
A Critical Analysis of the X.400 Model
of Message Handling Systems

363

Marten van SINDEREN
and Evert DORREGEEST

Twente University, PO BOX 217, 7500 AE Enschede, The
Netherlands, uucp: mcvax!utinul !sinderen

The coTT x.400 model of store and forward Message Han-
dling Systems (~fl~s) serves as a common basis for the defini-
tion of electronic mail services and protocols both within CCITT
and lSO. This paper presents an analysis of this model and its
related recommendations from two perspectives. First the con-
cepts of service, protocol and interface are discussed together
with their application to this model; second the positioning
within ISO'S reference model for Open Systems Interconnection
(os0 is commented on.

Keywords: X.400, Message handling systems, Open systems,
Structuring concepts.

Marten J. van S i n d e r e n received his
M.S. degree in electrical engineering
in 1982 from the Twente University,
Enschede, The Netherlands. Since
1982, he has been a member of the
Department of Computer Science of
the Twente University, working on the

i functional design of distributed com-
puter systems. His research interests
include protocol specification, the use
of formal description techniques, net-
work interconnection, and higher level
protocols. Van Sinderen is an active

contributer to I S O / T C 9 7 / S C 2 1 / W G 6 and WG5 on Open
Systems Interconnection.

Everl Dorregeest studied at the Twente
University in Enschede, The Nether-
lands, from 1982 to 1987, obtaining an
M.S. degree in computer science. He is
presently working in military service
at the military computer centre in
Apeldoorn, The Netherlands. His re-
search interests include computer net-
works and electronic mail systems.

North-Holland
Computer Standards & Interfaces 7 (1988) 363-375

1. Introduction

The major impetus for the development of elec-
tronic mail systems has been provided by office
automation applications. In office environments,
electronic mail systems facilitate interpersonal
message exchange, both from originator to single
recipient and from originator to multiple recipi-
ents. Optimal usage in such an environment re-
quires that an electronic mail system should be
able to accept messages from a number of infor-
mation sources (serving the originator) and sup-
port the delivery of messages to a variety of infor-
mation sinks (serving the recipient). Messages are
then not restricted to simple text but may contain
various information types such as voice, facsimile
and graphics. Also, submission and delivery of
messages may either be interactive or spooled
depending on the mixture of source and sinks.

A number of electronic mail systems have al-
ready been implemented. They have, however,
often a limited application, being closed corporate
systems (DEcnet), part of a research network
(EARN//BITNET, JANET), vendor-specific, or aimed
at single system communities (EUNET/USENET) [4]

discusses several such systems and their limita-
tions). The comfort gained through an electronic
mail system would be greatly enhanced when .the
system in not limited to the premises of an organi-
zation or constrained by specific implementations.

These user needs, as well as the potential
market, are recognized by the CCITr, ISO and
ECMA. They are currently making considerable ef-
forts to define office document architectures, office
document interchange formats [5], and services
and protocols for message handling. These defini-
tions are abstract in the sense that they do not
rely on any specific coding or system implementa-
tion. In this paper we will analyse the message
handling services and protocols as defined by
CCITT in their X.400 recommendations for Mes-
sage Handling Systems (MHS) [7]. MHS has gained
broad acceptance among user communities and
computer manufacturers, and is used as the basis

0920-5489/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

364 M. van Smderen, E. Dorregeest / X.400 Message Handling Systems

for ~so's Message Oriented Text Interchange Sys-
tem (MOTIS) [8].

The paper is organized as follows: Section 2
presents the basis architecture for MHS and sum-
marizes the message transfer facilities which can
be offered. Section 3 is a short tutorial on the
concepts of service, protocol and interface as ex-
pedients for structuring communications systems.
In Section 4, MHS is explained in more detail and
the application of the structuring concepts is
analyzed. The discussion is limited to communica-
tion aspects of MnS; for example, aspects of
authentication, access restrictions and naming di-
rectories are not covered here. Section 5 analyses
whether the proposed placement of MHS in the
Open Systems Interconnection (os0 reference
model, namely on top of the osx presentation
service, yields an economical design. Section 6,
finally, summarizes our findings from the previous
two sections and presents some concluding re-
marks.

2. Summary of X.400

2.1 Layering

The X.400 architectural model has two layers
(Fig. 1). The lower layer is the Message Transfer
layer, which is made up of Message Transfer Agent
Entities (MTAE) and Submission and Delivery Enti-
ties (SDE). The protocol which governs an MTAE
(the communication between two MTAES) is the
message transfer protocol (P1). This protocol is
concerned with the store-and-forward transfer of
messages. That is, messages are sent from one
end- or intermediate system MTAE to another end-
or intermediate system MTAE. MTAEs provide stor-
age of messages and can perform certain manipu-
lative actions on them according to their included
protocol control information. Forwarding a mes-
sage may also imply sending it to a number of
subsequent ~rrAEs, instead of one, in order to offer
multi-recipient delivery. The protocol governing

- - Pc (P2) - -

(P1) ~ (P3) MTAE Sl~
I I

Fig. 1. Layered model of MHS.

an SDE (the communication between an SDE and a
MTAE) is the submission and delivery protocol
(P3). P3 primarily provides a reliable exchange of
messages and does not support particular end-to-
end electronic mail functions; the messages ex-
changes are therefore "simple" messages, i.e. they
contain the user-supplied information but not the
additional protocol control information used, and
generated by, P1. P3 is used to provide a distant
application process with access to the message
transfer functions.

