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Abstract

We initiate the study of message franking, recently introduced in Facebook’s end-to-end
encrypted message system. It targets verifiable reporting of abusive messages to Facebook
without compromising security guarantees. We capture the goals of message franking via a new
cryptographic primitive: compactly committing authenticated encryption with associated data
(AEAD). This is an AEAD scheme for which a small part of the ciphertext can be used as a
cryptographic commitment to the message contents. Decryption provides, in addition to the
message, a value that can be used to open the commitment. Security for franking mandates
more than that required of traditional notions associated with commitment. Nevertheless, and
despite the fact that AEAD schemes are in general not committing (compactly or otherwise),
we prove that many in-use AEAD schemes can be used for message franking by using secret keys
as openings. An implication of our results is the first proofs that several in-use symmetric en-
cryption schemes are committing in the traditional sense. We also propose and analyze schemes
that retain security even after openings are revealed to an adversary. One is a generalization of
the scheme implicitly underlying Facebook’s message franking protocol, and another is a new
construction that offers improved performance.

Keywords: authenticated encryption, encrypted messaging

1 Introduction

Encrypted messaging systems are now used by more than a billion people, due to the introduction
of popular, industry-promoted products including WhatsApp [65], Signal [66], and Facebook Mes-
senger [31]. These use specialized (non-interactive) key exchange protocols, in conjunction with
authenticated encryption, to protect messages. Many tools are based on the Signal protocol [48],
which itself was inspired by elements of the off-the-record (OTR) messaging protocol [20]. A pri-
mary design goal is end-to-end security: intermediaries including the messaging service providers,
or those with access to their systems, should not be able to violate confidentiality or integrity of
user messages.

End-to-end security can be at odds with other security goals. A well-known example is dealing
with filtering and reporting spam in the context of encrypted email [42, 61]. Similar issues arise
in modern encrypted messaging systems. For example, in Facebook’s system when one user sends
harassing messages, phishing links, malware attachments, etc., the recipient should be able to
report the malicious behavior so that Facebook can block or otherwise penalize the sender. But
end-to-end confidentiality means that Facebook must rely on users sending examples of malicious

∗A preliminary version of this work appeared in the proceedings of CRYPTO 2017. This is the full version.
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Scheme MO security Sender binding Rec. binding Enc Dec Ver

Encode-then-Encipher (Ideal) X X – – –

Encrypt-then-HMAC (one key) X X 2+1 2+1 2+1

HMAC-then-CBC X X 2+1 2+1 2+1

CtE1 X X X 3+1 3+1 1+1

CtE2 (Facebook) X X X 3+2 3+2 1+1

CEP X X X 2+1 2+1 1+1

Figure 1: Summary of schemes investigated in this work. The columns indicate whether the scheme meets
multiple-opening (MO) security, sender binding, and receiver binding. The last three columns indicate the
number of cryptographic passes over a bit string of length equal to the message plus the number of passes
needed to handle the associated data, for each of the three main operations. We omit comparisons with
concrete encode-then-encipher constructions, which vary in the number of passes required.

messages. How can the provider know that the reported message was the one sent? Reports could,
in turn, become a vector for abuse should they allow a malicious reporter to fabricate a message
and convince the provider it was the one sent (see also [42]).

Facebook messenger recently introduced an approach for verifiable abuse reporting that they
refer to as message franking [32,51]. The idea is to include in the report a cryptographic proof that
the reported message was the one sent, encrypted, by the particular sender. They offer a protocol
(discussed below) and a sensible, but informal and vague, discussion of security goals. At present
it is ultimately not clear what message franking provides, whether their approach is secure, and if
there exist better constructions. Given the critical role message franking will play for messaging
services moving forward, more study is needed.

We therefore initiate the formal study of message franking. We introduce the notion of com-
pactly committing authenticated encryption with associated data (AEAD) as the cryptographic
primitive of merit that serves as the basis for message franking. We provide security definitions,
show how several widely used AEAD schemes can already serve as compactly committing AEAD,
give an analysis of (a generalization of) the scheme underlying Facebook’s protocol, and design a
new scheme that has superior performance. A summary of schemes treated in this work, and their
efficiency, is shown in Figure 1.

Facebook’s message franking protocol. Facebook’s protocol works as follows, modulo a few
details (see Section 3). A sender first generates a fresh key for HMAC [3], and applies HMAC to
the message. It then encrypts the HMAC key and message using a conventional AEAD scheme
with a symmetric key shared with (just) the recipient, and sends along the resulting ciphertext and
the hash value to Facebook’s servers. Facebook signs the hash and forwards on the whole package
— signature, HMAC hash, and ciphertext — to the recipient, who decrypts and checks the validity
of the HMAC output using the recovered HMAC key. Should the recipient want to report abuse,
their software client sends the signature, message, HMAC hash, and HMAC key to Facebook who
can now verify the signature and hash.

While descriptions of Facebook’s protocol do not use the term commitment, intuitively that is
the role played by HMAC. This may suggest viewing message franking as simply a construction
of committing encryption [37]. But committing encryption views the entire ciphertext as the
commitment and opens ciphertexts by revealing the secret key. Neither is true of the Facebook
scheme.

