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Abstract

A wireless sensor network consists of many tiny sensor
nodes. The distributed memory spaces of sensors can be
considered as a large distributed database, in which one
can conduct in-network data processing. This paper consid-
ers a sensor network used for object tracking where distrib-
uted location updates and queries are performed inside the
network. Although this issue has been intensively studied
for cellular networks, the same problem in sensor networks
has very different characteristics. In this paper, we propose
an efficient location management scheme for object tracking
in a multi-sink sensor network where users can inquire the
locations of objects via any sink in the network. A message-
efficient algorithm that describes how to perform location
updates and queries is proposed. Furthermore, two distrib-
uted virtual tree construction algorithms are also presented.
The goal is to reduce the overall update and query cost. The
efficiency of the proposed algorithms is evaluated and veri-
fied by simulations.

Keywords: object tracking, in-network processing, sensor
network, data aggregation, location management.

1 Introduction

The emerging wireless sensor network (WSN) technol-
ogy may greatly facilitate human life. A WSN may consist
of many inexpensive wireless nodes, each capable of col-
lecting, processing, and storing environmental information,
and communicating with other nodes. A lot of research
efforts have been dedicated to WSNs, including deign of
physical and medium access layers [14, 15] and routing and
transport protocols [7, 8]. Applications of WSNs have been
studied in [1, 5, 12].

Object tracking is an important application of WSNs
(e.g., military intrusion detection and habitat monitoring).
The key steps involved in tracking include event detection,

target classification, and location estimation [2, 4, 10, 13].
In a WSN, when the locations of objects are successfully
determined, a location management scheme for reporting
objects’ locations and disseminating users’ queries is re-
quired [9, 11]. The main theme of this paper is location
management. In particular, we explore the in-network data
processing capability of WSNs by executing distributed lo-
cation updates and queries inside the network. Updates are
initiated when an object moves from one sensor to another.
Queries are invoked to find out objects’ locations. Location
updates and queries are tradeoffs and may be done in var-
ious ways. A naive way for delivering a query is to flood
the whole network. The sensor who knows the location of
the queried object will reply to the query. This is clearly
inefficient and not scalable. Alternatively, if all location in-
formation is stored at a designated sensor (e.g., the sink), no
flooding is required. However, any movement has to be up-
dated to that sensor. The cost is not justified when objects
move frequently or when the query rate is low. The pur-
pose of this work is to strike a balance between these two
extreme approaches.

The in-network location management problem has been
studied in [9, 11]. In [9], sensors are organized as a logical
tree. When an object moves from one sensor to another, up-
date messages are only forwarded to the lowest common an-
cestor of these two sensors in the tree. Further, queries are
only forwarded along the path from the sink to the sensor
containing the queried object. This work fails to consider
the physical structure of the WSN. Reference [11] further
takes the physical structure of the network into considera-
tion while constructing the logical tree. This results in fur-
ther reduction of the overall update and query cost.

In [11], it is assumed that there is only one sink in the
network. In this work, we explore the possibility of hav-
ing multiple sinks in the network. One advantage of hav-
ing multiple sinks is for faster query response. In addition,
using multiple sinks can also relieve the traffic congestion
problem associated with a single-sink system (i.e., using
multiple sinks can achieve load balance more easily). In or-



der to support location management in a multi-sink WSN,
we can extend the tree structure used in the single-sink sys-
tem [11] by constructing a logical tree for each sink. How-
ever, this implies that updating multiple trees is required
when a movement event is detected. Assuming that there
are m sinks coexisting in the network, if each tree is updated
independently, the update cost will become approximately
m times. It is desirable to further reduce the update cost
when multiple trees coexist in the network. In this paper,
we propose an algorithm for updating multiple trees using
the concept of data aggregation. For example, with proper
design, we show that the update cost only increases about 10
times when the number of trees (i.e., the number of sinks)
increases from 1 to 1024. Based on the foregoing update al-
gorithm, we formulate the update cost that gives us hints to
develop efficient tree-construction algorithms. Two distrib-
uted multi-tree construction algorithms are presented in this
paper. Finally, we show that the increased update cost with
multiple trees can be compensated by lower query cost. It
is found that the query cost (and thus the total update and
query cost) depends on m, the number of sinks. This allows
us to further investigate how to choose the value of m under
different scenarios.

