;
there is no hydrodynamic interaction between the beads and
the solvent flows freely through the polymer coil. It is im-
portant to realize thatall beads have the same systematic
velocity on average.

Next we define the microscopic density variable

r̂s~r ![d~r2Rs!.

By application of the chain rule, the microscopic analog of
the equation of continuity is

]r̂s~r !

]t
52¹ r•d~r2Rs!

]Rs

]t
.

Given the external force fieldfs , we replace the velocity
]Rs /]t by the drift velocityvdrift for the entire chain~this is
a valid procedure for the Rouse regime!, and we obtain

]r̂s~r !

]t
52

M0

N
¹ r•d~r2Rs! (

s851

N

fs8~Rs8!.

In the thermodynamic limit, the microscopic variables can be
replaced by collective variables~cf. Eq. 2.11 in Ref. 28!

r̂s~r !→^r̂s~r !&5rs~r !5N E
VN

cr̂s~r !dR1 •••dRN ,

which leads to

]rs~r !

]t
52

M0N

N
¹ r•E

VN
cd~r2Rs!

3 (
s851

N

fs8~Rs8!dR1 •••dRN .

Similarly, in the thermodynamic limit, the external force
field fs can be replaced by minus the gradient of the chemical
potential~cf. Eq. 2.11 in Ref. 28! which results in

]rs~r !

]t
5

M0N

N
¹ r•E

VN
cd~r2Rs!

3 (
s851

N
]ms8~Rs8!

]Rs8
dR1 •••dRN .

The concentration ofI -type particles is given in~6! by

r I~r !5nK (
s51

N

d Is
K r̂s~r !L . ~A1!

Therefore

]r I~r ,t !

]t
5n(

s51

N

d Is
K K ]r̂s~r !

]t L
5n(

s51

N

d Is
K ]rs~r !

]t

5n(
s51

N

d Is
K M0N

N
¹ r•E

VN
cd~r2Rs!

3 (
s851

N
]ms8~Rs8!

]Rs8
dR1 •••dRN . ~A2!

Notice that a derivative with respect to a 3D coordinate
should be interpreted as a gradient operator. We use the iden-
tities

(
J

(
s851

N

dJs8
K ]mJ~Rs8!

]Rs8
5 (

s851

N
]ms8~Rs8!

]Rs8
~A3!

and

E d~r 82Rs8! f ~r 8!dr 85 f ~Rs8! ~A4!

to rewrite ~A2! to

]r I~r ,t !

]t
5n(

s51

N

d Is
K M0N

N
¹ r•E

VN
cd~r2Rs!

3 (
s851

N

(
J

dJs8
K ]mJ~Rs8!

]Rs8
dR1 •••dRN

5n(
s51

N

d Is
K M0N

N
¹ r•E

VN
E

V
cd~r2Rs!

3 (
s851

N

(
J

dJs8
K d~r 82Rs8!

5888 N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997



3¹ r8mJ~r 8!dr 8 dR1 ...dRN

5
M0

N (
J

¹ r•E
V
n(

s51

N

(
s851

N

d Is
K dJs8

K

3^d~r2Rs!d~r 82Rs8!&¹ r8mJ~r 8!dr 8

5
M0

N (
J

¹ r•E
V
PIJ~r ,r 8!¹ r8mJ~r 8!dr 8.

Here we have employed the definition for the two-body cor-
relator PIJ(r ,r 8) as given in Eq.~17!. SinceM0 /N5bD ro ,
this result is exactly the same as the expression for collective
Rouse dynamics in Eq.~14!.
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31B. Stühn, A. Viselov, and H. Zachmann, Macromolecules27, 3560

~1994!.
32J. Connell, R. Richards, and A. Rennie, Polymer32, 2033~1991!.
33C. Harkless, M. Singh, and S. Nagler, Phys. Rev. Lett.64, 2285~1990!.
34T. Russell and I. Chin, Colloid Polymer Science272, 1373~1994!.
35M. Schuler and B. Stu¨hn, Macromolecules26, 112 ~1993!.
36T. Hashimoto, K. Kowsaka, M. Shibayama, and H. Kawai, Macromol-

ecules19, 754 ~1986!.
37H. Wittmann and G. Fredrickson, J. Phys.4, 1791~1994!.
38M. Doi and S. Edwards,The Theory of Polymer Dynamics~Clarendon,

Oxford, 1986!.
39E. Helfand, J. Chem. Phys.62, 999 ~1975!.
40D. T. Wu, G. H. Fredrickson, J.-P. Carton, A. Ajdari, and L. Leibler, J.

Polym. Sci.: Part B: Polym. Phys.33, 2373~1995!.
41A. Akcasu and M. Tombakoglu, Macromolecules23, 607 ~1990!.
42G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and

B. Vincent,Polymers at Interfaces~Chapman Hall, London, 1993!.
43Y. Zhan, W. L. Mattice, and D. H. Napper, J. Chem. Phys.98, 7508

~1993!.
44Y. Zhan and W. L. Mattice, Macromolecules27, 683 ~1994!.
45F. Aguilera-Granja and R. Kikuchi, J. Phys. II France4, 1651~1994!.
46M. Doi, Introduction to Polymer Physics~Clarendon, Oxford, 1996!.

5889N. M. Maurits and J. G. E. M. Fraaije: Mesoscopic dynamics of copolymer melts

J. Chem. Phys., Vol. 107, No. 15, 15 October 1997