A new primitive: compactly committing AEAD.We introduce a new cryptographic primitive
that captures the properties targeted in verifiable abuse reporting. We refer to it as compactly
committing AEAD. This is an AEAD scheme for which a small portion of the ciphertext can be
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used as a commitment to the message. Decryption reveals an opening for the message, and the
scheme comes equipped with an additional verification algorithm that can check the commitment.
This formalization has some similarity to one for non-AEAD symmetric encryption due to Gertner
and Herzberg [37], but differs in important ways and their treatment does not suffice for message
franking. (See Section 9 for more detailed comparisons).

Formalizing security for committing AEAD schemes requires care. Informally we want con-
fidentiality, ciphertext integrity, and that some designated portion of a ciphertext is a binding
commitment to its underlying plaintexts. While seemingly a straightforward adaptation of real-
or-random style confidentiality and ciphertext integrity notions would suffice [56,58,60], this turns
out to provide only a weaker form of security in which reporting abuse may invalidate security of
the encryption moving forward. In short, this is because the opening might reveal cryptographic
key material, e.g., if the secret key is itself used as the opening. We refer to this as single-opening
(SO) security. We formalize also multiple-opening (MO) security notions which, in addition to the
usual challenge oracles, gives the adversary the ability to obtain regular encryptions and decryp-
tions (which, by our syntax, reveals the opening should a ciphertext be valid) under the target
key. Analogously to previous AEAD treatments [60], we formalize this both via an all-in-one secu-
rity game that simultaneously establishes confidentiality and integrity, and as separate notions for
confidentiality and integrity. We prove them equivalent.

Standard integrity notions like INT-CTXT do not by themselves imply that the ciphertext is
a binding commitment to the underlying message. We introduce a notion called receiver binding,
which is similar to the binding notions from the commitment literature, notions from the robust
encryption1 literature [1, 33, 34], and the prior notion of binding for committing encryption due to
Gertner and Herzberg. Importantly, we deal with the fact that only a portion of the ciphertext
is committing, and other details such as associated data. Achieving receiver binding means that
no computationally limited adversary can find two opening, message pairs that verify for the same
committing portion of a ciphertext.

At first glance this seemed like the end of the story with regards to binding security. But in the
message franking setting, schemes that are only receiver binding may spectacularly fail to ensure
verifiable abuse reporting. In particular such schemes can suffer from the following attack: a sender
carefully chooses a ciphertext so that an abusive message is correctly decrypted by the receiver,
but verification with the resulting opening of that message fails. Such an attack is devastating
because it prohibits an abusive message from being verified as such, allowing malicious senders to
send abusive messages with impunity. We therefore formalize and target meeting a sender binding
property that rules out such attacks.

Legacy schemes. With formal notions in place, we start by investigating whether existing, in-use
AEAD schemes are compactly committing. For these legacy schemes the opening always includes
the secret key. For some schemes the per-message randomness is also included in the opening, but
for other schemes this can lead to subtle attacks. In each case we identify a small portion of the
ciphertext to take as the committing portion. In this context proving receiver binding also proves
the scheme to be committing in the more traditional sense.

As mentioned, AEAD schemes are not in general binding via simple counter-examples. We
therefore analyze specific constructions, focusing on three important schemes. The first, Encode-
then-Encipher [12], uses a variable-input-length tweakable block cipher to build an authenticated
encryption scheme by padding messages with randomness and redundancy information (zero bits).
We show that, modeling the underlying tweakable cipher as ideal, one can show that taking a
security-parameter number of bits of the ciphertext as the commitment is both receiver and sender

1We compare and contrast our security notions with notions from the robust encryption literature in Appendix A.
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binding. Verification re-encrypts the message and checks that the resulting ciphertext properly
matches the commitment value.

We next investigate Encrypt-then-MAC constructions [9], which are particularly relevant here
given that Signal [48], and in turn Facebook messenger, uses AES-CBC followed by HMAC for
authenticated encryption of messages. In practice, one uses a key-derivation function to derive an
encryption key and a MAC key. Interestingly, if one uses as opening those two separate keys, then
a simple attack shows that this scheme is not receiver binding. If, however, one uses the input to
the KDF as the opening, we can prove receiver binding assuming the KDF and MAC are collision
resistant. Notably this rules out using CMAC [45], PMAC [18], and Carter-Wegman MACs [64],
but Encrypt-then-HMAC suffices.

This means that in Facebook messenger the underlying encryption already suffices as a single-
opening-secure committing AEAD scheme. Moreover, due to ratcheting [14, 27, 49] Signal never
reuses a symmetric key. Thus Facebook could have avoided the dedicated HMAC commitment.
Admittedly they may be uncomfortable — for reason of psychological acceptability — with an
architecture that sends decryption keys to Facebook despite the fact that this represents no harm
to future or past communications.

We finally investigate MAC-then-Encrypt, the mode of operation underlying TLS 1.2 and before.
The binding properties of MAC-then-Encrypt were briefly investigated in a recent paper that used
TLS 1.2 records as commitments [63], including a brief proof sketch of receiver binding when taking
the entire ciphertext as the commitment. We expand on their proof sketch and provide a full proof
for the scheme instantiated with CBC-mode and HMAC (the instantiation used in TLS), taking a
small constant number of ciphertext blocks as the committing portion.