The P1 and P3 protocol are both based on the
osI presentation service. Their coordinated oper-
ation provides the message transfer service which
is available to the entities in the upper layer.

The upper layer is the User Agent layer, and
consists of User Agent Entities (UAE). A range of
protocols (Pc) can be defined at this level, each of
them concerned with a particular syntax and
semantics of data which is transparently trans-
ferred via the message transfer service. To date,
only the interpersonal messaging protocol (P2) is
defined. As the name suggests, this protocol sup-
ports the electronic equivalent of paper-based mail
(memo) exchange between human participants.

2.2 Message Transfer Facilities

The message transfer service enables a UAE to
submit messages destined to one or more recipient
UAEs. If a message cannot be delivered, the
originating UAE will normally be informed about
this fact. The service is not connection-oriented:
submission of data takes place without any previ-
ous interaction with the other side being required.
The message transfer protocol can perform the
following functions, among others, on request of
an originating UAE:
1. notification of successful delivery of a message,

or prevention of notification in case of non-de-
livery;

2. conversion of the encoded information type
(see Note) on a message as specified by the
UAE, or prevention of any conversion (otherwise,
the message transfer protocol may optionally
perform type conversions to enable delivery of
a message);
Note: An encoded information type is a par-

ticular encoding for instances of an ab-
stract data type defined, or implied, by
an application (e.g. codings used for

M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems 365

telex, teletex, videotex, facsimile, docu-
ment interchange, etc.). The conversion
mentioned thus concerns a conversion
between codings of instances of possi-
bly different, but "close", abstract data
types (in case of different abstract data
types loss of information may occur).

3. deferring delivery of a message until a specified
date and time has elapsed;

4. returning the content of a submitted message to
the originator in case it could not be delivered;

5. performing the transfer of a message in an
urgent or non-urgent fashion;

6. disclosure of other recipients to each recipient
u~a~ upon delivery of a multi-recipient message;

7. delivery of a message to an alternate recipient
when the actual recipient UAE is not accessible;

8. probing the transfer and delivery of a (pseudo-)
message as specified by the UAE.
In addition a recipient UAE can request:

9. holding messages destined to it, thus deferring
their delivery, on certain specified criteria.

The primitives and some of their associated
parameters, by which the above facilities can be
requested, are discussed in Section 4, together
with the supporting protocol structures and ele-
ments.

3. Architectural Concepts for Structuring a Com-
munication System

Layering is one of the basic structuring tech-
niques used in describing the communication
functionality in distributed systems. It is applied
in all modern network architectures to control
their complexity and to achieve independency of
logically unrelated functions. Also the MHS model
makes use of this structuring technique.

Layering is based on the concepts of service,
protocol and interface. Since we base our analysis
of MHS on these concepts, we need a common
understanding of them. The following descriptions
are believed to be in line with the osI reference
model [9,10].

3.1 Service

Peer users of a distributed system communicate
with each other by using their common inter-
mediate - the distributed system - according to

certain strict rules. This usage consists of different
types of interactions between a user and the un-
derlying system during which parameter values are
established to which both the user and the system
can refer. The elementary interactions (service
primitives) possible between a user (service user)
and the distributed system (service provider), their
relevant parameters, and their relation to any other
such interactions are defined by a service.

A service defines the external view of a system,
as can be observed by its users. Actually, this
observational behaviour is what really matters to
the users: to define further interactions on top of
the system they need not know the internal struc-
turing and functional complexity of the underly-
ing system. The definition and representation of
service primitives should be consistent with this
view; thus:
- a service primitive expresses useful interactions

in the light of communication (i.e. interactions
with only local repercussions should be omitted
in a service definition). Note that spontaneous
actions internal to the provider may also result
in the execution of service primitives;

- the parameters of a primitive indicate what is
relevant for both user and provider; informa-
tion only relevant to the service users is
transferred in a " t ransparent" data parameter.
The boundary between a service provider and a

service user, where they can execute primitives is
called a service access point (SAP). Since this
boundary is a conceptual one and may be internal
to a real world system, service primitives must be
defined in such a way that their implementation is
not constrained. This means that their definition is
at a high(est) level of abstraction.

A more profound discussion of the service con-
cept and its importance in the design of protocols
can be found in [12].

3.2 Protocol

As mentioned above, a service does not define
how some externally observable behaviour is
achieved. This is defined by a protocol. A protocol
defines the rules for exchanging and manipulating
messages (protocol data units, PDUS), with an
agreed format and coding for control information,
between protocol entities; not to forget, it also
relates the service primitives with the eovs to
make the external effects of its functioning clear.

366 M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems

< ~,0-SAP >
(N)-SP- (N)-PDU

mapping

(N)-PDU
manipulation

(N-1)-SP - (N)-PDU
mapping

< (N-D-SAP>

Fig. 2. Representation of a (N)-protocol entity (sa: service
primitive; PDU: protocol data unit).

Service and protocol definitions can be applied
iteratively to the design of distributed systems, as
is illustrated by the osI model. In a layered archi-
tecture an (N)-protocol is based on an (N-1)-
service, and their composition provides a be-
haviour equal to that defined by an (N)-service. In
this case, the protocol defines as well the relation
between its PDUS and the service primitives of the
underlying service.

Fig. 2 shows the representation of an (N)-pro-
tocol entity as an abstract machine performing
mappings and manipulations according to the
(N)-protocol. From the ' service discussion we know
that an (N)-PDU is always represented in a data
parameter of an (N-1)-service primitive, since its
interpretation should be restricted to the (N or
higher level)-protocol entities.

