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Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis
and play a critical role in normal serosal repair following injury. However, when normal
repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting
inflammatory, and profibrotic mediators, differentiating and migrating into the injured
tissues where they contribute to fibrogenesis. The development of new molecular and
cell tracking techniques has made it possible to examine the origin of fibrotic cells within
damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In
addition to secreting proinflammatory mediators and contributing to both coagulation
and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a
process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells.
Fibrogenic mesothelial cells have now been identified in tissues where they have not
previously been thought to occur, such as within the parenchyma of the fibrotic lung.
These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic
strategies to prevent or reverse the fibrotic process.

Keywords: inflammation, coagulation and fibrinolysis, tissue repair and fibrosis, extracellular matrix, mesothelial-
to-mesenchymal transition, post-operative adhesion, idiopathic pulmonary fibrosis

Introduction

Mesothelial cells form a monolayer, known as the mesothelium, that line the pleural, peritoneal, and
pericardial cavities, with visceral and parietal surfaces covering the internal organs and body wall,
respectively. They attach to a thin basement membrane supported by sub-serosal connective tissue,
and are bathed in a small volume of serosal fluid that resembles an ultrafiltrate of plasma containing
blood proteins, sugars, resident inflammatory cells, and various enzymes (Mutsaers, 2002).

Mesothelial cells synthesize and secrete lubricants including glycosaminoglycans and surfactant
to prevent friction and adhesions forming between adjacent parietal and visceral surfaces. They play
critical roles in the maintenance of serosal homeostasis in response to injury, inflammation, and
immunoregulation (reviewed in Mutsaers andWilkosz, 2007). Mesothelial cells are also central cells
in serosal repair, secreting inflammatory mediators, chemokines, growth factors, and extracellular
matrix (ECM) components.

Mesothelial cells display different phenotypes which, depending on their location and state
of activation, are likely to reflect functional differences. Although morphologically they resemble
epithelial cells and possess many epithelial characteristics; surface microvilli, apical/basal polarity,
cytokeratins, and junctional complexes, embryologically they derive from themesoderm and express
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mesenchymal features including vimentin and desmin (Batra
and Antony, 2014). Upon stimulation they can also undergo
morphological and functional changes consistent with an
epithelial-to-mesenchymal transition (EMT; Yanez-Mo et al.,
2003; Aroeira et al., 2007; Perez-Lozano et al., 2013) which has
recently been termed mesothelial-to-mesenchymal transition
(MMT; Sandoval et al., 2010).

The ability of mesothelial cells to undergo MMT suggests that
themesothelium is a likely source of fibrogenic cells during serosal
inflammation and tissue repair and therefore play important roles
in pleural and peritoneal fibrosis and adhesion formation. In
addition, it has been hypothesized that mesothelial cells may be a
source of (myo)fibroblasts in interstitial lung fibrosis (Decologne
et al., 2007; Zolak et al., 2013; Karki et al., 2014; Chen et al., 2015).

This review will focus on aspects of the mesothelium that
contribute to fibrosis including coagulation and fibrinolysis,
inflammation, ECM production, and EMT/MMT, and discuss
some common fibrotic conditions attributed to changes in
mesothelial cell structure and function (Figure 1).

Mesothelial Cell Functions

Coagulation and Fibrinolysis
Mesothelial cells are important regulators of fibrin levels in the
serosal cavities following injury (Rougier et al., 1998; Mutsaers
et al., 2004). Fibrin deposition is an early step in normal wound
repair but persistence of fibrin can lead to fibrosis and post-
operative adhesion formation. For example in serosal cavities,
the denudation of the mesothelium can cause impairment in
the regulation of fibrinolytic activity by mesothelial cells and an
accumulation of fibrin. If this fibrin is not removed it is replaced by
granulation tissue that will be substituted by dense fibrous tissue
(Dobbie and Jasani, 1997; Yung and Chan, 2012).

The regulation of fibrin deposition by mesothelial cells is
mediated by the secretion of both procoagulant and fibrinolytic
enzymes. Procoagulant activity is due to production and
regulation of tissue factor (TF), the main cellular initiator of the
extrinsic coagulation cascade. TF is produced by mesothelial cells
(Bottles et al., 1997; Dobbie and Jasani, 1997) and complexes with
other coagulation cascade proteins to activate thrombin which
in turn cleaves serum fibrinogen to form fibrin. This is regulated
by TF pathway inhibitor (TFPI), also produced by mesothelial
cells (Bajaj et al., 2000). It has been shown in pleural injury that
a relative excess of TF activity is expressed so that the inhibitory
capacity of TFPI and other endogenous inhibitors are exceeded
and local coagulation is thereby promoted (Bajaj et al., 2000).

Fibrinolytic activity is mediated through secretion of tissue
plasminogen activator (tPA), urokinase PA (uPA), and uPA
receptor (uPAR), and their inhibitors plasminogen activator
inhibitors (PAI)-1 and PAI-2. The clearance of fibrin is based
on the balance of the expression of the components of the
fibrinolytic system and their net influence on local fibrinolytic
activity (Mutsaers et al., 2004).