Commit-then-Encrypt constructions. We next turn to analyzing generic constructions that
combine a commitment with an existing AE scheme. We provide a generalization of the Facebook
scheme, and show that it is multiple-opening secure and both sender and receiver binding, assuming
only that the underlying AEAD scheme is sound and the commitment is unique. HMAC is a unique
commitment, thereby giving us the first formal security analysis of Facebook’s message franking
scheme. One can also use a non-malleable commitment [30]. If one instead uses a malleable
commitment, then the scheme will not achieve ciphertext integrity.

We also offer an alternative composition that removes the need for non-malleable commitments,
and also can improve performance in the case that associated data is relatively long. Briefly, we use
a commitment to the associated data and message as the associated data for the underlying AEAD
scheme. This indirectly binds the encryption ciphertext to the associated data, without paying the
cost of twice processing it.

Both these constructions are multiple-opening secure, since the commitment opening is in-
dependent of the underlying AE keys. This is intuitively simple but the proof requires care —
commitments play a role in achieving CTXT and so we must show that unopened encryptions,
despite using the same keys as opened encryptions, retain ciphertext integrity. See the body for
details.

The Committing Encrypt-and-PRF (CEP) scheme. The generic constructions that meet
multiple-opening security are slower than existing (single-opening secure) AEAD schemes, since
they require an additional cryptographic pass over the message. This represents approximately
a 1.5x slowdown both for encryption and decryption. For the expected workload in messaging
applications that consists primarily of relatively short plaintexts, this may not matter, but if one
wants to use committing AEAD for large plaintexts such as image and video attachments or in
streaming settings (e.g., a committing version of TLS) the overhead will add up quickly.

We therefore offer a new AEAD scheme, called Committing Encrypt-and-PRF (CEP) that
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simultaneously enjoys multiple-opening security while also retaining the two-pass performance of
standard AEAD schemes. As an additional bonus we make the scheme nonce-based [58], meaning
that it is derandomized and only needs to be used with non-repeating nonces. (We formalize
nonce-based committing AEAD in the body; it is largely similar as the randomized variant.)

The basic idea is to adapt an Encrypt-and-PRF style construction to be compactly committing
and multiple-opening. To do so we derive one-time use PRF keys from the nonce, and compute a
tag that is two-part. The commitment value for the ciphertext is the output of a keyed hash that
is simultaneously a PRF when the key is private and collision resistant when it is adversarially
chosen. The latter is critical since receiver binding requires, in this context, a collision-resistance
property. If one stopped here, then the scheme would not be secure, since openings reveal the
PRF’s key, rendering it only CR, and CR is not enough to prevent future ciphertext forgeries. We
therefore additionally run a one-time PRF (with key that is never opened) over this commitment
value to generate a tag that is also checked during decryption. Ultimately we prove that the scheme
achieves our notions of sender binding, receiver binding, and multiple-opening confidentiality and
ciphertext integrity.

We strove to make the scheme simple and fast. Instantiated with a stream cipher such as AES-
CTR-mode or ChaCha20, we require just a single secret key and use the stream cipher to generate
not only the one-time keys for the PRFs but also a pad for encrypting the message. Because we
need a collision-resistant PRF, our suggested instantiation is HMAC, though other multi-property
hash functions [10] would work as well.

Future directions. Our work has focused on the symmetric encryption portion of messaging
protocols, but one can also ask how the landscape changes if one holistically investigates the public-
key protocols or key exchange in particular. Another important direction is to understand the
potential tension between committing AEAD and security in the face of selective opening attacks
(SOA) [7, 8]. Our current definitions do not model SOAs. (An SOA would allow, for example,
a compromise of the full cryptographic key, not just the ability to get openings.) While it may
seem that committing encryption and SOA security are at odds, we actually conjecture that this is
not fundamental (particularly in the random oracle model), and future work will be able to show
SOA-secure compactly committing AEAD.

2 Preliminaries

We fix some alphabet Σ, e.g., Σ = {0, 1}. For any x ∈ Σ∗ let |x| denote its length. We write x←$ X
to denote uniformly sampling from a set X. We write X ‖Y to denote concatenation of two strings.
For a string X of n bits, we will write X[i, . . . , j] for i < j ≤ n to mean the substring of X beginning
at index i and ending at index j. For notational simplicity, we assume that one can unambiguously
parse Z = X ‖ Y into its two parts, even for strings of varying length. For strings X,Y ∈ {0, 1}∗

we write X ⊕ Y to denote taking the XOR of X[1, . . . ,min{|X|, |Y |}]⊕ Y [1, . . . ,min{|X|, |Y |}].
We use code-based games (q.v., [13]) to formalize security notions. A game G is a sequence

of pseudocode statements, with variables whose type will be clear from context. Variables are
implicitly initialized to appropriate defaults for their type (zero for integers, empty set for sets,
etc.). Each variable is a random variable in the probability distribution defined by the random
coins used to execute the game. We write Pr[G ⇒ y] to denote the event (over the random coins
of G) that the game outputs a value y. Associated to this pseudocode is some fixed RAM model
of computation where most operations are unit cost. We will use “big-O” notation O(·) to hide
only small constants that do not materially impact the interpretation of our results. For a game G
and scheme S, we will sometimes use the terminology “a GS adversary” to refer to an adversary
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in the game G instantiated with the scheme S. If we denote the adversary A, we will write GAS to
denote the game G instantiated with the scheme S and specific adversary A, and Pr

[
GAS ⇒ out

]

to denote the probability over some sample space (usually the random coins used by the game and
the adversary) that game G instantiated with scheme S and adversary A outputs out.