3.3 Interface

The local ordering of service primitives at a SAP
and the interdependencies between, and restric-
tions on, their parameter values are described by
an abstract interface (an abstract interface defini-
tion is therefore part of a service definition). An
interpretation which is more often associated with
the term interface is that of an implementation
description of an abstract interface; we call this a
real interface. In designing the real interface be-
tween a user and its service provider it may well
turn out that the physical distance between the
two causes such problems that further protocol
engineering is required. The service and protocol
concepts can then again be used for structuring
purposes; in fact they can be recursively applied at
different levels of abstraction. In this case, recur-
sive apphcation to an abstract interface yields a
set of "interface" services and "interface" pro-
tocols.

4. X.400 Services and Protocols

We will now return to MHS. It is our objective
to analyse the modeling of electronic mail func-
tions in MHS and to investigate to what extent the
X.400 recommendations are suitable prescriptions
for "open systems interconnection". The latter
means that we demand a general-purpose, imple-
mentation-independent, description, which leaves
implementation freedom where possible and re-
stricts implementations where necessary to allow
interconnection and interworking of heteroge-
neous systems.

4.1 Message Transfer Layer (X.410, X.411)

Table 1 lists all primitives which have been
defined for the message transfer service. The
primitives are grouped on basis of their partake in
certain activities. We can observe that some activi-
ties are local, i.e. they do not involve interactions
which are remote to the initiator of the activity.

Non-local, or global, activities involve two or
more users in different systems, and imply the
coordinated behaviour of these users. The mini-
mum coordination is defined by the service which
is provided by the underlying distributed system.
Local activity involves only one user (and the
underlying system); there is no need for coordina-
tion, according to some service definition, with
another user. In Table 1 only "transfer" is consid-
ered as a global activity. The " t ransfer" primitives
are therefore the relevant service primitives for the
message transfer service, discussed in Section 4.1.1.
Section 4.1.2 discusses the message transfer proto-
col, restricted to the support of the " t ransfer"
interactivity.

"Local" and "global" are, of course, relative
notions. We can take a closer look at a local
interactivity and may find that this, too, involves
several distinguishable entities (e.g. representing a
workstation, channel and host) whose interactions
can be described in terms of service and protocols,
thus introducing a new level of locality. In Section
4.2.3 we will discuss the message transfer inter-
face, where we consider the other activities men-
tioned in Table 1, but also reconsider the " t rans-
fer" activity.

Standardizing the local activities of Table 1 is
useful when a user agent and its message transfer
agent fall under different implementation authori-

M. van Sinderen, E. Dorregeest /)(.400 Message Handling Systems 367

Table 1
Message transfer service primitives in X.411 (req = request,
ind = indication, rsp = response, cnf = confirmation).

Primitive Types Function

transfer:
SUBMIT req, cnf
DELIVER ind
PROBE req, cnf
NOTIFY ind

local logon /logoff"
(UAL)LOGON req, cnf
(MTL)LOGON ind, rsp
LOGOFF req, cnf

access management:
(UAL)CHANGE-
PASSWORD req, cnf
(MTL)CHANGE-
PASSWORD ind, rsp

submission of message
delivery of message
submission of probe
notification of (non)
delivery of message
or result of probe

user logon to system
system logon to user
logoff by user

change of user 's password

change of system's password

transfer restrictions management:
REGISTER req, cnf registration of user's receipt

restrictions
(UAL)CONTROL req, cnf change of receipt restrictions
(MTL)CONTROL ind, rsp change of system's acceptance

restrictions

local transfer annul:
CANCEL req, cnf cancel request for sub-

mitted message

ties and are physically separated. In the X.400
recommendations it is recognized that a user-im-
plemented UAE can be incorporated in a stand-
alone workstation which must then interwork via
an administration-supplied MTAE. This led to the
definition of a separate protocol, the submission
and delivery protocol. The definition of the dis-
tributed interface primitives and those of the end-
to-end service are distinguished here, contrary to
the X.411 recommendation, since they concern
different levels of abstraction.

4.1.1 Message Transfer Service
The message transfer service enables the transfer

of messages and probing the transfer of messages,
as illustrated by the simplified time diagrams in
Fig. 3.

Submission of a message is initiated by a SUB-
MIT request and is locally confirmed by a SUBMIT
confirmation. Facilities (1) through (7), listed in
Section 2.2, can be requested in the SUBMIT re-
quest by setting appropriate parameters. (Some of
these facilities are essential - they must be pro-
vided when requested - while others are ad-
ditional - they may be ignored by the system).
Provided that the SUBMIT confirmation indicated
"success", zero, one or more deliveries may occur
by means of DELIVER indications. Depending on
the requested facilities, the originating user agent
may be informed of successful or unsuccessful
deliveries by means of NOTIFY indications.

Probing whether a specified message can be
delivered to one or more user agents, is requested
in a PROBE request. Again, this request is locally
confirmed. The result of this request will be re-
ported back to the originating user agent in one or
more NOTIFY indications.

A NOTIFY indication may report on several
(would-be) deliveries of a single issued (pseudo-)
message. This is only possible when the reports
were generated by the same MTAE and the same
type conversions were performed on each of the
associated message copies.

