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Abstract In this paper, we present a message authentication scheme based on cryp-
tographically secure cyclic redundancy check (CRC). Similarly to previously proposed
cryptographically secure CRCs, the presented one detects both random and malicious errors
without increasing bandwidth. The main difference from previous approaches is that we
use random instead of irreducible generator polynomials. This eliminates the need for
irreducibility tests. We provide a detailed quantitative analysis of the achieved security
as a function of message and CRC sizes. The results show that the presented scheme is
particularly suitable for the authentication of short messages.
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1 Introduction

Today minimal or no security is typically provided to low-end low-cost wireless devices
such as sensors or RFID tags in the conventional belief that the information they gather is
of little concern to attackers [45]. However, case studies have shown that a compromised
sensor can be used as a stepping stone to mount an attack on a wireless network [37]. For
example, in the attack described in [37], wireless tire pressure sensors were hacked and used
to access the automotive system.

Future wireless networks are expected to support security-critical services related to
industrial automation, traffic safety, smart transport, smart grid, e-health, etc. The value of
the information to which the low-end devices will have access via future wireless networks
is expected to be much greater than the one today, hence the incentives for attackers will
increase [17]. As processing power and connectivity become cheaper, the cost of perform-
ing an attack drops. The damage caused by an individual actor may not be limited to a
business or reputation, but could have a severe impact on public safety, national economy,
and national security.

Many low-cost wireless devices work under severe resource constrains such as limited
battery and computing power, little memory, and insufficient bandwidth. These devices
must dedicate most of their available resources to executing core application functionality
and have little resources left for implementing security. To satisfy their constrains, it might
be necessary to reuse existing functions, e.g. by combining coding techniques (scrambling,
checksums, forward error correction (FEC)) with cryptographic techniques (encryption,
integrity protection). In particular, functional similarities between error detection and data
integrity protection can be exploited to combine these functions in one.

Clearly, data integrity protection can be implemented by using some n-bit message
authentication code, e.g. keyed hash message authentication code (HMAC) [4] or cipher
block chaining message authentication code (CBC-MAC) [7], on the top of an error-
detecting code, e.g. n-bit cyclic redundancy check (CRC). However, such an approach
expands the message by n bits and requires a separate encoding/decoding engine which is
more complex than the CRC encoding/decoding engine.

On the other hand, if we simply replace an n-bit CRC with an n-bit HMAC or CBC-
MAC, we cannot guarantee the detection of the same type of random errors as the CRC.
For example, the detection of n-bit burst errors cannot be guaranteed. This may have a
negative impact on the reliability of communication links. Only if we make the conventional
CRC cryptographically secure, can we assure a certain level of security without sacrificing
reliability.

The latter motivated the development of cryptographically secure CRCs. The core idea
is to make the CRC generator polynomial variable and secret. The CRC presented by
Krawczyk [27] is based on irreducible generator polynomials. The approach described
in [15] uses a product of irreducible polynomials. The CRC proposed in [14] uses generator
polynomials of type (1 + x) p(x), where p(x) is a primitive polynomial. In all three cases,
testing for irreducibility or primitivity is required, which is either time or memory con-
suming. Selecting an irreducible degree-n polynomial at random requires either selecting
at random a degree-n polynomial (O (n) time) and running a test for irreducibility (€2 n?
time! [21]), or selecting at random a degree-n polynomial from a database of irreducible

IThere are asymptotically better algorithms for testing irreducibility, approaching O(n?) [12], but their
usefulness for small n, relevant in the context of this paper, is unclear.
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degree-n polynomials (roughly 2" /n space). Note that the irreducibility test has to be done
during key agreement, i.e. it incurs delay before the communication can start. Therefore, it
is desirable to minimize the time spent on doing it as much as possible.

In this paper, we present a cryptographically secure CRC based on any randomly selected
generator polynomial, with no requirements on irreducibility. We provide a detailed quanti-
tative analysis of the achieved security as a function of message and CRC sizes. To the best
of our knowledge, no security analysis for the general case of reducible polynomials has
been made so far. This might be due to the fact that the evaluation involves estimating the
maximum number of reducible polynomials which can be constructed from any multiset of
irreducible polynomials of a given size, which is a non-trivial task.

The paper is organized as follows. Section 2 gives a background on hash functions and
describes the basics of CRC codes. In Section 3, we introduce two new families of cryp-
tographically secure CRC hash functions. Section 4 analyzes error-detecting capabilities of
hash families. In Section 5, we present the security analysis of hash families. Section 6
shows experimental results. Section 7 describes related work. Section 8 concludes the paper
and discusses open problems.