The remainder of this paper is organized as follows.
Sec. 2 formally defines the multi-sink object-tracking prob-
lem. The proposed in-network update and query mecha-
nisms are discussed in Sec. 3. Sec. 4 presents two distrib-
uted multi-tree construction algorithms. Performance stud-
ies are given in Sec. 5. Sec. 6 draws our conclusions.

2 Preliminaries

2.1 Network Model

We consider a WSN to be used for object tracking. We
adopt a simple nearest-sensor tracking model, in which the
sensor that receives the strongest signal from an object is
responsible for tracking the object (this can be achieved
by [6] and we omit the details). Therefore, the sensing
field can be modelled by a Voronoi graph [3], as depicted
in Fig. 1(a), where each sensor’s responsible area is the
polygon containing itself. Two sensors are called neigh-
bors if their sensing ranges share a common boundary on
the Voronoi graph. Multiple objects may be tracked concur-
rently by the network, and we assume that from mobility
statistics, it is possible to collect the frequency that objects
move between each pair of neighboring sensors, called the
event rate. For example, in Fig. 1(a), the arrival and depar-
ture rates between sensors are shown on the edges of the
Voronoi graph. In addition, the communication ranges of
sensors are assumed to be large enough so that neighboring
sensors can communicate with each other directly. Thus,
the WSN is modelled by an undirected weighted graph

G = (VG, EG), where VG represents sensors and EG rep-
resents neighborhood relationship of sensors. The weight
of each link (a, b) ∈ EG, denoted by wG(a, b), is the sum
of event rates from a to b and from b to a. For example,
Fig. 1(b) shows the corresponding weighted graph of the
sensor network in Fig. 1(a).
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Figure 1. (a) The Voronoi graph of a sensor
network. The numbers around arrows are
event rates. (b) The weighted graph G cor-
responding to the sensor network in (a).

2.2 From Single-sink to Multi-sink WSNs

In [11], an in-network location management scheme for
a single-sink WSN is proposed. First, a tree T rooted at the
sink is constructed. If an object moves from one sensor to
another, update messages will be forwarded to the lowest
common ancestor of these two nodes in T . For example, in
Fig. 2, a tree rooted at sensor A is constructed. When Car1
moves from H to C, an update message will be forwarded
from H to B and another message from C to B. This allows
each node x to always keep a fresh list of objects that are
currently tracked by each of the subtrees rooted at x’s chil-
dren. When a user in F inquires Car1’s location, the query
will be sent to the sink first and then forwarded along a path
of the tree according to the lists maintained by sensors, as
shown in Fig. 2.

In this work, we assume that multiple sinks coexist in G.
Our goal is to reduce the number of messages transmitted
for update and query. A naive way to extend a single-sink
system to a multi-sink system is to construct a virtual tree
Tx = (VG, ETx

) for each sink x, where ETx ⊆ EG. For
example, Fig. 3(a) extends the network in Fig. 2 such that
both sensors A and B are sinks. Three issues need to be
addressed when multiple trees coexist.

1. Update and query mechanisms: When an object
moves, updating multiple trees is required in a multi-
sink system. If we apply the same update mechanism
used in a single-tree system to each tree independently,
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Figure 2. An example of the single-sink sys-
tem. The tree is rooted at A and is con-
structed from the G in Fig. 1(b).

the update cost will increase approximately m times,
where m is the number of trees. This is apparently
inefficient. Update aggregation can be done to reduce
cost. Further, the query mechanism should be designed
carefully. We will show that the query paths from sinks
to the target sensor may cause a cycle. The cycle prob-
lem should be avoided.

2. Multi-tree construction: The proposed update and
query mechanisms can be applied to any multi-tree
system. However, different multi-tree construction al-
gorithms will cause different update costs. We will for-
mulate the update cost and point out the factors that
affect the update cost. Then, we propose two efficient
distributed multi-tree construction algorithms.

3. The number of trees used: Obviously, using multiple
trees will increase update cost; however, the increase
can be compensated by lower query cost (this will be
verified further in simulation). Because both the up-
date cost and the query cost are affected by the number
of trees used, we will also investigate the proper value
of m under different scenarios.