Analysis: The following comments can be made
w.r.t, the message transfer service description in
X.411:

- the SUBMIT handshake is described with unnec-
essary detail; it can be represented as a single
abstract interaction without degrading the
service definition. This comment needs some
further explanation.
The SUBMIT confirmation seems to be intro-

UAE

SUBMIT cnf

NOTIFY ind

UAE UAE

DELIVER ind

UAE

PROBE cnf

NOTIFY ind ~'_'.~z_..-~

Fig. 3. Time sequence diagrams for transferring a message (with notification of delivery) and probing the transfer of a message. Only
one recipient is shown.

368 M. van Sinderen, E. Dorregeest /)(.400 Message Handling Systems

duced for two reasons:
1. it takes into account the fact that implementa-

tions are subject to failures and represent finite
capacities; therefore, a local confirmation of a
submitted request can be used to provide cer-
tainty about the acceptance of the request;

2. it is used to define a flow of information which
is from provider to user, as opposed to that in
the corresponding request.

We recall, however, that a service primitive should
be defined at the highest possible level of abstrac-
tion, not showing details which have only local
relevance. Further, the direction associated with a
primitive merely indicates the main flow of infor-
mation [10]; parameter values associated with a
primitive may be passed in either direction as
appropriate for the primitive. A request for a
service which is not acceptable for some local
reason is considered as an unsuccessful interac-
tion; such interactions should not be visible in the
service. Once all parameter values have been
established in a primitive execution, the primitive
has completed successfully. After this, the pro-
vider may report on its inability of progressing the
request or on the successful performance of the
requested service. Both aspects are already mod-
eled by the NOTIFY primitive.
- the PROBE handshake can be omitted com-

pletely in the service definition. The reason for
this is that a PROBE request will never cause any
interactions with a remote user agent, hence
there is no need for coordination between users.
On the other hand, interworking of MTAES is
required for fulfilling such a request. A protocol
element defining this interworking can be con-
sidered as part of a management protocol;
accessing its functions is a local matter.

- the relation between primitives (as in Figure 3)
is poorly described in the service definition.
Although this relation can easily be derived in
this case, making it explicit in the service is
generally useful to get a quick understanding of
the externally visible effects of the service pro-
vider. For example, it would have shown which
primitives have remote effects and which have

not, and how the provider may influence the
remote effects (loss of data, manipulation of
parameters). For a full understanding of the
relation between message transfer primitives we
are now obliged to study both the message
transfer protocol and the presentation service.

4.1.2 Message Transfer Protocol
An MTAE executing the message transfer proto-

col is modeled as consisting of three subentities:
the message dispatcher, the association manager,
and the reliable transfer server. The message dis-
patcher performs the relaying of messages, genera-
tion and forwarding of delivery reports, and infor-
mation type conversion. The association manager
controls the establisment and release of associa-
tions between MTAES. The role of the reliable trans-
fer server (RTS) is to provide and maintain the
associations requested by the association manager,
to release them when requested, and to perform
the transferring of PDUS on basis of available
associations.

The service primitives and PDUS which are used
by these subentities are shown in Table 2. The
association manager employs only the OPEN and
CLOSE primitives for requesting a new or releasing
an existing association, on basis of local manage-
ment information; PDUS are not defined for these
purposes. The message dispatcher employs two
types of PDUS: the user MPDU, carrying a message
submitted by a user agent for delivery, and the
service MPDU which carries either a probe or a
delivery report (MPDU stands for message PDU).
MPDUS are mapped onto the user data parameter

Table 2
Service primitives and PDUS used by the association manager,
message dispatcher and reliable transfer server.

Association manager and Reliable transfer
message dispatcher server

Primitive PDU Primitive Primitive
O P E N C O N N E C T

S U B M I T CLOSE RELEASE
u s e r M P D U

D E L I V E R T R A N S F E R D A T A

P R O B E T U R N - P L E A S E T O K E N - P L E A S E
service MPDU

N O T I F Y T U R N - G I V E T O K E N - G I V E

E X C E P T I O N A C T I V I T Y - S T A R T

A C T I V I T Y - I N T E R -

R U P T

A C T I V I T Y - R E S U M E

A C T I V I T Y - E N D

A C T I V I T Y - D I S C A R D

S Y N C H R O N I Z E -

M I N O R

U - E X C E P T I O N -

R E P O R T

P - E X C E P T I O N -

R E P O R T

U - A B O R T

P - A B O R T

M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems 369

of TRANSFER primitives. The message dispatcher
may further use TURN-PLEASE and TURN-GIVE
primitives to manage the turn for sending MPDUS
in case the available association(s) is (are) two-
way-alternate. It receives an EXCEPTION indication
primitive carrying a previously submitted MPDU
when the transfer of that MPDU could not be
performed in the specified transfer time (a param-
eter of the TRANSFER request). After receipt of an
EXCEPTION indication, rerouting the associated
message may be attempted, or a service MPDU with
a negative delivery report is generated.

The RTS uses the osI connection-oriented pre-
sentation service, and through this the session
service [11], to reliably transfer the user data
specified in TRANSFER requests. A user data
parameter is called here an A P D U (application
PDU); thiS is not an explicitly defined PDU. No
PDUS are defined for the RTS.