2 Preliminaries
2.1 Notation
Throughout the paper, we associate each binary string L € {0, 1} representing an [-bit
binary message with a polynomial L (x) over the Galois field of the order 2, G F (2), so that
the coefficients of L (x) correspond to the bits of L. We use deg(L) to denote the degree of
the polynomial L(x).

We use a er A to indicate that the element a is taken uniformly at random from the set
A. The term Pry, is used to denote the probability of the event E(h) where h eg H and H
is a set of hash functions, usually implicit.
2.2 Hash functions

In this section we describe properties of hash functions which are used in the sequel.

Definition 1 [27] An (I, n)-family of hash functions H is a set of functions 4 that map the
set of binary strings of length / into the set of binary strings of length n.

The hash functions considered in this paper are linear relative to the exclusive-OR
operation. This property simplifies their analysis.

Definition 2 [27] A family of hash functions H is @-linear if, for all messages L and L,
and forall h € H,

h(L1 @ L2) = h(L1) ® h(L2),
where “@®” is the bitwise exclusive-OR (XOR).

Another important property of some hash functions is the ability to map elements into
their images in a balanced way.
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Definition 3 [27] A family of hash functions H is e-balanced if
VL #0,VYa € {0, 1}" : Pry[h(L) = a] < €.

2.3 Message authentication

A message authentication algorithm accepts as input a secret key and a message to be
authenticated and outputs an authentication tag. The tag protects both, message data
integrity and message authenticity.

It is known that hash functions can be combined with one-time pads to construct strong
authentication algorithms [46]. In this case, the secret key consists of the description of a
particular hash function 7 €g H drawn randomly from an (/, n)-family of hash functions
H and a random pad s €g {0, 1}".

In the definition below, it is assumed that the adversary knows the family of hash func-
tions H, but not the particular value of & or the pad s. As mentioned in [27] the name
“otp”-secure is intended to stress that importance of the one-time pad for the security of the
authentication scheme.

Definition 4 [27] A family of hash functions H is e-otp-secure if, for any message L, no
adversary that has L and its hash tag t = h(L) & s, where h g H and s € {0, 1}", can
find L’ # L and t' = h(L') @ s with probability larger than €.

Note that the success probability of an adversary that can modify a single transmitted
message remains € even if the adversary has access to more than one pair of messages and
tags, provided that truly random pads s are used for computing the tags and these pads are
changed for every message [27]. If this holds, then the authentication tags look completely
random and therefore leak no information on the value of 4. If the adversary is able to
modify k of the transmitted messages, then the success probability is at most ke [27].

In most practical applications, pseudo-random pads generated from a secret seed shared
by the communicating parties rather than truly random pads of the size of the hash output
are used. In this case, the unconditional security of the authentication scheme in Defini-
tion 4 reduces to the security of the pseudo-random generator producing the pads and the
computational power of the adversary is assumed to be bounded depending on the security
model of the pseudo-random generator [27].

The following theorem characterizes e-otp-secure families of hash functions.

Theorem 5 [27] A necessary and sufficient condition for a family of hash functions H to
be e-otp-secure is that

VLi # Ly, Va € {0, 1} : Pri[h(L1) @ h(L>) = a] < e.

For linear families of hash functions, Theorem 5 implies the following result.
Theorem 6 [27] If H is @-linear, then H is e-otp-secure if and only if H is e-balanced.

We use Theorem 6 as the main step in proving the security of the presented authentication
scheme.

2.4 Cyclic redundancy check

A cyclic redundancy check (CRC) is widely used for protecting data communication or
storage against random errors [34]. Many wireless communication standards use CRC.
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For example, IEEE 802.15.4 standard uses 16-bit CRC [24], LTE uses 24, 16 and 8-bit
CRCs [1], and GSM uses 40-bit CRC [19].

To perform n-bit CRC encoding, a message polynomial, L(x), is multiplied by x" and
then divided modulo a generator polynomial g(x) of degree n. The coefficients of the
resulting polynomial

r(x) = L(x) - x" mod g(x)
represent the check bits of the CRC. These check bits are added to L(x) - x" to get the
resulting CRC codeword L(x) - x" + r(x).

The CRC decoding is usually done by dividing the received message polynomial modulo
the generator polynomial g(x) and comparing the coefficients of the resulting remainder to
the received CRC check bits [36]. A disagreement indicates an error. It is well-known that
if an irreducible generator polynomial of degree n is used as a generator polynomial, then
the resulting CRC detects all burst errors of length n or less [34].

The CRC encoding and decoding can be efficiently implemented using a linear feed-
back shift register (LFSR) [23] having g(x) as its connection polynomial. There are many
efficient techniques for speeding up the computation of CRC [32, 33, 38].