We will work in the random oracle model (ROM) [11] and the ideal cipher model (ICM). In
the ROM, algorithms and adversaries are equipped with an oracle that associates to each input a
random output of some length that will vary by, and be clear from, context. In the ICM, algorithms
and adversaries are equipped with a pair of oracles. The first takes input a key, a tweak, and a
message, all bit strings of some lengths k, t, and n, respectively. Each key, tweak pair selects a
random permutation on {0, 1}n. The second oracle takes as input a key, a tweak, and an n-bit
value, and returns the inverse of the permutation selected by the key and tweak applied to the
value.

Symmetric encryption. A nonce-based authenticated encryption with associated data (AEAD)
scheme SE = (kg, enc, dec) consists of a triple of algorithms. Associated to it are a key space
K ⊆ Σ∗, nonce space N ⊆ Σ∗, header space H ⊆ Σ∗, message spaceM⊆ Σ∗, and ciphertext space
C ⊆ Σ∗. The randomized key generation algorithm kg outputs a secret key K ∈ K. Canonically
kg selects K←$K and outputs K. Encryption enc is deterministic and takes as input a four-tuple
(K,N,H,M) ∈ (Σ∗)4 and outputs a ciphertext C or a distinguished error symbol ⊥. We require
that enc(K,N,H,M) 6= ⊥ if (K,N,H,M) ∈ K × N × H ×M. Decryption dec is deterministic
and takes as input a tuple (K,N,H,C) ∈ (Σ∗)4 and outputs a message M or ⊥. An SE scheme is
correct if for any (K,N,H,M) ∈ K×N ×H×M it holds that dec(K,N,H, enc(K,N,H,M)) = M .

Some schemes that we will analyze predate the viewpoint of nonce-based encryption, including
generic compositions that utilize CTR or CBC mode. A randomized SE scheme SE = (kg, enc, dec)
is the same as a nonce-based SE scheme except that we omit nonces everywhere, and have enc take
an additional input, the coins, that are assumed to be drawn from some coin spaceR ⊆ σ∗. Correct-
ness now is met if for any (K,H,M,R) ∈ K×H×M×R it holds that dec(K,H, enc(K,H,M ;R)) =
M . We will focus on schemes that are public-coin, meaning the ciphertext includes R explicitly.
This is true, for example, of CTR or CBC mode encryption. For notational simplicity, we will
assume for such schemes that enc outputs R concatenated with the remainder of the ciphertext.
Below we will occasionally refer to plain authenticated encryption (AE) which does not handle
associated data. This will be defined identically to AEAD above, but with the associated data H
removed.

Message authentication codes. A message authentication code (MAC) is a tuple of algorithms
Mac = (kg, tag, ver). Associated to a MAC is a key space K ⊆ Σ∗, message space2 M ⊆ Σ∗ × Σ∗,
and tag space T ⊆ Σ∗. The key generation procedure kg is the same as the one used for symmetric
encryption. The deterministic tag generation algorithm tag(K,M) takes as input a key K ∈ K and
message M ∈ M and outputs a tag T ∈ T . The deterministic verification procedure ver(K,M, T )
takes as input a key K ∈ K, message M ∈ M, and tag T ∈ T . It outputs true if tag(K,M) = T
and false otherwise.

The standard security notion for MACs is existential unforgeability under chosen-message attack
(UF-CMA). We use a multi-user variant that generalizes it to a setting in which an adversary can
interact with multiple instances of the MAC. Game MU-UF-CMAMac is shown in Figure 2. The
MU-UF-CMAMac advantage of an adversary A is defined as

Advmu-uf-cma
Mac (A) = Pr

[
MU-UF-CMAAMac ⇒ true

]
.

2Looking ahead, we will use a MAC that takes pairs of strings as messages. See Section 8.
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MU-UF-CMAA
Mac:

win← false

ATag,Ver

Return win

Ver(S,M, T ):

If K[S] = ⊥ then K[S]←$ Kg

b← (tag(K[S],M) = T )

If M /∈M[S] ∧ b = 1 then

win← true

Return b

Tag(S,M):

If K[S] = ⊥ then K[S]←$ Kg

M[S]←M[S] ∪M

Return tag(K[S],M)

Figure 2: Multi-user UF-CMA security for a MAC scheme Mac = (kg, tag, ver).

Nonce-based pseudorandom generators. A nonce-based pseudorandom generator G is a de-
terministic algorithm that takes as input a key K, a nonce N , and an output length ℓ. It outputs
a string of length ℓ bits. The PRG advantage of an adversary A against G is defined by

Advprg
G (A) =

∣∣∣Pr
[
K←$ {0, 1}k : AG(K,·,·) ⇒ 1

]
− Pr

[
AR(·,·) ⇒ 1

]∣∣∣
where R works as follows. On query N, ℓ it checks if a previous query N, ℓ′ was submitted. If ℓ′ < ℓ
it picks a new random string of length ℓ − ℓ′, appends it to the previous returned string for N ,
records it (in a table indexed by N), and returns the concatenated random string. If no previous
query exists, then it picks a random string of length ℓ, records it, and returns it. We call a PRG
adversary A nonce-respecting if all its queries use a unique nonce N . We can build a nonce-based
pseudorandom generator G[E] from a block cipher E : {0, 1}k × {0, 1}n × {0, 1}n in CTR mode
with IV ← EK(N). That is, on input K,N, ℓ, the PRG G[E] outputs an ℓ-bit string P where the
ith n-bit block is EK(EK(N) + i), truncating the last block if necessary. (Addition is in the field
GF(2n).) One can adapt existing techniques (e.g., [58, Th. 3]) in a straightforward way to prove
the following lemma. Note that a tighter, but slightly messier, bound can be proven using the fact
that at most σ/n queries to E are required to generate σ bits of PRG output.