Each APDU transfer constitutes a single session
activity. After the start of a session activity, the
APDU can be transferred in one or more presenta-
tion SDUS, each one submitted through a DATA
request. Multiple DATA requests per APDU can
only be used when checkpointing was agreed dur-
ing connection setup. An APDU is then sent in
parts, where each part is separated from the other
through the insertion of a checkpoint. All check-
points must be confirmed by the recipient RTS
entity; the maximum number of unacknowledged
checkpoints which may be outstanding during a
session activity is indicated by the window size
negotiated at connection establishment time. This
is shown in Fig. 4. In case problems occur during

the transfer of an APDU, which can be locally
detected or signalled through U/P-EXCEPTION-RE-
PORT o r U / P - A B O R T primitives, the sending RTS
entity will a t tempt to recover the transfer with
several possible actions, starting from the last
confirmed checkpoint. We will not elaborate on
this (note that several corrections and additional
explanations w.r.t. RTS, especially covering re-
covery, are described in [6]). If the transfer cannot
be completed within the allocated transfer time,
the activity is normally discarded (ACTIVITY-DIS-

CARD) and an EXCEPTION indication to the mes-
sage dispatcher is generated by the sending RTS
entity.

Analysis: It is typical that the definition of the
message transfer protocol (that is, P1) does not
mention the message transfer primitives which we
characterized as being local. This results in an
inconsistency between the protocol and service
definition. We can make the following further
remarks:
- the content of a message, i.e. user data, is not

always transferred transparently by the message
transfer protocol. For example, the message
dispatcher may perform information type con-
version of the user-provided content of a mes-
sage. The conversion is not restricted to chang-
ing the representation of the user data, but may
also include the translation to another data
type.

- the transfer time parameter in a TRANSFER re-
quest primitive has only local significance and
therefore does not have to be represented. The
transfer time is commonly agreed by the mes-

RoTS entity RT.S enti, ty

APDU [- ~ . . ACTS req ~ - ~ [

..... " "-DATA rcq - -~ ._ . - - - ~ ACTS ind
........ " SYMNreq --++_.i..~..~ - - ~ DATA ind ..

....... "" DATA req - - ~ . ~ ~ SYMN ind ".,.
....... SYMN req-- -¢,,,~""-_.:,_~._..+-[- SYMN rsp ~...

• SYMN cnf 4- - - , % DATA md ,.. '...
" DATA req -- -+~,, ---,,~ i_~ SYMNind "... x..

ACTE rcq -- - ¢ ~ , , ~ " " ~ . . ~ _ ~ ¢ - -- SYMN rsp ~"... ~'..~
SYMN cnf 4- ~ - - ~ ' ~ " ~ ' - - - ~ -¢, DATA ind.. ".. ~"..

- ' - ~ -~ ACTE ind "'.... ""....., '"....
........ 4- -- ACrE rsp

ACTE cnf 4- ~ APDU

Fig. 4. Use of the p resen ta t ion / sess ion service for the transfer of an APDU in case checkpoint ing is used (here in 3 parts; checkpoint
size is greater than zero and window size is at least two). (A C T S = ACTIVITY-START, ACTE = ACTIVITY-END, SYMN = S Y N C H R O N I Z E - M I N O R) .

370 M. van Sinderen, E. Dorregeest / X. 400 Message Handling Systems

sage dispatcher and the local RTS entity at the
sending side but is not visible at the receiving
side.

- RTS defines a particular structure of the user
data parameter of the presentat ion/session
CONNECT primitives for transferring RTS-Specific
information, such as checkpoint size and
window size. Since the osI presentation service
does not refer to this information, it seems that
in this way an implicit RTS connect (-acknowl-
edge) PDU is defined.

- the correlation between OPEN and CLOSE primi-
tives is not described. CLOSE primitives carry no
parameters: how then does the association
manager indicate that it wants to delete an
association with a particular MTA~? It is also
not clear how the T R A N S F E R / / T U R N / / E X C E P T I O N

primitives are correlated with an association.

4.1.3 Message Transfer Interface
The possible distribution of a message transfer

interface is represented in the X.400 recommenda-
tions as shown in Fig. 5. Two "concatenated"
protocols, viz. the message transfer protocol (P1)
and the submission and delivery protocol (P3), are
used to provide the message transfer service. It
should be noted that the P3 protocol is said to
define the communication between an SDE and an
MTAE, and not between two SDES. The SDE func-
tionality is thus "h idden" in such a MTAE. Another
modeling of a distributed message transfer inter-
face, consistent with the discussion in Section
4.1.1, is shown in Fig. 6.

The submission and delivery protocol is de-
fined with the help of a general framework for
interactive protocol definitions, referred to as re-
mote operations. This framework defines four
principal PDU data types, called OPDUS (for oper-
ation PDUS): Invoke, ReturnResult, ReturnError,
and Reject. An Invoke OPDU specifies an oper-
ation; an entity sending an Invoke OPDU is said to

UAE

SDE ~--~'h

................... i
PSP] P3

.................... i
SDE ,~__-/

~) (>-----

prcs~tafion scrvi~ pmvic~

Fig. 6. Another view on "submission and delivery" (PSP"
presentation service provider).

invoke a remote operation which must be per-
formed by the recipient entity. Depending on the
outcome of the operation, the recipient may return
a :

ReturnResult, reporting on the result of the
operation when it was successful; or

- ReturnError, reporting on the error which oc-
curred during the performance of the operation.
A Reject is sent on receipt of any of the Invoke,

ReturnResult or ReturnError OPDUS when the
OPDU was malformed and could not be processed
for this reason.