Traditional CRCs are good at detecting random errors. However, they are not suitable for
detecting malicious errors. An adversary who knows the generator polynomial g(x) may
simply substitute the original message L(x) by another message L'(x), encode L'(x) as
usual into the codeword L’(x) - x™ + r(x), where r(x) = L'(x) - x" mod g(x), and then
submit the resulting codeword. The receiver will not be able to distinguish the codeword
L'(x) - x" 4+ r(x) from the codeword received from a legitimate sender.

3 Two families of cryptographically secure CRC hash functions

In this section, we define two new families of cryptographically secure CRC-based hash
functions.

Definition 7 (Family Hg) For any binary message L of length / and any polynomial g(x) of
degree n over G F'(2), a hash function /4 (L) is defined as the coefficients of the polynomial

he(L) = L(x) - x" mod g(x).
The (I, n)-family Hp is a set of all hash functions &g, Hg = {hy : {0, 1} — {0, 1}").

Since each degree-n polynomial over G F(2) defines one member of the family Hr and
there are 2" degree-n polynomials over G F'(2), the size of the family Hg is 2".
To authenticate a message L using the hash function family Hg, a sender computes the
authentication tag ¢ as
t=hg(L) ®s, (1

where h, €gp Hg and s €g {0, 1}", appends ¢ to L, and transmits the message and the
appended tag. A receiver authenticates a received message L’ (potentially different from L)
by re-computing the tag for L’ and comparing the received and the re-computed tags. A
disagreement implies an error.

Note that the modification of the linear hash function to the affine one is necessary to pre-
vent an attacker from injecting all-0 messages. Without such a modification, the hash value
of an all-0 message would always be 0, independently of the polynomial g(x). The reader
familiar with e.g. the UIA2 MAC of the 3G standard will recognize this type of construction.
In that case, the encryption pad s is generated by the SNOW3G stream cipher [18].
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We also consider separately a special case of the Definition 7 when the generator polyno-
mial has a non-zero constant term. This case is particularly interesting because, as we show
in the next section, CRCs based on such polynomials detect the same type of burst errors as
CRCs based on irreducible polynomials.

Definition 8 (Family Hgc) For any binary message L of length [ and for any polynomial
q(x) of degree n over GF(2) with a non-zero constant term, a hash function hg,(L) is
defined as the coefficients of the polynomial

hq(L) = L(x) - x" mod g (x).
The (I, n)-family Hgc is a set of all hash functions h,, Hrc = {hy : {0, 1} = {0, 1}").

Since each degree-n polynomial over G F(2) with a non-zero constant term defines one
member of the family Hgc and there are 2"~! degree-n polynomials over G F(2) which
have a non-zero constant term, the size of the family Hgc is o=l

Similarly to the family Hp, the authentication tag for the family Hgc is computed as

t=hy(L)®s, 2)

where hy €g Hrc and s €g {0, 1}".

The computation of CRCs defined above is based on the same operation of polynomial
modular division as the traditional CRCs except that, in our case, the generator polynomial
has to be changed to appear random to an adversary. Therefore, an LFSR implementing
encoding and decoding for the cryptographic CRC needs re-programmable connections.
Techniques for implementing re-programmable LFSRs are known [9]. Re-programmable
LESRs are used, for example, in applications which support multiple CRC standards.

Note that restricting generator polynomials to polynomials with non-zero constant terms
does not complicate the implementation of CRC encoding and decoding in any way. The
only difference is that, for polynomials with non-zero constant terms, the LFSR connec-
tion corresponding to the constant-one term of the polynomial is made fixed rather than
programmable.

4 Analysis of error-detecting capabilities

It is well-known that a CRC based on an irreducible generator polynomial of degree n
detects all burst errors on length n or less [34]. Next, we show that a cryptographically
secure CRC based on a reducible generator polynomial of degree n with a non-zero constant
term detects the same type of errors.

Theorem 9 A CRC based on a reducible generator polynomial of degree n > 1 with a non-
zero constant term detects the same type of burst errors as a CRC based on an irreducible
generator polynomial of degree n.

Proof Let L be an [-bit message and let the CRC check bits be computed according to the
Definition 8 using a reducible degree-n generator polynomial ¢ (x) with a non-zero constant
term. Any k-bit burst error e, 0 < k < n, can be described by a polynomial of type
e(x) =x' - f(x) (3)
where
F)y=xkT g k2 x4,
fori € {0,1,...,k—1}and j € {0, 1,...,[ +i}.
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The error e is not detected by the CRC if and only if e(x) is divisible by the generator
polynomial g (x). Clearly ged(x?, q(x)) = 1. So, e(x) is divisible by ¢ (x) if and only if
f (x) is divisible by ¢ (x). However, this is not possible since deg( f) < n. Therefore, a CRC
based on a reducible degree-n generator polynomial with a non-zero constant term detects
all burst errors on length n or less. O

Theorem 9 shows that, from the point of view of correcting burst errors, no advantage
is lost if an irreducible polynomial is replaced by a reducible polynomial with a non-zero
constant term.