3 Location Management in Multi-Sink
WSNs: Update and Query Mechanisms

We consider a WSN with n sensors, m of which (de-
noted by σi, i = 1, · · · ,m) are designated as sinks. For
each sink σi, we assume that a tree Tσi

rooted at σi has
been constructed from G. We will focus on the update and
query mechanisms in this section and discuss the tree con-
struction issue in Sec. 4. Table 1 summaries the notations
used in this paper.

Each sensor x keeps two tables in order to process up-
dates and queries:
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Figure 3. (a) The DLs stored in sensors. En-
tries with empty set are not shown. (b) An
example where Car2 moves from G to I and
Car1 moves from H to C.

Table 1. Summary of notations.
distG(u, v) The minimum hop count between u

and v in G.
nei(v) The neighbors of v in G.

distTσi
(u, v) The hop count of the path connect-

ing u and v in Tσi

wG(u, v) The event rate between u and v.
lcai(u, v) The lowest common ancestor of u

and v in Tσi
.

pi(v) The parent of v in Tσi
.

σi The root of Tσi
.

st rooti(v) The root of the temporary subtree
containing v during the construction
process of Tσi

.

• Subtree Member Sx: It is an m × n table to indicate
whether another sensor is a descendant of x in a cer-
tain tree. Specifically, Sx(Tσi

, j) = 1 if sensor j is a
descendant of x in tree Tσi

; otherwise, Sx(Tσi
, j) =

0. For example, in Fig. 3(a), SD(TB , F ) = 1 and
SD(TA, F ) = 0. All values in this table will not
change after all trees are through with construction.

• Detected List DLx: It is a table with k + 1 entries,
where k is the number of neighbors of x. Each en-
try maintains a set of objects. For sensor x itself,
DLx(x) contains the objects currently being tracked
by x. For each neighbor y of x, DLx(y) contains all
objects that are currently being tracked by the sub-
trees of some Tσi

, i = 1, · · · ,m, rooted at y, i.e.,
DLx(y) = {o|∃z, i s.t. o ∈ DLz(z), Sy(Tσi

, z) =
1, and x = pi(y))}. This implies that if o is tracked
by sensor z currently and y is an ancestor of z in a
certain tree, then x can know how to find o by ask-
ing y. For example, in Fig. 3(a), D is a neighbor of
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A. Because SD(TA, G) = 1 and Car2 is tracked by
G, Car2 ∈ DLA(D). Detected List is a dynamic ta-
ble. When an object moves from one sensor to another,
Detected Lists maintained by some sensors have to be
modified accordingly.

3.1 The Location Update Mechanism

The goal of location update is to ensure that the De-
tected Lists of sensors are fresh. The main idea here is that
when an object o moves from sensor a’s responsible poly-
gon to sensor b’s responsible polygon, for each sink σi, the
update messages should be sent from a and b along Tσi

to
lcai(a, b), the lowest common ancestor of a and b in Tσi

.
The reason for doing so is that the Detected Lists of the an-
cestors of lcai(a, b) will not be affected by this movement.
Furthermore, instead of allowing all trees to update inde-
pendently, we will update trees simultaneously with some
data aggregation techniques. We make the following ob-
servation. In a system with m trees, a sensor x needs to
maintain pi(x) for each Tσi

, i = 1, · · · ,m. Because the
number of neighbors of x may be smaller than m, some of
the pi(x)s may be duplicate and thus can be updated to-
gether. This also implies that when a node y receives an
update message, it should update its Detected List by con-
sidering several trees rather than one tree. Thus, the up-
date mechanism comprises two parts: (1) the forwarding
rule of the update message, and (2) the updating rule of the
Detected List. The update message sent for the event that
an object o moves from sensor a to sensor b is denoted by
Update(o, a, b, eventid), where eventid is to uniquely rep-
resent this event.