For any specific protocol which makes use of
the remote operations definition, hence also for
the submission and delivery protocol, particular
operations (and related results and errors) have to
defined which are fit for that protocol. The sub-
mission and delivery protocol defines for all
primitives listed in Table 1, except for the (UAL//
MTL)LOGON and LOGOFF primitives, the associated
operations. The so defined message transfer " in-
terface" PDUS are transferred as user data on
TRANSFER primitives of the RTS service, as de-
scribed in Section 4.1.2. The (UAL/MTL)LOGON
and LOGOFF primitives are directly mapped onto
the RTS OPEN and CLOSE primitives.

Analysis: When we decompose an abstract in-

Fig. 5. "Submission and delivery" as modeled in MHS.

M. van Sinderen, E. Dorregeest /)(.400 Message Handling Systems 371

UAE

IPI req--

IP1 cnf ~--

IP2 ind ¢--

SDE
PSP

SDE MTAE

IP1 ind

q 1P2 req

IP2 cnf

Fig. 7. Time sequences at a distributed message transfer inter-
face of two (arbitrary) UAE-MTAE interactions, each one replac-
ing a single service interaction (a request, IP1, and indication,
IP2, respectively). (Internal mappings are not shown.)

terface (or SAP, represented by a vertical line in
the time sequence diagrams of Fig. 3 and 4) of a
service, we also have to decompose the service
primitives which occur at that interface. Fig. 7
shows a time diagram for such a decomposition,
based on Fig. 6, and illustrates how a single
service primitive can be represented as a "p ro -
vider-confirmed" sequence of "interface" primi-
tives. Fig. 8 shows the specific case of submitting
a message. On basis of these Figures we can
conclude that:
- since the submission and delivery protocol de-

fines the communication between an SDE and a
MTAE (with embedded SOL), and not between
two SDES, the decomposition, or refinement, of
the abstract message transfer interface is not
very clear. It is for this reason, for example,
that the (SUBMIT req) ind, shown in Fig. 8, is
not explicitly specified, while the (SUBMIT req)
req and the (SUBMIT req) cnf are. Similar omis-
sions can be observed for the other interface
elements. For the DELIVER a n d NOTIFY interface

elements even two interface primitives, viz. the
request and confirmation, are not described.
The latter omission has important consequences
as explained below.

- the DELIVER and NOTIFY interactions are not
correctly described. Probably because there are
no request and confirmation interface primi-
tives specified, also the ReturnResult PDUS for
the deliver and submit operations are not de-
fined. Hence, in this case the acknowledgement
of an operation is not only hidden at the in-
voker side, but completely omitted. This is in
contradiction with Fig. 7.
The submission and delivery protocol relates to

two sets of interactions. One is the set of interac-
tions which are part of the service interactions
described in the message transfer service, viz. SUB-
MIT, DELIVER and NOTIFY. The other concerns
local activities, i.e. activities which involve no re-
mote interactions (from the point of view of a
message transfer service user) but only interaction
between an UAE and its MTAE. This leads to the
following comment:
- the submission and delivery protocol defines

two sets of interactions which support different
applications. These sets of interactions can be
independently defined.

4.2 Interpersonal Messaging User Agent Layer
(X.420)

Two PDU types are defined at this level: the
intermessaging UAPDU a n d the status report UAPDU
(UA for user agent). An intermessaging UAPDU
consists of a heading and a body. The body con-
tains one or more body parts, which can be looked

UAE

(SUBMIT req)
req

cnf

SDE

--~. TRANSFER req

"[I(submit) [. . . .

_J RR(submi0 T ~'4--
~-" TRANSFER ind

SDE

PSP + RTS

- + ~ ~ ~ - . ~ + . TRANSFER had

/ - ~ [I(submit)]

. ~ _ _ ~ 1 RR(submit)]:

_~. ~] TRANSFER req

MTAE

Fig. 8. Time sequence diagram for successfully submitting a message across a distributed message transfer interface (SUBMIT req,
between brackets, indicates the original service primitive; I = invoke, RR = ReturnResult).

372 M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems

at as independent (sub)messages, with always an
indication of the body part type (telex, teletex,
voice, etc.). The heading always contains a mes-
sage identifier, and optionally other interpersonnal
messaging PO. A status report UAPDU is used as
an acknowledgement of the receipt or non-receipt
of an intermessaging UAPDU; it therefore always
carries the message identifier of the message to
which it refers. Both PDUS are transferred by means
of the SUBMIT/DELIVER service elements of the
message transfer service. The interpersonal mes-
saging protocol (P2) can provide the same facili-
ties as listed in Section 2.2, on basis of the mes-
sage transfer service, and some other facilities,
including the following (a recipient interpersonal
messaging service user is here shortly termed re-
cipient):
- sending a message to one or more blind copy

recipients, i.e. recipients which are not disclosed
to the primary and secondary ("normal" copy)
recipients specified in the request;

- notification of receipt or non-receipt (non-re-
ceipt means: receipt by the remote UAE, but not
delivered to the intended recipient) of a mes-
sage;

- d e l i v e r y of messages which were auto-for-
warded by the intermessaging protocol;

- conveyance of information as optional inter-
messaging UAPDU heading parameters, some of
them on a per-message basis (the same informa-
tion applies to all recipients in case of multi-re-
cipient delivery), others on a per-recipient ba-
sis;

- transfer of a message consisting of several parts
of possibly different types.
In addition, other, management-like functions

are performed by UAES which do not require the
exchange of either of the above UAPDUS. Some of
these functions concern the local access to the
message transfer service and are not directly con-
trolled by the interpersonal messaging service
users. These functions are based on the use of the
(UAL / MTL)LOGON, LOGOFF, REGISTER, (UAL /
MTL)CHANGE-PASWORD, and (MTL)CONTROL. The
other functions can be controlled by the interper-
sonal messaging service users; they are based on
the use of the CANCEL, PROBE, and (UAL)CONTROL
primitives.