5 Security analysis

In this section, we analyze the security of the new families of hash functions. We assume
a typical setting in which the sender and the receiver transmit messages over an unsecure
channel where messages can be maliciously modified [43]. The sender and the receiver
share a secret key which is unknown to the adversary. In our case, the key consists of the
description of a particular generator polynomial g(x) (respectively, g(x)) drawn randomly
from the set of all possible degree-n polynomials (all possible degree-n polynomials with a
non-zero constant term) over G F(2) and a random pad s € {0, 1}".

In order to prove the security of the hash function families Hg and Hgc for implemen-
tation for the message authentication schemes (1) and (2), respectively, in this section we
show that these families are e-otp-secure with € being exponentially small in the length of
the hash value. By Definition 4, if a hash family is e-otp-secure, then the success proba-
bility for an adversary to modify a message is at most €. Throughout the paper, when we
say “attack success probability”, we mean the probability that an adversary can successfully
modify a message according to the scenario described by Definition 4.

In the following section we quantify € for the hash function families Hr and Hgc.

5.1 Quantifying attack success probability

An adversary can successfully replace a message and a tag pair (L, t) by another pair
(L', h"), L' # L, only if for the hash function » €gx H and pad s €g {0, 1}" used by
the communicating parties it holds that 1 = h(L) @ s and ¢’ = h(L’) & s, or equivalently
@t =h(L) @ h(L") [27]. Thus, the success probability of the adversary is bounded by

max Pry[h(L) ® h(L) = a]
L.L'a

where a = t @ t'. By Theorem 6, for linear hash functions the above condition can be
simplified to

max Pry[h(L) = a]

L,a

for all L # 0. Let us analyze how this probability can be maximized for the hash function
families Hg and Hgc.

By Definition 7, for the hash function family Hg, the success probability is proportional
to the number of degree-n polynomials, g(x), that divide the polynomial L(x) - x" — a(x).
So, in order to find € for Hg, we need to estimate the maximum number of distinct degree-
n polynomials that can be constructed from the irreducible factors of a degree-(n + [)
polynomial.
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Similarly, by Definition 8, for the hash function family Hgc, the success probability is
proportional to the number of degree-n polynomials with a non-zero constant term, g (x),
that divide the polynomial L(x) - x" — a(x). So, in this case we need to find the maximum
number of distinct degree-n polynomials with a non-zero constant term that can be con-
structed from the irreducible factors of a degree-(n +[) polynomial. Note that all irreducible
factors of a polynomial with a non-zero constant term have a non-zero constant term.

We start with the case of the hash function family Hg. Let P be a multiset of irreducible
polynomials over G F'(2). In a multiset, the same element may repeat more than once. By
mult(p) we denote the number of occurrences of a polynomial p in P. By size(P) we
denote be the sum of degrees of all elements of P. For example, for P = {x, x, x + 1, X2+
x + 1}, mult (x) = 2 and size(P) = 5.

Let N (n; P) denote the number of distinct degree-n polynomials over G F (2) which can
be constructed by multiplying a subset of the elements of P. For example, if P = {x, x, x +
Lx24+x+ 1} and n = 2, we can construct xz,x(x + 1) and x2+x+1,s0 N@2; P)=3.
N(O; P) is defined to be 1 for any P. Since each polynomial has a unique factorization
into irreducible polynomials, N (n; P) can be computed by counting the number of distinct
combinations of elements of P whose degrees sum up to n. We address this problem in
Section 5.2.

For a given n, we want to find a multiset of irreducible polynomials P,,,, such that

Nn; Ppayx) = max N(n; P).
VP:size(P)=size(Ppax)

If P,.x is known, we can quantify the attack success probability for the hash function

family Hp as follows.

Theorem 10 For any values of | and n, the (I, n)-family of hash functions Hg is €1-otp-

secure for
N(n; P
61 E ( max)
2n

, “

where size(Ppay) =1+ n.

Proof A family of hash functions is e-otp-secure if it is @-linear and e-balanced. The family
of hash functions Hg is @-linear because for all messages L; and L, and for all 1, € Hg,
we have hg(L1 © Ly) = hg(Ly1) @ h(L3).

To show that the family Hpg is also e-balanced, we observe that, on one hand, for any
degree-n polynomial g(x) over G F'(2), any non-zero message L of length / and any string
a of length n, hg(L) = a if and only if L(x) - x" mod g(x) = a(x). On the other hand,
L(x) - x" mod g(x) = a(x) if and only if g(x) divides L(x) - x* — a(x).