Forwarding Rule: When an object o moves from sen-
sor a to sensor b, for each tree Tσi

, every node on the
tree paths from a to lcai(a, b) and from b to lcai(a, b)
should receive the update message at least once. We can
note that if a node x is on the path from a to lcai(a, b)
in Tσi

and x �= lcai(a, b), then Sx(Tσi
, a) = 1 and

Sx(Tσi
, b) = 0. Similarly, if x is on the path from b to

lcai(a, b) in Tσi
and x �= lcai(a, b), then Sx(Tσi

, a) = 0
and Sx(Tσi

, b) = 1. If x is lcai(a, b), then Sx(Tσi
, a) = 1

and Sx(Tσi
, b) = 1. Thus, when any node x receives a new

Update(o, a, b, eventid) message, it can use the following
statement to determine whether it is on the tree paths from
a to lcai(a, b) or from b to lcai(a, b):

∃i((Sx(Tσi
, a) = 0 ∧ Sx(Tσi

, b) = 1) ∨
(Sx(Tσi

, a) = 1 ∧ Sx(Tσi
, b) = 0)) (1)

(Note that Eq. 1 includes the special cases of x = a and
x = b, in which the movement of o rather than receiving an
update message will make x checking Eq. 1.) If x receives
the update message for the first time and there is a tree Tσi

making Eq. 1 true, then an update message should be sent to

pi(x). However, note that if two trees Tσi
and Tσj

both sat-
isfy Eq. 1 and pi(x) = pj(x), then only one update message
needs to be sent (the same applies if multiple trees satisfy
Eq. 1). This is what we mean by data aggregation.

Updating Rule: When a node is notified that an object
o moves from sensor a to sensor b, it will update its De-
tected List as follows.

• For sensor a, it will remove o from DLa(a) and check
whether there exist a tree Tσi

and a neighbor y such
that Sa(Tσi

, b) = 1 and a = pi(y). If the answer is
affirmative, this implies that a can find o by asking y.
Thus, it adds o is into DLa(y).

• For sensor b, it will add o into DLb(b) and remove o
from other entries of DLb if o appears in other entries.

• For any other sensor x that receives the update message
from y, if ∃i(Sx(Tσi

, b) = 1 ∧ x = pi(y)) is true, this
implies that x can find o by asking y; thus o will be
added to DLx(y). Otherwise, o will be removed from
DLx(y) if o appears in DLx(y).

Fig. 3(b) shows an example where Car2 moves from G
to I and Car1 moves from H to C. The modified DLs and
the reported messages are shown in the figure.

Next, we derive the number of messages required to be
sent per unit time for location update:

U =

(
m∑

i=1

U(Tσi
)

)
−
(∑

v∈VG

SC(v)

)
, (2)

where U(Tσi
) is the update cost for tree Tσi

if Tσi
is the

only tree in the network and SC(v) is the saved cost for
sensor v due to the overlap of tree edges among m trees.
U(Tσi

) can be formulated as

U(Tσi
) =

∑
(u,v)∈EG∧
(u,v)/∈ETσi

(wG(u, v) ×

(distTσi
(u, lcai(u, v)) + distTσi

(v, lcai(u, v)))), (3)

where distTσi
(x, y) is the hop count of the path connecting

x and y in Tσi
. To explain the meaning of Eq. 3, we assume

that Tσi
is the only tree in the network. When an event oc-

curs on (u, v), the update messages will be forwarded to
lcai(u, v) according to the forwarding rule. Eq. 3 is simi-
lar to the cost function for a single tree in [11], except that
when (u, v) ∈ ETσi

there is no cost because either u or v is
lcai(u, v) and thus no update message has to be sent. This
leads to Eq. 3. SC(v) can be formulated as

SC(v) =

∑
u∈nei(v)


 m∑

i=2


(i − 1) ×

∑
(s,t)∈EG∧

f(s,t,v,u)=i

wG(s, t)




 , (4)
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where nei(v) denotes the neighbors of v in G and
f(s, t, v, u) represents the number of trees, each of which,
say Tσj

, makes the following statement true (u =
pj(v)) ∧ ((s, t) �= (v, u)) ∧ ((Sv(Tσj

, s) ∧ ¬Sv(Tσj
, t)) ∨

(Sv(Tσj
, t) ∧ ¬Sv(Tσj

, s))). Intuitively, this means that
when an object moves from s to t or from t to s, v will
send an update message to u for updating tree Tσj

and a
single update message can update i trees simultaneously;
therefore, (i − 1) messages are saved. This leads to Eq. 4.
The result will be used later to construct multiple low-cost
trees.