Mesothelial cells express tPA, uPA, uPAR, and PAI-1(Idell et al.,
1992; Ivarsson et al., 1998). In the pleura, all these components,
together with plasminogen, the substrate for uPA and tPA, can be
detected in the pleural fluid (Idell et al., 1991). The fibrinolytic

FIGURE 1 | Mechanisms of mesothelial cell-induced fibrosis.
(A) Normal serosa. Mesothelial cells rest on a basement membrane with
submesothelial stromal cells embedded within ECM. (B) Inflamed serosa.
Activated mesothelial cells secrete inflammatory mediators and growth factors
into the serosal fluid and submesothelial compartment. Chemokines and
other inflammatory mediators produced by the mesothelial cells attract
inflammatory and immune cells to the site of injury and activate
submesothelial stromal cells. Mediators produced by activated mesothelial
cells and submesothelial stromal cells induce mesothelial cells to become
more cuboidal, break cell–cell junctions, separate and expose underlying
basement membrane and ECM. (C) MMT and fibrosis. Mesothelial cells
secrete TF to induce coagulation and deposition of a fibrin matrix. Stromal
and inflammatory cells secrete MMT-promoting factors that induce conversion
of mesothelial cells into (myo)fibroblasts which migrate into the surrounding
ECM and together with resident stromal cells form fibrotic foci.

pathway can be activated directly by tPA or via expression of
uPAR on the surface of pleural mesothelial cells (Shetty et al.,
1995a), lung fibroblasts (Shetty and Idell, 1998), andmacrophages
(Sitrin et al., 1996). Because uPA binds to uPARwith high affinity,
the bound form retains PA activity even in the presence of
protease inhibitors (Higazi et al., 1998). Apart from its fibrinolytic
properties, uPA can also initiate signaling through uPAR which
also contributes to the pathogenesis of serosal inflammation and

Frontiers in Pharmacology | www.frontiersin.org June 2015 | Volume 6 | Article 1132

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Mutsaers et al. Mesothelial cells in tissue repair and fibrosis

repair. uPA can upregulate uPAR in mesothelial cells and also
contributes to chemotactic and mitogenic responses induced by
pleuralmesothelial cellsand lungfibroblasts (Shettyetal., 1995a,b).

Both pro- and anti-fibrinolytic mediators are regulated by
inflammatory factors including lipopolysaccharide, tumor
necrosis factor alpha (TNF-α), and interleukin (IL)-1 and
fibrogenic mediators such as transforming growth factor beta
(TGF-β) and thrombin (Tietze et al., 1998). If the fibrinolytic
capacity is insufficient and fibrin accumulation is not resolved,
fibrous adhesions/plaques form between opposing serosal
surfaces (Sulaiman et al., 2002).

Control of fibrin deposition and lysis is particularly important
in the pleura. Cytokines implicated in the pathogenesis of pleural
injury, including TNF-α, can upregulate uPAR expression at the
surface of cell types involved in pleural injury (Yoshida et al.,
1996) and thereby influence local remodeling of transitional
fibrin. Exposure of mesothelial cells to asbestos can also influence
uPAR expression (Perkins et al., 1999). The fibrinolytic system
can also be controlled transcriptionally and post-transcriptionally
through changes in uPAR mRNA stability and translational
control. The regulatory mechanism involves the interaction and
destabilization of uPAR mRNA through formation of cis–trans
complexes between uPAR mRNA binding proteins and specific
sequences of uPAR mRNA (Shetty et al., 2008).

Mesothelial Cells Regulate Inflammation
Mesothelial cells play a critical role in the modulation of
serosal inflammation through their ability to synthesize
cytokines/chemokines, growth factors, ECM proteins, and
intracellular adhesion molecules as well as their ability to present
antigen. When the serosa is challenged by infection or agents
such as dialysis fluid or asbestos, there is a massive influx of
leukocytes from the vasculature into the serosal space (Jantz and
Antony, 2008; Yung and Chan, 2012). Mediators released from
activated macrophages such as TNF-α, IL-1β, and interferon
gamma (IFN-γ) stimulate mesothelial cells to produce cytokines
such as monocyte chemotactic protein-1 (MCP-1) also known a
chemokine (C–Cmotif) ligand 2 (CCL2), RANTES also known as
CCL5 and IL-8 also known as chemokine (C–X–C motif) ligand
8 (CXCL8) and adhesion molecules such as intercellular adhesion
molecule-1 (ICAM-1), vascular cellular adhesion molecule-1
(VCAM-1), E-cadherin, N-cadherin, CD49a, CD49b, and CD29
(Jonjic et al., 1992; Cannistra et al., 1994; Liberek et al., 1996; van
Grevenstein et al., 2007) to further recruit more leukocytes to the
site of injury and facilitate leukocyte adherence and migration
across the mesothelium (Liberek et al., 1996; Jantz and Antony,
2008; Yung and Chan, 2009, 2012).