Lemma 1 Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher. Let G[E] be a nonce-based
pseudorandom generator constructed from E as described in the previous paragraph. Let A be a
nonce-respecting PRG adversary against G[E] making at most q queries and whose output lengths

sum to at most σ. Then one can give an explicit adversary B such that Advprg
G[E](A) ≤ Advprf

E (B)+

σ2/2n. Adversary B makes at most σ queries and runs in time that of A.

Tweakable ciphers. A tweakable cipher TC = (Ẽ, D̃) is a pair of algorithms. Associated to
any tweakable cipher is a key space K ⊆ Σ∗, tweak space T ⊆ Σ∗, and message and ciphertext
space M ⊆ Σ∗. Keys are generated as random draws from K. Encryption Ẽ takes a key, tweak,
and message triple (K,T,M) ∈ (Σ∗)3 and outputs a ciphertext C ∈ M or an error symbol ⊥.
Decryption D̃ takes a key, tweak, and ciphertext triple (K,T,C) ∈ (Σ∗)3 and outputs a message
M ∈M or an error symbol ⊥. Below we will sometimes write the key K as a subscript of Ẽ or D̃
and the tweak T as a superscript. Intuitively, a tweakable cipher is a family of permutations over
M indexed by key and tweak pairs (K,T ) ∈ K×T . This is in contrast to a standard block cipher,
which is a family of permutations indexed only by a key K ∈ K. We say that TC has variable input
length if the family of permutations is additionally indexed by the input length.

Pseudorandom functions. For a function F : K×{0, 1}∗ → {0, 1}n and adversary A we define
the pseudorandom function (PRF) advantage of A to be

Advprf
F (A) =

∣∣∣Pr
[
AF (K,·) ⇒ 1

]
− Pr

[
AR(·) ⇒ 1

]∣∣∣ .

In the (implicit) game for the left-hand term, the keyK is drawn uniformly fromK by the challenger.
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In the game for the right-hand term the function R is drawn uniformly from Func, the space of
all functions that output n bits.3 Informally, we say the function F is a PRF if Advprf

F () is small
for all efficient adversaries. Below we will sometimes refer to the left-hand experiment as the “real
world” and the other as the “ideal world”.

In proofs it will be convenient to use multi-user PRF security [4]. We define the MU-PRF
advantage of an adversary A to be

Advmu-prf
F (A) =

∣∣∣Pr
[
AF (·,·) ⇒ 1

]
− Pr

[
AR(·,·) ⇒ 1

]∣∣∣ .

where F on input a key identifier S ∈ {0, 1}∗ and a message M , checks if there is a key associated
to S, and if not chooses a fresh one K[S]←$ {0, 1}k. It then returns F (K[S],M). The oracle R on
input a key identifier S ∈ {0, 1}∗ and a message M , checks if there is a random function associated
to S, and if not chooses a fresh one R[S]←$ Func. It returns R[S](M). Note that MU-PRF security
is implied by PRF security via a standard argument.

Collision-resistance. For a function F : {0, 1}∗×{0, 1}∗ → {0, 1}n and adversary A, define the
collision-resistance (CR) advantage as

Advcr
F (A) = Pr

[
((x1, x2), (x

′
1, x
′
2))←$A :

F (x1, x2) = F (x′1, x
′
2),

(x1, x2) 6= (x′1, x
′
2)

]
.

Informally, we say F is collision-resistant if Advcr
F () is small for all efficient adversaries. Following

prior work [59], we omit the alternate definition of collision-resistance that is used for unkeyed
primitives like hash functions, in which the adversary needs to output a collision in a function that
is randomly sampled from a family of functions.

Commitment schemes with verification. A commitment scheme with verification CS =
(Com,VerC) consists of two algorithms.4 Associated to any commitment scheme is an opening
space Kf ⊆ Σ∗, a message space M ⊆ Σ∗, and a commitment space C ⊆ Σ∗. The algorithm
Com is randomized and takes as input a M ∈ Σ∗ and outputs a pair (K,C) ∈ Kf × C or an error
symbol ⊥. We assume that Com returns ⊥ with probability one if M /∈ M. The algorithm VerC

is deterministic. It takes input a tuple (K,C,M) ∈ Σ∗ and outputs a bit. We assume that VerC

returns 0 if its input (K,C,M) /∈ Kf × C ×M. We assume that the commitment values C are of
some fixed length (typically denoted by t).