Let f(x) = L(x) - x" — a(x). Obviously, f(x) is a non-zero polynomial of degree less
than or equal to / + n, and g(x) is a polynomial of degree n which divides f(x). On one
hand, there are at most N (n; P, ,x) hash functions in the family Hg that map L into a,
because N (n; P4 ) is the maximum number of distinct degree-n polynomials which can
be constructed from the irreducible factors of any degree-(n + [) polynomial. On the other
hand, the family Hg consists of 2" elements (the number of degree-n polynomials over
G F(2)). Therefore

Prulhg (L) = a] = o).

O

In a similar way we can quantify the attack success probability for the hash function
family H RC-
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Let P* be a multiset of irreducible polynomials with a non-zero constant term over
GF(2). For a given n, let P, be a multiset of irreducible polynomials with a non-zero
constant term such that

N(n; P,,,) = N(n; P¥)

for any other multiset P* with size(P*) = size(P,,

ax

llX)'

Theorem 11 For any values of | and n, the (1, n)-family of hash functions Hgc is €;-otp-
secure for

N(n; P*
& < 0 ) )

where size(P),.) =1 +n.

Proof Similar to the proof of Theorem 10.
In the following subsections we show how to compute N (n; P) and N (n; P*). O

5.2 Number of polynomials which can be constructed from a given set
of irreducible polynomials

Let 7; be the number of distinct irreducible polynomials of degree i over G F'(2). It is well-
known how to compute /; [30].

Let p; j be the jth irreducible polynomial of degree i, forall j € {1, 2, ...., I;}. Note that
for our purpose we only need to enumerate all irreducible polynomials of a given degree.
The order in which they are assigned the index j is not significant. So, whether we assign
p1,1 = x and p12 = x + 1 or vice versa does not change the presented results.

As we mentioned in the previous section, for a given n and a given multiset of irreducible
polynomials P, the number of distinct degree-n polynomials which can be constructed by
multiplying a subset of the elements of P, N(n; P), can be computed by counting the
number of distinct combinations of elements of P whose degrees sum up to 7.

As an example, consider a multiset P which contains five copies of the polynomial
p1,1 = x, five copies of the polynomial p;» = x 4 1 and two copies of the polynomial
P21 = x24x+1.Letn = 5. Then, the following 12 distinct polynomials can be constructed
from P:

Ot + D+ DA+ DA x e+ DA (e + 1)
Bt +x+ D, 2@+ DEEP+x+ D, x(x+ D22+ x+ D, (0 + D224+ x + 1)
x(x24x+ D2 e+ D2 +x + D2
So, N(§5; P) = 12.
Next, we show that N(n; P) can be computed using a recurrence relation given by the
following Lemma. It is obvious that elements p with mult(p) > L@J do not contribute
to the new polynomials of degree n. For this reason the index m in the Lemma is limited by

L deapy -

Lemma 12 For any multiset of irreducible polynomials P, any irreducible polynomial p &
P of degree deg(p) < n, and any m such that 1 <m < L%J, it holds that

N(n; PU{p™) =D N(n—i-deg(p); P),

i=0

where {p™} denotes a multiset containing m elements p.
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Proof By induction on m.
1. Base case: m = 1. We need to prove that
N(n; PU{p}) = N(n; P) + N(n — deg(p); P).
By subtracting N (n; P) from both sides we get
N(n; PU{p}) — N(n; P) = N(n —deg(p); P).

The left-hand side is the difference between the number of distinct degree-n polynomi-
als which can be constructed from the elements of P U {p} and the number of distinct
degree-n polynomials which can be constructed from the elements of P. This differ-
ence is equal to the number of distinct degree-n polynomials which contain p as a factor
with the multiplicity exactly one. Removing factor p from each of such polynomials
yields all possible distinct polynomials of degree n — deg(p) which can be constructed
from the elements of P, i.e. the right-hand side N (n — deg(p); P).

2. Inductive step: Assume the statement holds for m. Next we prove that it holds for
m + 1, i.e. that

m+1
N@; PU{p™1)) = N(n—i-deg(p); P)
i=0
=N, PU{p"}) + N(n— (m+1) - deg(p); P)

where2 <m+1 < L@J.

By subtracting N (n; P U {p"™}) from both sides we get
N(n; PU{p"*) = N@; PU{p™}) = N(n — (m + 1) - deg(p); P).