Mesothelial cells also mediate inflammation through the local
synthesis of hyaluronan (Yung and Chan, 2009, 2012), which is
able to sequester free radicals and initiate tissue repair responses
(Yung et al., 1994, 1996, 2000; Yung and Chan, 2007). Synthesis
of hyaluronan fragments are increased by exposure to IL-1β, IL -
6, TNF-α, TGF-β1, and platelet-derived growth factor (PDGF;
Yung et al., 1996) and can activate the inflammatory cascade in
mesothelial cells by inducing IL-8 and MCP-1 production via
activation of the NF-κB signaling pathway (Haslinger et al., 2001).
In the peritoneum, induction of these inflammatory cytokines by

long-term exposure to peritoneal dialysis (PD) fluid may promote
the development of chronic peritoneal inflammation, leading to
long-term peritoneal damage and exacerbation of the fibrotic
pathway.

Mesothelial cells also contribute to controlling inflammation
both in normal and inflamed tissue by producing cyclooxygenase
(Baer and Green, 1993) and metabolizing arachidonic acid to
release prostaglandins and prostacyclin (Stylianou et al., 1990;
Topley et al., 1994).

Mesothelial Cells Produce Extracellular Matrix
Mesothelial cells secrete a variety of ECM molecules, which
physiologically are important for cell function and repair of
serosal membranes. Mesothelial cells synthesize ECM molecules
including collagen types I, III, and IV, elastin, fibronectin,
laminin, and proteoglycans (Rennard et al., 1984; Laurent et al.,
1988; Owens and Grimes, 1993; Milligan et al., 1995; Yung et al.,
1995; Xiao et al., 2010) and they can also regulate ECM turnover
by secreting matrix metalloproteinases and tissue inhibitors of
metalloproteinases (Ma et al., 1999). In culture, mesothelial cells
can be further stimulated to produce ECM when exposed to
peritoneal effluent from patients with acute peritonitis (Perfumo
et al., 1996) or various cytokines and growth factors such as IL-
1β, TNF-α, epidermal growth factor (EGF), PDGF, and TGF-β
(Owens andGrimes, 1993;Owens andMilligan, 1994; Zhang et al.,
2005).

The renin–angiotensin system also stimulates ECMproduction
(Noh et al., 2005). During PD and peritonitis, angiotensin II
levels are increased. This promotes mesothelial cell production of
fibronectin via the induction of the ERK1/2 and MAPK pathways
thereby contributing to peritoneal injury and inflammation
(Kiribayashi et al., 2005). The increased production of fibronectin
by mesothelial cells can also be induced by the presence of
advanced glycation end products (AGEs; Tong et al., 2012).

Epithelial-to-Mesenchymal Transition
Mesothelial cells undergo MMT, a similar process to EMT in
epithelial cells (López-Cabrera, 2014). EMT is a well characterized
process, involving a number of overlapping and sequential
events that require the appropriate spatiotemporal expression,
interaction, and modification of a number of intra- and extra-
cellular factors to cause a change in cell phenotype (Thiery et al.,
2009). The process is controlled primarily by three main families
of transcription factors: zinc finger Snail (SNAI1, SNAI2) basic
helix–loop–helix (Twisted1), and ZEB (ZEB1, ZEB2; Thiery
et al., 2009). Epithelial cells initially lose cell–cell junctions by
down-regulating E-cadherin and other junctional proteins, reduce
attachment to the basal lamina and subsequently lose apical–basal
cell polarity. With cell migration and invasion of the basement
membrane and a change in cytoskeletal components, a full change
to a mesenchymal phenotype occurs. Expression of a multitude
of mesenchymal markers, including alpha smooth muscle actin
(α - SMA), EDA-fibronectin, vimentin, and fibroblast specific
protein - 1 (FSP-1), is proposed as an unequivocal indicator
of EMT (Zeisberg and Neilson, 2009). The fibrogenic mediator
TGFβ is the most well described inducer of EMT whereas bone
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morphogenic protein-7 has been identified as a repressor in
certain tissues (Zeisberg and Kalluri, 2004). MicroRNAs have
emerged as important regulators of EMT as they are able to target
multiple signaling pathways (Lamouille et al., 2013).

Evidence of MMT
Mesothelium-specific genetic lineage tracing studies in mice
have clearly demonstrated that during development, mesothelial
cells contribute to smooth muscle in the developing vasculature
of the gut, heart, liver, and lungs through EMT (Wilm et al.,
2005; Cai et al., 2008; Que et al., 2008; Zhou et al., 2008, 2010;
Asahina et al., 2011), which will subsequently be referred to
as MMT. The transcription factor Wilms tumor-1 (WT-1),
expressed by mesothelium regulates its functional properties
during development. During lung development, WT-1 expressing
mesothelial cells migrate into the lung parenchyma and undergo
a transition to form subpopulations of bronchial smooth muscle
cells, vascular smooth muscle cells, and fibroblasts (Que et al.,
2008; Dixit et al., 2013), through the action of sonic hedgehog
signaling (Dixit et al., 2013). This process has also been shown to
occur in the adult (Wada et al., 2003; Kawaguchi et al., 2007; van
Tuyn et al., 2007). For example, Lachaud and colleagues (Lachaud
et al., 2013) isolated murine uterine-derived mesothelial cells
and stimulated them to undergo MMT and become functional
vascular smooth muscle-like cells expressing smoothelin-B
typical of contractile cells.