A commitment scheme is correct if for all M ∈ M, Pr[VerC(Com(M),M) = 1] = 1 where
the probability is over the coins used by Com. We can formalize the binding security notion of
our commitment scheme as a game. Formally, the game vBINDACS first runs the adversary A
who outputs a tuple (Kc,M,K ′c,M

′, C). The game then runs b ← VerC(Kc, C,M) and b′ ←
VerC(K ′c, C,M

′). The game outputs true if M 6= M ′ and b = b′ = 1 and false otherwise. To a
commitment scheme CS and adversary A we associate the vBIND advantage

Advv-bind
CS (A) = Pr

[
vBINDACS ⇒ true

]
.

The probability is over the coins used by the game.
Commitment schemes should enjoy a hiding property as well. Traditionally this is formalized

as a left-or-right indistinguishability notion (q.v., [6]). For our purposes we will target a stronger
notion, analogous to real-or-random (ROR) security for symmetric encryption. It asks that a
commitment be indistinguishable from a random bit string while the opening remaining secret.
Game ROR1ACS runs an adversary A and gives it access to an oracle Com to which it can query

3We are abusing the formalism here by sampling R from an infinite set; we do so for notational consistency and
simplicity.

4We will not use the alternate definition of commitments with opening [21].
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messages. The oracle computes (Kc, C)←$ Com(M) and returns C. The adversary outputs a bit,
and the game outputs true if the bit is one. Game ROR0ACS is similar except that the oracle returns
a string of random bits of length |C| and the game outputs true if the adversary outputs zero. We
define the advantage by Advcs-ror

CS (A) =
∣∣Pr

[
ROR1ACS ⇒ true

]
− Pr

[
ROR0ACS ⇒ false

]∣∣.
HMAC is a good commitment. Any PRF that is also collision-resistant meets our security
goals for commitments. In particular, one can build a commitment scheme CS[F ] = (Com,VerC)
works from any function F : K×{0, 1}∗ → {0, 1}n as follows. Commitment Com(M) chooses a fresh
value K←$K, computes C ← F (K,M) and outputs (K,C). Verification VerC(K,C,M) outputs
one if F (K,M) = C and zero otherwise. Then the following theorem captures the security of this
commitment scheme, which rests on the collision resistance and PRF security of F .

Theorem 1 Let F be a function and CS[F ] be the commitment scheme built from it as described
above. Then for any RORCS[F ] adversary A making at most q queries and vBINDCS[F ] adversary
A′, we construct an explicit pair of adversaries B,B′ in the proof below so that

Advcs-ror
CS[F ](A) ≤ Advmu-prf

F (B) and Advv-bind
CS[F ] (A

′) ≤ Advcr
F (B

′) .

The adversary B runs in time that of A and makes the same number of oracle queries as A.
Adversary B′ runs in time that of A′.

Proof: Adversary B is straightforward - when A makes an oracle query on value q, it queries its
mu-prf oracle with q and a fresh key identifier. The adversary B outputs whatever A outputs, and
the first result follows immediately.

Next, we will bound the vBIND advantage of F using an adversary B′ that simply runs A′ giving
it a description of the function F . When A′ outputs (Kc,M,K ′c,M

′, C), B′ runs VerC(Kc, C,M)
and VerC(K ′c, C,M

′) and outputs ((Kc,M), (K ′c,M
′)) if both calls to VerC return 1. Thus,

Pr
[
vBINDA

′

F ⇒ true
]
≤ Advcr

F (B
′)

and the second result follows as well.

As the underlying function needs to be both CR and a good PRF, a suitable candidate would be
HMAC [5], i.e., F (K,M) = HMAC(K,M). Other multi-property hash functions [10] could be used
as well. The Facebook franking scheme (discussed in Section 3) uses a non-standard HMAC-based
commitment based on F (K,M) = HMAC(K,M ‖K). We will assume HMAC remains a PRF when
used in this non-standard way. One can substantiate this assumption directly in the random oracle
model [29], or using techniques from the key-dependent message literature [19, 38].

3 Message Franking and End-to-End Encryption

In end-to-end encrypted messaging services there exists a tension between message privacy and
reporting abusive message contents to service providers. The latter is important to flag abusive
accounts, but reports need to be verifiable, meaning that the provider can check the contents of the
allegedly abusive message and be certain that it was the message sent. Otherwise abuse-reporting
mechanisms could themselves be abused to make false accusations.

A recipient can send the allegedly abusive plaintext to the service provider, but message privacy
guarantees that the provider does not know whether the alleged message was in fact the one sent.5

5Of course, if the recipient is running a trusted client, then this assertion could be trusted. We are concerned with
the case that the client is potentially subverted.
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(Open)

Alice Facebook BobKf ←$ {0, 1}n

C2 ← HMAC(Kf ,M ‖Kf )

C1←$ Enc(Kr,M ‖Kf )

md← Alice ‖ Bob ‖ timestamp

s← C2 ‖md

a← HMAC(KFB, s)

C1, C2

C1, C2, a

M ‖Kf ← Dec(Kr, C1)

If M ‖Kf = ⊥ then Return ⊥

If C2 6= HMAC(Kf ,M ‖Kf ):

Return ⊥

Return M

M,Kf ,md, a
C2 ← HMAC(Kf ,M ‖Kf )

a′ ← HMAC(KFB, C2 ‖md)

Return a = a′

Figure 3: Facebook’s message franking protocol [51]. The key Kr is a one-time-use symmetric key derived
as part of the record layer protocol. The top portion is the sending of an encrypted message to the recipient.
The bottom portion is the abuse reporting protocol.