The left-hand side is the difference between the number of distinct degree-n polynomials
which can be constructed from the elements of P U {p™*!} and the number of distinct
degree-n polynomials which can be constructed from the elements of P U {p"}. The former
accounts for factorizations which contain p with multiplicity from O to mult(p) 4 1. The
latter accounts for all factorizations which contain p with multiplicity from 0 to mult (p).
Therefore, the difference is equal to the number of distinct degree-npolynomials which con-
tain p as a factor with the multiplicity exactly mult(p) + 1. Removing the r p with the
multiplicity mult (p) + 1 from each of such polynomials yield all possible distinct polyno-
mials of degree n — (mult(p) + 1) - deg(p) which can be constructed from the elements of
P, i.e. the right-hand side N (n — (mult(p) + 1) - deg(p); P). O

Finally, we derive a general formula for N (n; P). In the derivations below we denote by
P, a multiset of irreducible polynomials in which the maximum degree of elements is d. To
unify the notation, we allow multiplicities of elements of P to be 0. In this way, any P, can
be uniquely represented by the vector of multiplicities of its elements

Mg, ...,mi, M2 1,...,M2 Lo, Md 1, ... M4 T,),

where m; j = mult(p; ;) foralli € {1,2,...,d}and j € {1, 2, ...., I;}.
There are two irreducible polynomials of degree 1. It is easy to see that

min(my 1, n) +min(mip,n) —n+1,ifmy 1 +mp>n

N Pr) = { 0, otherwise
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There is only one irreducible polynomial of degree 2. From Lemma 12, we can conclude
that

N(n; P) = N(n; P\)+N(n—2; P\)+N(n—4; P)+...+N(@n—2-min (mz,l, L%J) L Py)

or
min(ma,1,5])
Nm;P)= Y  N@n-—2i; P)
i2,1=0
It is straightforward to extend the derivations above to the following result.

Theorem 13 Ford =1

N Py) = {gfin%;e,]r;ﬁg); min(mya,n) —n+1,ifmy+mia>n
and ford > 1
Agi Agp Adly Ay I
N P= Y, > ...) ...> N n—ZZzh,,ﬂ (6)
ia,1=0ig2=0 igq1;=0 1i21=0 h=2 j=1

where
Agy =min (15], ma)

. —di
Ag2 =min (L%J , md,z)

I;—1

n— led]

=1
Ay = mln(LﬁJ md.;)

Ap = min (L7”7S5d13)J ,mg,l) ;
d

I
where S(d 1 i) = Z r- Zi”/
j=1

r=i

All the results derived above also apply to the case of P* being a multiset of irreducible
polynomials with non-zero constant term except that, in Theorem 13, N (n; Pl*) reduces to

o | L ifmio>n
N(m; Pr) = { 0, otherwise.

Lastly, we would like to point out the relation between the problem we addressed in
this section and restricted colored integer partitions.2 The number N (n; P) is equal to the
number of colored partitions of the integer n into arbitrarily many parts such that the integer
i may occur in f (i) different colors (f (i) corresponds to the number of polynomials of
degree i in P) and the number of occurrences of the integer i with a color ¢ € f(i) in
the partition is at most m (i, ¢) (m(i, ¢) corresponds to the multiplicity of the polynomial
with the degree i and color ¢ in P). A lot of work has been done on k-colored partitions,
in which parts may appear in k different colors, see for example [8], or a survey [3]. The

2 An integer partition of a nonnegative integer n with k summands, or parts, is a way of writing n as a sum of
k nonnegative integers, where the order of parts is not significant.
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generalization of k-colored partitions in which at most j colors may appear for a given part
size has been recently presented in [26]. However, we are not aware of any work addressing
the specific case of this paper in which the integer i may occur in f (i) different colors and
the number of occurrences of the integer i with a color ¢ € f (i) in the partition is at most
m(i, ¢). We only know the work of Eger [16] on S-restricted f-colored integer compositions
(where the order of parts is significant) in which all parts lie within a subset S of nonnegative
integers and each integer i € S may take on f (i) different colors.

5.3 Computing N (n; Ppax)

Theorem 13 shows us how to compute N (n; P) for a given n and P. Next we need to find a
vector of multiplicities which maximizes N (n; P) for a given n and size(P). In this section,
we derive some properties which allow us to guide and bound the search.

Property 14 For any n > 0, there exist P4, such that an irreducible polynomial p; with
deg(p;) = i is contained in Py,qyx only if each irreducible polynomial p; with deg(p;) = j,
1 < j <, is contained in P,y at least once.

Proof Suppose that p; € Pyqx and pj & Pyax for some j < i. Then we can replace Pyqx
by P’ such that

P' = (Puax = {pi}™ " ") U {p 00 U gyt (27

where p;_; is any irreducible polynomial of degree i — j. Obviously, size(P’) =
size(Ppqy). Furthermore, for any polynomial of degree n constructed from the elements
of P, which contains pl’.‘ as a factor, we can replace pl’F by p’/‘. . pl’.‘_ e forany 1 <k <

mult(p;). Since p’]‘. & Pyax, this implies that N (n; P') > N(n; Pyay). O

For P, satisfying the condition of Property 14, we can derive a rough upper bound on
the maximum degree of polynomials contained in Py, by computing the smallest integer
d satisfying

size(Ppax) < +2L +35+ ... +dl,. @

We can reduce the search space for P, by first deriving an upper bound on d using (7)
and then removing from the consideration multisets P which do not satisfy the condition of
Property 14. We also can take into account that the order of elements of the same degree in
a multiset does not matter.