In vitro, numerous groups have shown upregulation of
mesenchymal markers and downregulation of junctional
components by human mesothelial cells following exposure
to various injurious agents. TGF-β1 induced MMT in human
mesothelial cell cultures isolated from the pleura, omentum, or
mesenteric tissue, with evidence of downregulation of junction
components (E-cadherin, ZO-1), upregulation of mesenchymal
markers (α-SMA), and deposition of ECM (Yang et al., 2003;
Nasreen et al., 2009). A number of studies have shown an
upregulationof transcription factors inmesothelial cells associated
with MMT (SNAI1/SNAI2, ZEB1/2, Twist1) following exposure
to TGF-β1 as well as other cytokines including hepatocyte growth
factor (HGF), PDGF, and IL-Iβ (Liu et al., 2008; Strippoli et al.,
2008; Patel et al., 2010b; Zhou et al., 2013). Lipopolysaccharide, a
derivative of the bacterial cell wall, has also been found to induce
MMT and is proposed to be a mechanism whereby peritonitis is
linked to peritoneal fibrosis (Liu et al., 2014b).

MMT and Fibrosis
In vivo, a number of studies have reported the importance
of mesothelial cells in the development of fibrosis following
injury. In a rat peritoneal scrape injury model, DiI-labeled rat
mesothelial cells injected into the peritoneal cavity were found
to incorporate into the mesothelial layer, eventually appearing
in the subserosa (Foley-Comer et al., 2002). Furthermore,
adenovirus-mediated overexpression of TGF-β1 in the lung and
peritoneum induced fibrosis in mice that was associated with
MMT; reduced E-cadherin and increased COL1, α-SMA, MMP-
2, and 9 (Margetts et al., 2005; Decologne et al., 2007). These
changes are likely to be mediated by both Smad3-dependent
and independent signaling pathways (Patel et al., 2010a). Such

findings confirm the ability of mesothelial cells to undergo MMT
following damage. The possibility that there may be a genetic
basis to this process was demonstrated by a study investigating
mouse strain differences in susceptibility to TGF-β1-induced
peritoneal fibrosis. Interestingly, an increase in markers of
MMT was associated with enhanced peritoneal fibrosis in the
susceptible mouse strain (C57/Bl6) whereas the resistant strain
(SJL) showed minimal response (Margetts et al., 2013).

Of note, it is apparent that MMT may not just be of relevance
to peritoneal fibrosis and that a similar process occurs in other
organs/tissues and possibly re-activating developmental programs
in the adult. For instance, Li et al. (2013), using conditional cell
lineage murine studies, demonstrated that hepatic stellate cells
and myofibroblasts are derived from mesothelial cells expressing
WT-1 during liver fibrogenesis. In addition, a study using
similar techniques in mice found that WT-1 positive pleural
mesothelial cells migrated into the lung parenchyma leading to
lung fibrosis following TGF-β1 treatment (Karki et al., 2014).
Lansley and colleagues (Lansley et al., 2011) also demonstrated
that mesothelial cells undergo MMT during differentiation into
osteoblast-like and adipocyte-like cells in culture, and suggested
mesothelial cells may have progenitor/stem cell-like properties.

The Mesothelial Cell in Fibrotic Disorders

Pleural Fibrosis
Pleural fibrosis resembles fibrosis in other tissues and may be the
consequence of an organized hemorrhagic effusion, tuberculous
effusion, empyema, asbestos-related pleuracy and chronic
inflammatory conditions such as systemic lupus erythematosus,
rheumatoid arthritis, and scleroderma (Idell, 2008; Schneider
et al., 2012). In addition, certain medications have also been
associated with the development of pleural fibrosis including
procainamide, hydralazine, isoniazid (Huggins and Sahn, 2004),
and targeted therapies such as tyrosine kinase inhibitors imatinib
and dasatinib (Barber and Ganti, 2011). Pleural fibrosis can
manifest itself as discrete localized lesions (pleural plaques) or
diffuse pleural thickening and fibrosis. The mesothelial cell plays
an important role in the fibrotic process through interaction
with inflammatory cells, profibrotic mediators and both the
coagulation and fibrinolytic pathways.