A seeming solution would be for the service to log ciphertexts, and have the recipient disclose the
secret key to allow the provider to decrypt the ciphertext. Not only is this impractical due to
the storage requirements, but it also does not guarantee that the decrypted message is correct. It
could be that the recipient chose a key that somehow decrypts the (legitimate) ciphertext to a fake
message. Ultimately what is required for this to work is for the encryption to be committing: no
computationally efficient adversary can find a secret key that decrypts the ciphertext to anything
but the originally encrypted message.

Facebook’s approach. Facebook recently detailed a new cryptographic mechanism [32, 51] tar-
geting verifiable abuse reporting on Facebook messenger, which uses end-to-end encryption based
on Signal [66]. The basic idea is to force the sender to provide a commitment, sent in the clear,
to the plaintext message. A diagram of Facebook’s protocol, that they call “message franking” (as
in “speaking frankly”), is shown in Figure 3. The sender first applies HMAC with a fresh key Kf

to the concatenation of the message and Kf to produce a value C2, and then encrypts using an
AEAD scheme the message and Kf to produce a ciphertext C1 using a key Kr shared with the
recipient. Then (C1, C2) is sent to Facebook. Facebook applies HMAC with its own secret key KFB

to C2 to get a tag a, and sends to the recipient (C1, C2, a). The recipient decrypts C1, recovers
the message M and key Kf and checks the value C2 = HMAC(Kf ,M ‖Kf ). To report abuse, the
recipient sends M , Kf , and a to Facebook. Facebook recomputes HMAC(Kf ,M ‖Kf ) and checks
the tag a.

It is clear that the sender is using HMAC as a cryptographic commitment to the message.
(This terminology is not used in their technical specifications.) The use of HMAC by Facebook to
generate the tag a is simply to forego having to store commitments, instead signing them so that
they can be outsourced to recipients for storage and verified should an abuse report come in.

There are interesting security issues that could arise with Facebook’s scheme, and cryptographic
abuse reporting in general, that are orthogonal to the ones discussed here. In particular, binding
Facebook’s tag to the communicating parties seems crucial: otherwise a malicious party could
create a sock-puppet (i.e. fake) account, send itself an abusive message, then accuse a victim of
having sent it.

While the design looks reasonable, and the Facebook white paper provides some informal dis-
cussion about security, there has been no formal analysis to date. It is also not clear what security
properties the main cryptographic construction — combining a commitment with AEAD — should
satisfy. We rectify this by introducing, in the following section, the notion of committing AEAD.
This will allow us not only to analyze Facebook’s franking scheme, but to suggest alternative de-
signs, including ones that are legacy-compatible with existing deployed AEAD schemes and that
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do not require adding an additional dedicated commitment.

4 Committing AEAD

Formally, a committing AEAD scheme CE = (Kg,Enc,Dec,Ver) is a four-tuple of algorithms. Asso-
ciated to a scheme is a key space K ⊆ Σ∗, header space H ⊆ Σ∗, message spaceM⊆ Σ∗, ciphertext
space C ⊆ Σ∗, opening space Kf ⊆ Σ∗, and franking tag space T ⊆ Σ∗.

• Key generation : The randomized key generation algorithm Kg outputs a secret key K ∈ K.
We write K←$ Kg to denote executing key generation.

• Encryption : Encryption Enc is randomized. The input to encryption is a triple (K,H,M) ∈
(Σ∗)3 and the output is a pair (C1, C2) ∈ C × T or a distinguished error symbol ⊥. Unlike
with regular symmetric encryption, the output includes two components: a ciphertext C1 and a
franking tag C2. We also refer to C2 as the commitment. We require that Enc(K,H,M) 6= ⊥ if
(K,H,M) ∈ K×H×M. We write (C1, C2)←$ Enc(K,H,M) to denote executing encryption.

• Decryption : Decryption, which is deterministic, takes as input a tuple (K,H,C1, C2) ∈ (Σ∗)4

and outputs a message, opening value pair (M,Kf ) ∈ M × Kf or ⊥. We write (M,Kf ) ←
Dec(K,H,C1, C2) to denote executing decryption.

• Verification : Verification, which is deterministic, takes as input a tuple (H,M,Kf , C2) ∈
(Σ∗)4 and outputs a bit. For (H,M,Kf , C2) /∈ H×M×Kf ×T , we assume that Ver outputs 0.
We write b← Ver(H,M,Kf , C2) to denote executing verification.

We will often place K in the subscript of relevant algorithms. For example, EncK(H,M) =
Enc(K,H,M) and DecK(H,C1, C2) = Dec(K,H,C1, C2).

We require that CE schemes output ciphertexts whose lengths are determined solely by the
length of the header and message. Formally this means that there exists a function clen : N×N→
N× N such that for all (K,H,M) ∈ K ×H×M it holds that Pr[(|C1|, |C2|) = clen(|H|, |M |)] = 1
where (C1, C2)←$ EncK(H,M) and the probability is over the coins used by encryption.

We say a CE scheme has decryption correctness if for all (K,H,M) ∈ K × H ×M it holds
that Pr[Dec(K,H,C1, C2) = M ] = 1 where the probability is taken over the coins used to compute
(C1, C2)←$ Enc(K,H,M).