Property 15 For any two multisets P and P’ with size(P) = size(P') which are
equivalent up to a permutation of elements of the same degree, N (n; P) = N (n; P’).

As an example, suppose that n = 2 and size(P) = 4. From 4 < 2 4 2 -1 we get
d = 2. There are four possible candidates into Py, defined by the following vectors of
multiplicities (my,1, my,2, m2,1):

(2,2,0),(2,0,1),(0,2,1), (1, 1, 1).

Recall that elements p with mult(p) > Lﬁj do not contribute to new constructions of
polynomials of degree n, therefore vectors (4,0,0), (0,4,0), (3,1,0), (1,3,0), and (0,0,2) are
not included in the list.

By applying Properties 14 and 15, we can reduce the set of candidates into Py, to two:

2,2,0), (1,1, 1).
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Now by using Theorem 13 we can compute N (2; P;) = 3 for Py = {p1.1, p1.1, P1.2, P12}
and N(2; Pb) = 2for P, = {p1.1, p1.2, p2.1}. We can see that Py, = Pi.

Finally, in order to compute N (n; P) for large n and size(P), Lemma 12 can be used
to decompose the problem into two smaller sub-problems. The decomposition can be
recursively applied until the problem size is sufficiently reduced.

6 Experimental results

Using the approach described above, we computed N (n; Pyqy) for CRC lengths n =
32,48, 64,96 and 128 bits and message lengths /| = 32, 64, 128 and 256 bits. The result-
ing upper bounds €] and €, on attack success probabilities, computed using (4) and (5), are
shown in Table 1 in the logarithmic form — log, (¢;). The 7th column shows the upper bound
€3 on attack success probability of the cryptographically secure CRC of Krawczyk [27],
given by €3 < (n +{)/2"~!. Columns 4, 6 and 8 show the fraction % reflecting the
efficiency of ¢; with respect to the optimum probability 1/2", fori € {1, 2, 3}.

As we can see, the case of random polynomials with a non-zero constant terms (col-
umn 5) has a smaller attack success probability compared to the case of random polynomials

Table 1 Comparison of attack success probabilities for three types of generator polynomials

CRC Message  Attack success probability for different generator polynomials

Length  Length Random Random with non-0 const. Irreducible [27]
n,bits 1, bits —logy(e)) 9B _jog(ey) o) ~logy(ey)  lom©
32 32 18.16 0.57 18.82 0.59 25.00 0.78
32 64 14.53 0.45 15.33 0.48 24.42 0.76
32 128 11.46 0.36 12.23 0.38 23.68 0.74
32 256 8.96 0.28 9.65 0.30 22.83 0.71
48 32 31.90 0.66 32.74 0.68 40.68 0.85
48 64 26.70 0.56 27.56 0.57 40.19 0.84
48 128 21.97 0.46 22.87 0.48 39.54 0.82
48 256 17.84 0.37 18.71 0.39 38.75 0.81
64 32 46.53 0.73 47.33 0.74 56.42 0.88
64 64 39.82 0.62 40.77 0.64 56.00 0.88
64 128 33.65 0.53 34.62 0.54 55.42 0.87
64 256 27.95 0.44 28.98 0.45 54.68 0.85
96 32 76.52 0.80 77.29 0.81 88.00 0.92
96 64 68.16 0.71 69.21 0.72 87.68 0.91
96 128 59.03 0.61 60.08 0.63 87.19 0.91
96 256 50.23 0.52 49.96 0.52 86.54 0.90
128 32 107.46 0.84 108.23 0.85 119.68 0.93
128 64 97.65 0.76 98.62 0.77 119.42 0.93
128 128 86.03 0.67 87.06 0.68 119.00 0.93
128 256 74.69 0.58 75.90 0.59 118.42 0.93
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(column 3). The former case is also preferable from the point of view of correcting burst
errors. We can also see from the table that the presented method is particularly suitable for
the authentication of short messages.

7 Related work

A lot of work has been done on message authentication codes in the past, see [39] for an
excellent survey. Security of several types of MACs, including HMAC [5], CBC-MAC [7]
and XOR-MAC [6], have been quantitatively analyzed.

Unconditionally secure message authentication codes were pioneered by Gilbert et al.
[22] and their theoretical basis was developed by Simmons [40].

Wegman and Lawrence Carter [46] showed that hash functions can be combined with
one-time pads to construct strong authentication algorithms. Their approach was further
developed by Brassard [11], Desmedt [13] and Krawczyk [27].