Fibrin is not normally present in the pleural space but rapidly
accumulates in response to pleural injury. This was shown in an
experimental rabbit model using intrapleural administration of
tetracycline (TCN) to induce an acute pleural injury. Fibrin coated
the pleural surfaces soon after injury and induced a peripheral
pneumonitis with an exudative pleural effusion, leading to the
formation of fibrinous adhesions within the exudative effusion
(Strange et al., 1995; Idell et al., 1998, 2002). These fibrinous
adhesions were rapidly remodeled with deposition of collagen
within a few days (Miller et al., 1999). This model parallels the
temporal course of loculation and fibrosis often observed in
patients with complicated parapneumonic effusions (Light, 2003).

Fibrinolytic therapy, predominantly with streptokinase and
urokinase (Bergh et al., 1977; Bouros et al., 1997; Chin and
Lim, 1997), is often used for pleural loculations associated
with parapneumonic effusions or hemothoraces (Colice et al.,
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2000). The rapid appearance of intrapleural fibrin resembles
fibrin deposition within the lung which can lead to accelerated
pulmonary fibrosis, for example in severe cases of acute
respiratory distress syndrome (ARDS; Idell, 1995). TF is released
locally by mesothelial cells and other resident and inflammatory
cells into the pleural space (Drake et al., 1989; Idell et al., 2001)
together with various coagulation factors including TFPI.

Although the primary target cell for pleural fibrosis is thought
to be the subpleural fibroblast, studies have shown the importance
of mesothelial cells in the pleural fibrotic response. A number
of agents can induce fibrosis, including infection, radiation, and
inorganic particles such as talc and asbestos (Dail and Hammar,
1994; Rom, 1998a,b). It is unclear how asbestos fibers induce
subpleural fibroblasts and mesothelial cells to synthesize collagen
but it is likely to be through the generation of cytokines, growth
factors, and reactive oxygen species (ROS). ROS are cytotoxic and
can stimulate fibroblasts to synthesize ECM components (Kamp
and Weitzman, 1999) as well as induce expression of genes for
profibroticmediators suchasTGF-β andTNF-α (Massague, 1996).

TGF-β is considered the most potent pro-fibrotic cytokine
with a central role in the pathogenesis of many fibrotic diseases
including pleural fibrosis. TGF-β stimulates collagen synthesis by
mesothelial cells (Lee et al., 2003b), is present within pleural fluids
in fibrosing forms of pleural injury (Lee and Lane, 2001) and
induces pleural fibrosis when administered intrapleurally (Lee
et al., 2000, 2003b). In addition, TGF-β lowers the ratio of matrix-
degrading metalloproteinase-1 (MMP-1) to tissue inhibitors of
metalloproteinases (TIMPs), promoting ECM accumulation (Ma
et al., 1999). TGF-β has also been implicated in talc-induced
pleurodesis, the most commonly used agent to induce pleurodesis
(Lee et al., 2003a). Patients with tuberculous pleurisy also have
elevated pleural fluid levels of TGF-βwhichwas shown to correlate
with increased levels of pleural thickening, an index of pleural
fibrosis (Seiscento et al., 2007).

Peritoneal Fibrosis Caused by Peritoneal Dialysis
Peritoneal dialysis (PD) is an effective renal replacement therapy
used for patients with end stage kidney disease. The major
disadvantage associated with this therapy is that PD solutions are
bio-incompatible and contribute to the development of peritoneal
fibrosis in most patients within two years of PD commencing
(Garosi and Di Paolo, 2000, 2001; Yung and Chan, 2012). During
PD, the mesothelial cells that line the peritoneum are exposed
to a hypertonic environment with high glucose levels. As a
consequence, mesothelial cells undergo structural and functional
alterations that contribute to the development of fibrotic lesions
in the peritoneum (Topley, 1998; Witowski et al., 2001; Lai and
Leung, 2010; Yung and Chan, 2012).

Peritoneal biopsies taken from PD patients show a reactive
mesothelium with enlarged, weakly adhesive, degenerated
mesothelial cells with a reduced number of microvilli and
alterations in the number of endoplasmic reticulum and
micropinocytotic vesicles (Williams et al., 2002; Yung and Chan,
2012). In many patients, there is denudation of the mesothelial
layer which is associated with vasculopathy and submesothelial
thickening (Devuyst et al., 2002; Williams et al., 2003; Yung
and Chan, 2009; Tomino, 2012). PD patients with subsequent

peritonitis show evenmore pronouncedmesothelial degeneration
and a more prominent exfoliation of mesothelial cells (Verger
et al., 1983; Di Paolo et al., 1986; Yung and Chan, 2012). In these
patients, there is also an acute infiltration of inflammatory cells
into the submesothelium that contribute to the thickening of this
layer (Margetts et al., 2002b; McLoughlin et al., 2004; Dioszeghy
et al., 2008).