3.2 The Location Query Mechanism

Now, we describe our location query mechanism. We as-
sume that a user can issue a query from any sensor. When a
sensor x receives a query for object o, there are two scenar-
ios: (1) o does not appear in any of the entries of DLx, and
(2) o appears at least in one of the entries of DLx.

In the first scenario, x will forward the query to the clos-
est sink, say σj , in order to inquire o’s location. The reason
for doing so is that, for each sink σi, it can be easily shown
that all objects tracked by the network will be contained in
DLσi

. However, on the query’s way to sink σj , if an inter-
mediate node y finds that o appears in DLy , then the second
scenario will be initiated immediately.

In the second scenario, we will show how x can for-
ward the query to locate o. We can model the WSN re-
sponsible for tracking object o as a directed query graph
G

′
o = (VG, EG′

o
), where a directed edge (u, v) ∈ EG′

o

if and only if o ∈ DLu(v). Our location update mecha-
nism guarantees that if x forwards the query along the query
graph G

′
o, then o is always reachable. For example, Fig. 4(a)

shows the query graph G
′
Car1 of Fig. 3(a) for Car1, where

A and B are sinks. It means that x can simply forward the
query to any y such that o ∈ DLx(y). This is repeated
until a sensor z such that o ∈ DLz(z) is reached. How-
ever, the fact that o is reachable via y from x in G

′
o does

not necessarily imply that G
′
o is cycle-free when multiple

trees coexist in the network. For example, Fig. 4(b) shows
two trees TA and TB and Fig. 4(c) shows the query graph
for Car1, which have a cycle containing D, F , and G. A
query forwarded as above may loop infinitely.

A simple way to solve the infinite loop problem is to
force a query to always travel along a designated tree. In
order to achieve this, we can add a field tree index to the
query request. Once the tree index is set by a certain sen-
sor, the following sensors can follow the tree designated by
tree index. Here, we propose an alternative solution which
imposes that all trees be shortest-path trees. If so, not only
the query and update paths can be shortest, but also the cor-
responding G

′
o for each object o is always cycle-free. Thus,

our query mechanism will work correctly.

Theorem 1. If all trees are shortest-path trees, the query
graph G

′
o for each object o tracked by the network must be

cycle-free.

Proof. Without loss of generality, we assume o is tracked
by sensor x currently. For the purpose of contradiction,
we assume that all trees are shortest-path trees but a cycle
< c0, c1, ..., ck, c0 > exists in G

′
o. Let cj be the vertex in the

cycle with minimum distG(x, cj). The fact that (cj , cj+1)
is an edge in the cycle implies that o ∈ DLcj

(cj+1). This
means that there exists a tree, say Tσi

that contains the edge
(cj , cj+1), which can lead to x. Because distG(x, cj+1) ≥
distG(x, cj), Tσi

must not be a shortest-path tree. This con-
tradicts our assumption that all trees are shortest-path trees.
Therefore, G

′
o must not contain a cycle.

After the query reaches the sensor currently tracking the
queried object, the sensor can reply to the sensor initiating
the query through a shortest path. In the case that the user is
capable of mobility, the user should update with the initiat-
ing sensor its position until a reply is received. This would
solve the mobility problem.

4 Multi-Tree Construction Algorithms

The above derivations have suggested that trees rooted at
sinks should be shortest-path trees to avoid the cycle prob-
lem. In addition, following the derivation of Eq. 2, these
trees should be constructed carefully to reduce communi-
cation costs. Below, we propose two distributed multi-tree
construction algorithms, given σ1, σ2, ..., σm as the sinks.

4.1 The MT-HW Algorithm

From Eq. 3, we observe that when an edge (u, v) be-
comes an edge of Tσi

, the events occurring on (u, v) do not
cause any message to be reported for updating Tσi

. There-
fore, in MT-HW (multi-tree construction with the high-
weight-first property) algorithm, an edge (u, v) with higher
weight will be considered for being included into a tree ear-
lier.

First, we define the term candidate parents. A sensor
y is called a candidate parent of x for sink σi, if y is x’s
neighbor and distG(σi, x) = distG(σi, y) + 1. We assume
that when the network is initiated, each sink σi will flood a
message in the network, which helps each sensor x to de-
rive distG(σi, x) and thus x’s candidate parents. The MT-
HW algorithm works as follows. Each sensor x will sort its
neighbors in a decreasing order according to the event rates
between it and its neighbors. Then, for each sink σi, x will
pick one neighbor y as its parent that has the highest event
rate among x’s candidate parents for σi and set y = pi(x).