Analysis: The following comments can be made:
- the interpersonal messaging service is poorly

described. The service is not modeled by means

of interrelated service primitives. Instead, the
various service elements are outlined by indicat-
ing the effect of exchanging UAPDUS and the
direct use of message transfer service (interface)
primitives. The information which is exchanged
in service interactions is not explicitly de-
scribed, but must be derived from the UAPDU
definitions or the message transfer service
primitive definitions.
the interpersonal messaging protocol describes
the UAES' engagement in both local and global
activities. The same comments apply here as in
Section 4.1.
notification of successful delivery, provided by
the message transfer service, is passed to the
originating user of the interpersonal messaging
service. This does not seem a very effective use
of this service, as it only indicates a probable
delivery to the peer user. Successful delivery
can only be acknowledged by the receipt notifi-
cation service element.
some UAPDU heading parameters are not used
by the interpersonal messaging protocol but
have only relevance for the interpersonal mes-
saging service users. This is the case with the
optimal parameters which, if used, must be
conveyed on a per-message basis: no inter-
ference of the interpersonal messaging protocol
w.r.t, this information is required. It can there-
fore probably better be specified as a body part
with an appropriate body part type.
summarizing, it appears that the P2 protocol
adds little value to the message transfer service.
A part of the defined UAE operation concerns
local management and does not require the
cooperation with a peer entity; hence, such
operation should not be described as part of the
P2 protocol. Other definitions accrue from the
need to distinguish between several user-rele-
vant parameters, whose semantics must be cor-
rectly transferred (some of them only to a sub-
set of the specified recipients) together with the
actual message. Instead of mapping these
parameters directly onto UAPDU parameters, a
better design option seems to combine them in
(recipient-bound) user data parameters with de-
fined abstract syntaxes. In that case, the presen-
tation service enables the correct interpretation
of such data by the recipient peer user, while
the data structure is not visible in the protocols
supporting the users' interaction.

M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems 373

5. Message Handling within osI

This section is concerned with the integration
of MHS in OSl, where the message transfer service
and protocol together constitute another appli-
cation service element [2], based on the presenta-
tion service. Our aim is to investigate whether the
presentation service is well utilized, and whether
functions of the presentation service provider are
not duplicated. In this context the RTS functional-
ity is most suspicious; we will therefore con-
centrate on this functional part of MHS.

The osI transport service provides a reliable
and cost-optimized data transport capability. De-
pending on the quality of service requested by an
initiating transport service user and the reliability
of the underlying network, a suitable protocol
class is negotiated between two transport entities
(or the transport connection is refused).

The recovery procedures of RTS enhance the
reliability provided by the transport service by
enabling survival of protocol malfunctioning and
connection losses (reported by EXCEPTION and
ABORT primitives, respectively). They also dupli-
cate part of the transport protocol functionality,
since RTS is based on the assumption that only
classes 0 and 1 can be negotiated by the transport
protocol. In an osI environment, only recovery of
exceptional cases (network partitions, application
crashes) should be left to an application protocol,
whereas "normal" recovery can be delegated to
the transport service provider.

The osI session service enriches the transport
service with the capability of exchanging data
without imposing length restrictions and of struc-
turing the communication (dialogue) between the
users of the service.

Hence, checkpointing appears to be a redun-
dant RTS functionality. The session protocol per-
forms segmenting and reassembly to offer transfer
of data of any length (recovery of data segments is
performed by the transport service provider).
Without checkpointing, and with the introduction
of an RTS data- acknowledge PDU to obtain cer-
tainty about the acceptance of a data unit, selec-
tion of the activity management functional unit is
not required any more. This might be advanta-
geous for some implementations, given the fact
that none of the current osI application protocols
makes use of activity services. Also the minor
synchronize functional unit is not required in that
case.

The osI presentation service provides indepen-
dence from the local data representation (encod-
ing) in different systems involved in a communica-
tion.

RTS makes minimal use of the presentation
service. On the other hand, considerable efforts
were made by ISO to allow the conveyance of
X.400 data by the presentation protocol. The rea-
son for this is that X.409, which is the notation
used for the definition of the X.400 PDUs, slightly
diverges from the abstract syntax notation used by
ISO. A universal treatment of data should be made
possible in the presentation layer. The information
type conversion function of the message transfer
protocol also gives rise to some criticism. From an
osI point of view, representation of user data
should be a concern of the presentation layer, and
conversion from one to another datatype should
be considered as an information processing task
pertinent to a level above that which provides
transparent transfer of the associated data, that is,
the message transfer layer.

The entities which make up the osI application
layer are subdivided into entity parts, called appli-
cation service elements (ASE). Corresponding ASES
communicate according to a user-defined or
standardized application protocol, where the latter
may be either application-specific or common to
most applications.

When Mils is to form a separate ASE in the
application layer structure, it must also allow cor-
rect interworking in the presence of other ASES.
Interworking of "composite" application entities
is still under study in ISO TC97/SC21. As a final
remark, it can be noted that the use of naming
directories is currently described as an integral
part of MHS. ISO defines separate service elements
which allow common access to such directories.
If this work is completed, other ASES will probably
use the offered capability and include appropriate
references to the relevant directory services.