Alterations to the structure of the peritoneummay be attributed
to changes in mesothelial cell proteoglycan production (Yung
et al., 2004; Osada et al., 2009; Tomino, 2012). Proteoglycans are
anionic macromolecules and important components of ECM in
the peritoneum (Iozzo, 2005). Mesothelial cells produce a number
of small proteoglycans including perlecan, biglycan, and decorin
(Yung et al., 1995, 2007; Yung and Chan, 2009). As PD progresses,
there is an induction of versican while decorin and perlecan
levels are reduced. These changes are associated with peritoneal
ECM remodeling and expansion of the submesothelium (Yung
et al., 2004; Osada et al., 2009). However, direct evidence for a
role of these proteoglycans in serosal remodeling has yet to be
demonstrated.

The chronic exposure of peritoneal mesothelial cells to high
levels of glucose and glucose degradation products contributes
to loss of the mesothelial layer by decreasing mesothelial cell
viability (Witowski et al., 2001) and altering normal mesothelial
cell function through the induction of proinflammatory factors
such as vascular endothelial growth factor (VEGF) and TGF-β1
(Ciszewicz et al., 2007; Baroni et al., 2012). VEGF is associated
with neoangeogenesis (Combet et al., 2000; Szeto et al., 2004; Yung
and Chan, 2012) and the down-regulation of the mesothelial
cell intercellular tight junction proteins ZO-1, occludin, and
claudin-1 (Lai and Leung, 2010) while TGF-β1 is associated with
lymphangiogenesis (Kinashi et al., 2013), the promotion of MMT
(Margetts et al., 2005; López-Cabrera, 2014), and the production
of collagen type I, III (Kim et al., 2008), and IV (Mateijsen et al.,
1999).

The fibroblast-like characteristics induced in mesothelial cells
that have undergone MMT allow these cells to invade into the
submesothelial stroma where they contribute to angiogenesis,
fibrosis, and ultrafiltration failure (Lai and Leung, 2010). These
cells are often observed in patients who have undergone PD for
more than 12 months (Yanez-Mo et al., 2003). MMT is associated
with polymerization of the actin cytoskeleton and an increase in
hyaluronan (Yung et al., 2000; Yung and Chan, 2007, 2009) and
is mediated by proinflammatory factors such as IL-1β, EGF, HGF
(Yung andChan, 2009), AGEs and their receptorRAGE (DeVriese
et al., 2006). The prolonged expression of these factors during
peritoneal inflammation delays the regression of mesothelial cells
back to their epithelial phenotype thereby promoting fibrotic
changes in the peritoneum. Other factors recently identified to
be associated with MMT include MCP-1 (Lee et al., 2012), ROS
(Liu et al., 2012), and the small non-coding regulatorymicroRNAs
miR-589 (Zhang et al., 2012), miR-30a (Zhou et al., 2013), miR-
30b (Liu et al., 2014a), and miR-200c (Zhang et al., 2013).

Recently, JAK/STAT signaling was also identified as a mediator
of PD-induced peritoneal membrane changes (Dai et al., 2014).
Twice daily PD fluid infusions in rats for 10 days induced
phospho-JAK, mesothelial cell hyperplasia, inflammation,
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fibrosis, and hypervascularity. These changes were attenuated
following the administration of a JAK1/2 inhibitor. These findings
are consistent with recent observations in a mouse model of lung
fibrosis where blocking STAT3 attenuated the fibrotic response
(O’Donoghue et al., 2012). Therefore, targeting the JAK/STAT
signaling pathway may be a novel therapeutic strategy used
to reduce PD related peritoneal changes that contribute to the
development of peritoneal fibrosis in patients.

The processes by which the peritoneum repairs following PD
associated injury are yet to be fully defined. Viable mesothelial
cells are exfoliated into the peritoneal cavity during PD and it
is likely that these cells re-populate and restore the damaged
mesothelium (Yung and Chan, 2009; Tomino, 2012; Yung and
Chan, 2012). Therefore it has been proposed that mesothelial cell
transplantation could be used therapeutically to regenerate the
PD injured mesothelium. Studies have shown that mesothelial
cell transplantation is feasible in animals and humans (Di Paolo
et al., 1991; Hekking et al., 2003) and that genetically modified
mesothelial cells can also be used to deliver proteins critical to
the healing process (Nagy et al., 1995). However, in one study the
transplantation of mesothelial cells in rats was shown to activate
the peritoneum and induce inflammation (Hekking et al., 2005)
and recently, the morphology of the mesothelial cell was shown
to be important for cell therapy used for peritoneal regeneration
(Kitamura et al., 2014). Mesothelial cells harvested from the PD
effluent of patients were separated based on morphology into
epithelial-like and fibroblastic-like cells and transplanted into
nude mice with an injured peritoneum. The mice transplanted
with epithelial-like cells showed very few adhesions and exhibited
no thickening of the peritoneum. However, transplantation
of fibroblast-like cells did not inhibit peritoneal adhesion or
thickening, highlighting the need for further optimization before
this approach can be trialed in patients. Other cell sources
that may be used for mesothelial repair include bone marrow
derived cells (Sekiguchi et al., 2012), adipose-derived stem cells
(Kim et al., 2014), and mesenchymal stem cells (Wang et al.,
2012; Ueno et al., 2013). Alternative therapeutic strategies being
investigated to reduce mesothelial cell-mediated inflammation
and prevent peritoneal fibrosis include targeting TGFβ1-mediated
mechanisms (Hung et al., 2001, 2003; Yung et al., 2001; Margetts
et al., 2002a; Fang et al., 2006; Tomino, 2012; Jang et al., 2013),
reducing mesothelial cell production of fibronectin (Tong et al.,
2012; Zhang et al., 2014) developing a more bio compatible PD
solution (Bajo et al., 2000; Le Poole et al., 2005), altering PD daily
dwelling time (Lee et al., 2014), and stimulating fibrinolytic agents
(Haslinger et al., 2003).