Theorem 2. If G is connected, the trees constructed by the
MT-HW algorithm must be connected shortest-path trees.
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Figure 4. (a) The query graph G
′
Car1 of Fig. 3(a) for Car1. (b) Another example of a two-tree system.

(c) The query graph of (b) for Car1, which contains a cycle.

Proof. Since G is connected, for each Tσi
, a sensor x (x �=

σi) can always find one candidate parent as its parent in Tσi
.

Thus, Tσi
will be a connected tree. Now, we further show

that Tσi
will be a shortest-path tree. By the definition of the

candidate parent, the parent must be closer to σi than the
node itself. Therefore, all Tσi

are shortest-path trees.

4.2 The MT-EO Algorithm

From Eq. 4, we observe that if we can increase the num-
ber of the tree edges that overlap with each other, the value
of SC(v) may increase and U can be reduced. The MT-EO
(multi-tree construction with the edge-overlap-first prop-
erty) algorithm is designed to increase the level of the over-
lap among tree edges.

As the MT-HW algorithm, each sensor x will determine
all candidate parents for each sink σi. Each of x’s neighbors
is associated with an overlap counter for x. The counter is
increased by one whenever a neighbor of x is considered as
a candidate parent for a sink. Then, x selects the neighbor,
say y, whose overlap counter is the largest. For each sink σi

where y is a candidate parent of x, we set y = pi(x) for Tσi
.

Then, the overlap counters of all x’s neighbors are recom-
puted for those sinks for which x has not yet determined its
parents. Again, the neighbor y whose overlap counter is the
largest is selected as x’s parent for the corresponding sinks.
This procedure is repeated until x has determined its parents
for all sinks.

Theorem 3. If G is connected, the trees constructed by the
MT-EO algorithm must be connected shortest-path trees.

Proof. The proof is similar to that of Theorem 2. The theo-
rem holds because a non-sink node can always find a parent
that is closer to the sink.

In fact, we can easily combine the MT-HW algorithm
with the MT-EO algorithm and vice versa. Whenever there

is a tie (either the same event rate or the same overlap
counter value), the other algorithm can be used.

5 Simulation Results

We have simulated a sensing field of size 256×256. 1024
sensors are deployed in the sensing field. Two deployment
models are considered. In the first one, sensors are regu-
larly deployed as a 32 × 32 grid-like network. In the sec-
ond model, sensors are randomly deployed. In both models,
sinks are determined by uniformly partitioning the sensing
field into equal-size grids according to the number of sinks
required and choosing the sensor that is nearest to the center
of the grid as the sink. Further, the event rates of links are
generated based on the modified city mobility model [11].
Queries may be generated from any sensor. The query rate
is defined as the number of queries generated in the network
per unit time.

We compare our schemes with a naive scheme and the
m-DAT scheme. In the naive scheme, any update is sent to
all sinks immediately (i.e., there is no in-network process-
ing capability). Specifically, when an object moves to a new
sensor, a multicast spanning tree formed from the new lo-
cation of the object to all sink and the update message con-
taining the up-to-date location information of the object is
sent to all sinks like a multicast. Thus, any query only needs
to be sent to its nearest sink. In the m-DAT scheme, we run
the DAT algorithm [11] m times for m sinks to construct m
trees. Then the update and query mechanisms proposed in
Sec. 3 are used on these m trees. Note that if each tree per-
forms the update independently, then the update cost will
become approximately m times when the number of trees
increases from 1 to m. Thus, in the m-DAT scheme, the
update and query mechanisms proposed in this paper are
adopted to reduce the update cost. We comment that the
DAT algorithm is a centralized algorithm and is similar to
the MT-HW algorithm in that it also takes the event rates of
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links into consideration. However, these m trees are con-
structed independently.