Stinson [41] introduced the notion of “almost strongly universal hash families” which
made possible to considerably reduce the key size of unconditionally secure MACs. For
more details on universal hashing, see [42]. Black et al. showed that universal hash families
can be used to construct efficient computationally secure MACs, e.g. UMAC [10].

Various techniques for cryptographic checksums and MACs based on stream ciphers
have been proposed, including Lai et al. [28], Taylor [44], Johansson [25] and [2]. In these
techniques, a new hash function from a hash family is produced for every message by using
the pseudo-random generator of a stream cipher. In the scheme presented in this paper, as
well as in the method of Krawczyk [27], the same hash function can be re-used for multiple
messages. Only the random pad which is used for the encryption of the hash values needs
to be updated for each message.

Rabin [35] was first to use CRCs in the cryptographic context for the fingerprinting of
information. However, in his scheme the modular division by the generator polynomial is
applied directly to a message, without shifting the message n bit positions left first. As a
result, Rabin’s scheme is non-secure for message authentication even if the fingerprint is
encrypted using a perfect one-time pad [27]. For example, if some of the least significant
bits of the message together with the corresponding bits of the encrypted authentication tag
are flipped, the change will not go undetected by the fingerprint.

Krawczyk [27] proved that the inclusion of the n-bit shift into Rabin’s scheme [35] makes
the scheme secure for message authentication provided that tag is encrypted using a one-
time pad. He showed that the probability of breaking the resulting authentication scheme is
€ < zl:["l , where n is CRC length and / is message length.

In [15] Krawczyk’s approach was extended to the case when a product of k irre-

ducible polynomials is used to generate the CRC. The attack success probability of such an

. . . k
authentication scheme is € < U;f%

In [14] generator polynomials of type (1 4+ x)p(x), where p(x) is a primitive polyno-
mial, are used to generate the CRC. Such CRCs are able to detect all double-bit errors in a
message, which is of importance for systems using Turbo codes, including LTE. The attack
success probability in this case is € < 142“””,_21 .

Krawczyk also developed another interesting family of hash functions based on Toeplitz
hashing in which the columns of a matrix are formed by the consecutive states on an

LFSR [27]. Such a method has a lower hashing and authentication strength compared to
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the approach based on a random matrix, namely € < 2,11—,,, where n is CRC length and [ is

message length, however its implementation cost is much smaller.

Apart from CRC, other error detecting/correcting codes were also proposed for mes-
sage authentication. MACs based on BCH and Reed-Solomon error-correcting codes were
presented in [29].

8 Conclusion

In this paper, we introduced two new families of cryptographically secure hash functions
based on CRCs. Similarly to previously proposed cryptographically secure CRC-based hash
families, the presented ones enable combining the detection of random and malicious errors
without increasing bandwidth. They detect the same type of burst errors as cryptographi-
cally non-secure CRCs based on irreducible generator polynomials. They retain most of the
encoding and decoding implementation simplicity of cryptographically non-secure CRCs
except that the LFSR implementing the division modulo generator polynomial needs to
have re-programmable feedback connections. The main advantage of the presented CRCs
over the previously proposed ones is that the irreducibility testing, which is either time or
memory consuming, can be omitted.

However, using random polynomials as generator polynomials for the CRC gives an
adversary a higher chance of braking authentication. We provided a detailed quantitative
analysis of the achieved security as a function of message and CRC lengths and showed
that the presented authentication scheme is particularly suitable for short messages. Short
messages (a few bytes to a few tens of bytes) are expected to be dominant in machine-
to-machine (M2M) communication. Since the presented method provides some level of
integrity protection almost for free, it might be quite useful for resource-constrained M2M
devices.

Note that in our attack scenario it is assumed that an adversary gets access to a mes-
sage and its authentication tag. Other attack scenarios are also possible, for example, an
adversary may have an access to a verification oracle as well. In this case any crypto-
graphic CRC, including the presented one, is susceptible to Ferguson’s attack [20, 31] which
reveals the polynomial used for generating the CRC with the probability 27", where n is
the polynomial degree. The access to an oracle is a reasonable assumption, for example, in
a multicast.> Therefore, we do not recommend the use of cryptographic CRCs with short
generator polynomials.

In the current wireless standard message formats two separate fields are typically used
for the protection against random and malicious errors. These fields may be located on dif-
ferent layers, e.g. in LTE the CRC is located at the physical (PHY) layer while the message
authentication code is located at the packet data convergence protocol (PDCP) layer. A good
strategy might be to combine these two fields into the one at the PHY layer and use the
a cryptographic CRC for the protection against both types of errors. Future work involves
investigating implications for security and coverage caused by such a merge.

3Multicast is a type of communication where the information is addressed to many destinations simultaneously.
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