Postoperative Adhesions
The formation of postoperative intra-abdominal and pelvic
adhesions is a significant clinical and surgical problem. Adhesions
are bands of fibrous tissue that form between apposing tissue
and organs usually arising as a result of injury sustained during
surgery (Dizerega and Campeau, 2001). They are a leading cause
of chronic pelvic pain, intestinal obstruction, and female infertility
(Rajab et al., 2009). The most severe consequence of adhesion
formation is small bowel obstruction which can occur up to 20
years or more after the initial surgical procedure (Isaksson et al.,

2014) and is associated with mortality rates ranging between
3% and 30% (Ellis, 1997). Postoperative adhesions have been
reported to occur in up to 93% of patients undergoing abdominal
surgery (Ellis, 1997). A substantially increased risk of post-
surgical complications is also likely where adhesions are present
as a result of previous surgery (Trochsler and Maddern, 2014).

Adhesions are thought to occur when there is dysregulation
of the normal serosal healing process (Dizerega and Campeau,
2001). Many cell types including macrophages, lymphocytes,
granulocytes, and fibroblasts play important roles in serosal repair
(Brochhausen et al., 2012a), however themesothelial cell is central
to this process but may also play a critical role in the development
of adhesions following injury (Attard and MacLean, 2007). As
discussed, mesothelial cells secrete a variety of coagulation and
inflammatory mediators following serosal injury (Brochhausen
et al., 2012b) and it is these factors that are the essential inducers
of adhesion development.

Following serosal trauma (such as during surgery), the
mesothelial layer is disrupted resulting in brief vasoconstriction
followed by increased vascular permeability and chemotaxis of
inflammatory cells to the site of injury (Alonso Jde et al.,
2014). Mesothelial cells stimulate fibrin deposition through the
production of TF and themselves become embedded in the
developing fibrin scaffold (Boland and Weigel, 2006). Under
normal conditions the fibrin is degraded following release of
fibrinolytic mediators from the mesothelial cells, such as tPA, but
if there is a persistent fibrinolytic imbalance, there is subsequent
deposition of ECM components by mesothelial cells, fibroblasts,
and myofibroblasts. Ultimately this results in the formation of
fibrin bands between tissues and organs which then become
organized into fibrous adhesions (Alonso Jde et al., 2014).

Detrimental effects of surgical techniques on peritoneal
mesothelial cells have been reported which are thought to
contribute to adhesion formation (Brochhausen et al., 2012a). For
example, use of the common insufflation agent carbon dioxide gas
(CO2) as well as the amount of insufflation pressure used during
laparoscopy can result in morphological and biochemical changes
to mesothelial cells and can cause hypoxia and dehydration
(Molinas and Koninckx, 2000; Ott, 2001). Therefore, several
changes have beenmade to surgical techniques in order to prevent
the mesothelial cell denudation and bleeding that also form the
basis of peritoneal adhesion formation. These have included
development of new microsurgical techniques (minimally
invasive surgery), the use of specialized equipment and
unpowdered gloves (Brochhausen et al., 2012a) and humidifying
and changing the temperature and composition of the gases used
for laparoscopy (Schlotterbeck et al., 2011; Binda et al., 2014).

Currently, there are no definitive strategies to prevent the
formation of adhesions during surgery. Many methods have been
developed and tested using a variety of post-surgical adhesion
animal models (Verco et al., 2000; Gorvy et al., 2005; Lee et al.,
2005; Oh et al., 2005; Kement et al., 2011) as well as in human
clinical trials (Pados et al., 2010) but with varying degrees of
success. Addition of surgical barriers that provide anti-adhesive
separation of denuded serosal tissues have proved beneficial but
none completely prevent adhesion development in all patients
(Alonso Jde et al., 2014).
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Strategies targeting the pathophysiological mechanisms
involved in dysregulated serosal repair, such as the coagulation
and inflammatory pathways, have also been trialed in an effort to
prevent adhesion formation. Many anti-inflammatory and anti-
coagulant substances have been used both systemically and locally
including steroids (Avsar et al., 2001), cyclo-oxygenase inhibitors
(Lee et al., 2005; Oh et al., 2005), heparin (Kutlay et al., 2004;
Kement et al., 2011), and tPA (Dorr et al., 1990; Irkorucu et al.,
2009) but to date, none of these agents have shown significant
promise (Brochhausen et al., 2012a).