First, we observe the advantage of using data aggrega-
tion to reduce update cost. Fig. 5 shows the results. In
the naive scheme with regular sensor deployment, when the
number of trees increases by a factor of N , the update cost
will increase by a factor of

√
N . On the contrary, in MT-

HW and MT-EO algorithms, the update cost only increases
by factors of 17.47 and 10.06 respectively, when the num-
ber of trees increases from 1 to 1024. This demonstrates
the effectiveness of data aggregation in a multi-sink sensor
network. In addition, we will show later that the increased
update cost can be compensated by lower query cost when
multiple sinks coexist in the network. We can also observe
from Fig. 5 that MT-EO has better performance than MT-
HW and m-DAT have. This implies that considering the
overlap of tree edges is more important. Since m-DAT per-
forms similarly to MT-HW, we will ignore it in the subse-
quent discussion. Moreover, the trend of the performance
in random deployment model is similar to that in regular
deployment model; thus, we also ignore the performance in
random deployment model in the following discussion.
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(b) random deployment
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Figure 5. Comparison of update costs.

Next we investigate the total (update plus query) cost un-
der different query rates. Fig. 6 shows the results. The pro-
posed algorithm for in-network update and query keeps its
advantage until the query rate is larger than 9 and 40 when
the numbers of sinks are 16 and 1024 respectively. One
should note that in these experiments only about 1.75 events
are generated in the network per unit time. This means that
the naive scheme is better only when the query rate is rela-
tively much higher than the object movement rate. We be-
lieve our proposed method can be applied to most applica-
tions.

Last, we focus on comparing a multi-sink system with a
single-sink system. A multi-sink system can benefit from
lower query cost. Fig. 7 shows the message costs under dif-
ferent query rates and numbers of sinks. Note that when
the number of sinks is one, it is a single-sink system. Only
when there is no query (rate=0), the single-sink system has
the advantage of lower update cost. When the query rate is
median (rate=5) or high (rate=10 or 15), we do find some
numbers of sinks such that the multi-sink system performs

(a) Number of sinks = 16 (regular deployment)
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(b) Number of sinks = 1024 (regular deployment)
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Figure 6. Comparison of total costs under dif-
ferent query rates.

better. In fact, as the query rate is higher, the advantage is
more significant. The figure can also be used as a reference
to choose the best number of sinks under different scenarios.
For example, in MT-EO, m = 2 has the best performance
when the query rate is 5.0 and m = 64 has the best per-
formance when the query rate is 15.0. Two implicit results
should also be addressed. First, a multi-sink system has a
faster query response time. To verify this, Fig. 8 shows the
average hops per query under different numbers of sinks.
As we can see, when the number of sinks increases, the
average hops per query is reduced. Second, a multi-sink
system can achieve a better load balance factor. To verify
this, Fig. 9 shows the standard deviation of the number of
packets transmitted by each sensor. As we can see in (b),
(c) and (d), when the number of sinks increases, the stand
deviation is reduced. This is because queries dispersed to
multiple sinks rather than a single sink.

(a)  Query rate = 0.0 (regular deployment)
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(b) Query rate = 5.0 (regular deployment)
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(c) Query rate = 10.0 (regular deployment)
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(d) Query rate = 15.0 (regular deployment)
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Figure 7. Comparison of total costs.
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(a)  Query rate = 5.0 (regular deployment)
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(b) Query rate = 15.0 (regular deployment)
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Figure 8. Comparison of average hops per
query under different numbers of sinks.

(a)  Query rate = 0.0 (regular deployment)
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(b) Query rate = 5.0 (regular deployment)
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(c) Query rate = 10.0 (regular deployment)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 4 16 64 256 1024

Number of sinks

St
an

da
rd

 D
ev

ia
tio

n

MT-HW

MT-EO

(d) Query rate = 15.0 (regular deployment)
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Figure 9. The standard deviation of the num-
ber of packets transmitted by each sensor.

6 Conclusions

In this paper, we have proposed an in-network update
and query algorithm for a multi-sink WSN. This algorithm
strikes the tradeoff between the update and query costs.
Having multiple sinks is important when the network scale
is large or when the query rate is high. The correspond-
ing update cost is formulated formally. Based on the for-
mulation, we have presented two distributed algorithms to
construct multiple trees. We have verifies the benefits of
a multi-sink WSN from different aspects, including the to-
tal (update plus query) cost, the number of sinks, query re-
sponse time, and load balance factor.
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