6. Conclusions

Analysis of the-X.400 recommendations gave
rise to various points of criticism. Since the analy-
sis was performed from two perspectives, two
categories can be distinguished:
1. Misinterpretations of the architectural concepts

374 M. van Sinderen, E. Dorregeest / X.400 Message Handling Systems

of service, protocol and interface. Among others,
the following points are raised:
- Local and remote interactivities are mixed in

the message transfer service definition.
- The service primitives used in describing the

remote interactivities are not defined at the
highest possible level of abstraction.

- P 1 (message transfer protocol) is "con-
catenated" with P3 (submission and delivery
protocol). In fact, P3 is a protocol which de-
fines the interactions at the abstract interface
between a UAE and a MTAE. Some of these
interactions are a decomposition of the message
transfer service primitives, which in turn define
part of a remote interactivity. Others have no
relation with message transfer service primitives
since they have no corresponding remote ef-
fects.

- The decomposition of message transfer service
primitives described by P3 is incomplete.

- The interpersonal messaging service is poorly
defined. The protocol functionality which is
added by P2 (interpersonal messaging protocol)
is minimal.

- Transparent transfer of user data is not always
performed by P1 and P2, contrary to what is
claimed by the corresponding service or what
could be expected from basic structuring princi-
ples.
It should be noted that these misinterpretations

do not necessarily lead to wrong implementations.
However, they blur the architecture and conse-
quently impair the advantages of good structuring.
For example, modelling errors may unnecessarily
restrict implementations and may hamper cor-
rectness proofs; furthermore, they may lead to
more complex implementations which are more
difficult to test and to maintain.
2. Overdesign of the message transfer protocol as
a consequence of disregarding lower layer func-
tionality. In particular, the following observations
are made:
- The RTS recovery procedures can be simplified

given the service offered by the transport service
provider.

- The RTS checkpointing function is redundant
since the session service offers normal data
transfer without length restrictions. The activity
management and minor synchronize functional
units are then no longer required for support of
message handling.

- The existence of X.400 is visible in the presen-
tation PDU definitions. Although suitable trans-
fer syntaxes must be registrated for X.400 sup-
port, handling X.400 user data should not be
different from any other user data.
Again, redundancy does not lead to wrong im-

plementations. In this case, the architecture be-
comes unnecessary complex. It leads to implemen-
tation overhead and hence results in excess costs
for subscribers to the service. For this reason it
can better be avoided.

In addition to this basic criticism, a number of
smaller defect have been discovered which were
not discussed here. As has been shown in [3], such
defects, including ambiguities, points of incom-
pleteness and inconsistencies, can easily be dis-
covered by using a formal description technique in
defining the services and protocols. These
techniques have the additional advantage of en-
lightening architectural aspects which remain
vague in most informal texts.

It may be clear from the above that the posi-
tioning of m-IS within the osI reference model is
problematic, in particular because osI services and
protocols are (should be) consistent with the con-
cepts of service, etc. (which is not always the case,
see e.g. [1]). In the light of the important applica-
tion areas of message handling, the necessary
adaptions should be agreed as soon as possible.

R e f e r e n c e s

[1] I. Ajubi, M. v. Sinderen: "Design of a CCR Protocol
Using a Formal Description Technique," submitted for
inclusion in EUTECO '88 post-conference proceedings
(North-Holland 1988).

[2] ISO: "Applicat ion Layer Structure," DP 9545,
TC97/SC21 N1743 Revised, Oct. 1987.

[3] E. Dorregeest: "Analysis and Formal Specification of
Electronic Mail," M. Thesis Report No. INF-87-3, Twente
Univ., Enschede, The Netherlands, March 1987.

[4] T. Kalin (ed.): Proc. of the European Telematic Conference
(EUTECO), Workshop 1: Message Handling, Varese, Italy,
October 3-6, 1983 (North-Holland, 1983) 125-263,
631-640.

[5] W. Horak: "Office Document Architecture and Office
Document Interchange Formats: Current Status of Inter-
national Standardization," IEEE Computer, Oct. 1985,
50-60.

[6] CCITT: X.400-Series Implementor's Guide (Version 3),"
COM VII-66-E (also: ISO/TC97/SC21 N1246), April
1986.

[7] CCITT: "Message Handling Systems," Recommendations
X.400 ft., Red Book, Vol. 8, Fascicle 8.7, 1984.

114. van Sinderen, E. Dorregeest /)(.400 Message Handling Systems 375

[8] ISO: "Informat ion Processing Systems - Text Communi -
cations - Functional Description of MOTIS," DIS 8505,
TC97/SC18 N604, Feb. 1986.

[9] ISO: " Informat ion Processing - Open Systems Intercon-
nection - Basic Reference Model", IS7498, TC97, 1984.

[10] ISO: "Informat ion Processing Systems - Open Systems
Interconnection - Service Conventions," ISO TR8509,
1987.

[11] ISO: "Informat ion Processing Systems - Open Systems
Interconnection - Basic Connection Oriented Session
Service Definition," ISO8326, 1987.

[12] C.A. Vissers, L. Logrippo: "The importance of the Service
Concept in the Design of Data Communicat ion Protocols,"
1FIP WG6.1, 5th Int. Workshop on Prof. Spec., Vet. and
Testing, Toulouse-Moissac, France, June 10-13, 1985
(North-Holland, 1986) 3-17.