Studies have also examined the effect of mesothelial cell
transplantation on preventing adhesion formation and this
approach has shown some promise (Bertram et al., 1999;
Takazawa et al., 2005; Asano et al., 2006; Kawanishi et al., 2013).
However, how this approach can be used routinely in patients
still needs to be determined. Clearly a better understanding of the
mechanisms underlying adhesion formation is therefore critical to
developing novel approaches to prevent their formation.

Idiopathic Pulmonary Fibrosis
Interstitial lung diseases (ILDs) represent a collection of
heterogeneous parenchymal lung disorders characterized by
inflammation and fibrosis that lead to impairment of gas-
exchange in the lungs. Approximately 50% of ILDs have unknown
etiology, of which idiopathic pulmonary fibrosis (IPF) is a
well-defined subset.

Histologically, the lungs in IPF demonstrate a pattern of
usual interstitial pneumonia, which includes septal thickening,
honeycombing, fibroblastic foci, and minimal interstitial
inflammation (Raghu et al., 2011). IPF occurs predominantly
frommiddle age onwards affecting five million people worldwide
(Meltzer and Noble, 2008). It is a debilitating and ultimately
lethal disease, with a mortality rate worse than that seen with
many cancers (Nicholson et al., 2000). It has a median survival of
only 2–3 years from diagnosis (Raghu et al., 2011), and there is
currently no known cure. Recent phase III trial results showed that
current drugs such as pirfenidone and nintedanib could only slow
the progression of the disease (King et al., 2014; Richeldi et al.,
2014). Pirfenidone works through downregulation of growth
factor and procollagen I and II production and nintedanib is a
small molecule tyrosine kinase inhibitor that blocks receptors for
VEGF, PDGF, and FGF.

The pathogenesis of IPF remains poorly understood although
themechanisms driving the fibrotic response are often considered
to follow a similar pathway to other forms of tissue fibrosis where
there is a chronic progression of the repair response resulting
in excessive deposition of ECM without resolution (Thannickal
et al., 2004).

In IPF, the myofibroblast, characterized by α-SMA and
vimentin expression, is recognized as the effector cell contributing
to the deposition of ECM (Kuhn and McDonald, 1991),

mainly types I and III collagen (Madri and Furthmayr, 1980).
However, the cellular origin of the lung myofibroblast remains
controversial and a combination of different cell types likely
serves as precursors of myofibroblasts. A number of cellular
sources of myofibroblast have been proposed, including existing
peribronchial and perivascular adventitial fibroblasts, alveolar
epithelial cells, bone marrow-derived cells, tissue-resident cells,
and pericytes (Phan, 2002; Hinz et al., 2007; Greenhalgh et al.,
2013).

As previously discussed, mesothelial cells can be induced to
undergo MMT and transition into myofibroblasts. Decologne
and colleagues (Decologne et al., 2007) used adenoviral gene
transfer of TGF-β to the pleural mesothelium in rats and showed
that as well as development of a progressive pleural fibrosis, the
pleural fibrosis extended into the lung parenchyma supporting
a possible role for mesothelial cells in pulmonary fibrosis. More
recentmousemodels of fibrogenic lung injury have also supported
this observation by showing that mesothelial cells invade the
lung parenchyma and adopt a myofibroblast phenotype after
intratracheal TGF-β1 administration, leading to fibrosis (Zolak
et al., 2013; Karki et al., 2014). This was recently shown to be
mediated through the TGF-β1-Smad2/3 signaling pathway (Chen
et al., 2015). Blocking this pathway using novel TGF - β regulators,
such as the nuclear receptor NR4A1, are likely to block MMT and
attenuate tissue fibrosis (Palumbo-Zerr et al., 2015).

As a further validation of the in vitro and in vivo findings,
immunohistochemical analysis of human IPF lung sections
showed Wilms tumor-1 (WT-1)-positive mesothelial cells in
the pleura and lung parenchyma, which corresponded with
immunostaining of the mesothelial cell marker calretinin (Zolak
et al., 2013; Karki et al., 2014). In contrast, lung tissue sections
from patients with chronic obstructive pulmonary disease, cystic
fibrosis, and pulmonary arterial hypertension were all negative for
WT-1. Collectively, these studies indicate potential contributions
of pleural mesothelial cells as a source of myofibroblast in IPF and
possibly a new avenue to identify therapeutic targets.

Conclusion

Mesothelial cells clearly play an important role in serosal
homeostasis and repair following injury, but following a
breakdown in the normal regulatory mechanisms, mesothelial
cells can also contribute to the development of tissue fibrosis. The
mechanisms underlying this process are slowly being elucidated
but more research is needed to investigate how mesothelial cells
interact with their local environment and to identify ways to limit
fibrosis and promote normal repair.
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