We say that a scheme has commitment correctness if for all (K,H,M) ∈ K ×H ×M it holds
that Pr[Ver(H,M,Kf , C2) = 1] = 1 where the probability is taken over the random variables used
in the experiment

(C1, C2)←$ EncK(H,M) ; (M,Kf )← DecK(H,C1, C2) ; Return (Kf , C2)

Our formulation of CE schemes is a generalization of that for conventional (randomized) AEAD
schemes in the following sense. One can consider an AEAD scheme as a CE scheme that has
encryption output the entire ciphertext as C2, decryption output an empty string for the opening
value, and has verify always return one.

Compactly committing AEAD. In our formalism, a ciphertext has two components. A scheme
may output C1 = ε and a C2 value that therefore consists of the entire ciphertext. This embodies
the traditional viewpoint on committing AEAD, in which the entire ciphertext is viewed as the
commitment. We refer to this as “traditionally committing encryption” (see Appendix A). But
we are more general, and in particular our formalism allows schemes with compact commitments,
by which we mean schemes for which |C2| is small. In particular we will want |C2| to be linear
in the key size, rather than linear in the message length. One can make any CE scheme compact
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MO-REALA
CE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C1, C2)←$ EncK(H,M)

Y1 ← Y1 ∪ {(H,C1, C2)}

Return (C1, C2)

Dec(H,C1, C2)

If (H,C1, C2) /∈ Y1 then

Return ⊥

(M,Kf )← DecK(H,C1, C2)

Return (M,Kf )

ChalEnc(H,M)

(C1, C2)←$ EncK(H,M)

Return (C1, C2)

MO-RANDA
CE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(H,M)

(C1, C2)←$ EncK(H,M)

Y1 ← Y1 ∪ {(H,C1, C2)}

Return (C1, C2)

Dec(H,C1, C2)

If (H,C1, C2) /∈ Y1 then

Return ⊥

(M,Kf )← DecK(H,C1, C2)

Return (M,Kf )

ChalEnc(H,M)

(ℓ1, ℓ2)← clen(|H|, |M |)

(C1, C2)←$ {0, 1}ℓ1 × {0, 1}ℓ2

Return (C1, C2)

MO-CTXTA
CE:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M)

(C1, C2)←$ EncK(H,M)

Y ← Y ∪ {(H,C1, C2)}

Return (C1, C2)

Dec(H,C1, C2)

Return DecK(H,C1, C2)

ChalDec(H,C1, C2)

If (H,C1, C2) ∈ Y then

Return ⊥

(M,Kf )← DecK(H,C1, C2)

If M 6= ⊥ then

win← true

Return (M,Kf )

Figure 4: Confidentiality (left two games) and ciphertext integrity (rightmost) games for committing AEAD.

by hashing the ciphertext with a collision-resistant (CR) hash function, but we will show compact
schemes that have better performance.

Single versus multiple openings. In some protocols, we may wish to use a CE scheme so
that multiple different ciphertexts, encrypted under the same secret key, can be opened without
endangering the privacy or integrity of other unopened ciphertexts. In other contexts, the CE
scheme’s opening need only be “single-use” — the secret key will not continue to be used after an
opening. An example of the latter is Signal, which due to ratcheting effectively has a fresh secret
key per message. As we will now discuss, whether one wants single-opening or multiple-opening
CE must be reflected in the security definitions.

Confidentiality. We want our CE schemes to provide message confidentiality. We will in fact
adapt the stronger real-or-random notion from the AE literature [60] to CE. At a high level we
ask that no adversary can distinguish between legitimate CE encryptions and (pairs of) random
bit strings. A complexity arises in the multi-opening case, where we want confidentiality to hold
even after openings occur. We handle this by giving the attacker an additional pair of oracles, one
for encryption and decryption. We must take care to avoid trivial wins, of course, separating use
of the real oracles from the challenge ones. We also additionally require that the adversary can
only query its decryption oracle on valid ciphertexts returned from the encryption oracle. This all
is formalized in the games MO-REALACE and MO-RANDACE shown in Figure 4. We measure the
multiple-openings real-or-random (MO-ROR) advantage of an adversary A against a scheme CE

by

Advmo-ror
CE (A) =

∣∣Pr
[
MO-REALACE ⇒ 1

]
− Pr

[
MO-RANDACE ⇒ 1

]∣∣ .

The single-opening ROR (SO-ROR) games REALACE and RANDACE are identical to MO-REALACE
and MO-RANDACE in Figure 4 except that we omit the Enc and Dec oracles. We measure the
single-openings real-or-random (ROR) advantage of an adversary A against a scheme CE by

Advror
CE(A) =

∣∣Pr
[
REALACE ⇒ 1

]
− Pr

[
RANDACE ⇒ 1

]∣∣ .
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s-BINDA
CE:

(K,H,C1, C2)←$A

(M ′,Kf )← Dec(K,H,C1, C2)

If M ′ = ⊥ then Return false

b← Ver(H,M ′,Kf , C2)

If b = 0 then

Return true

Return false

r-BINDA
CE:

((H,M,Kf ), (H
′,M ′,K′

f
), C2)←$A

b← Ver(H,M,Kf , C2)

b′ ← Ver(H′,M ′,K′
f
, C2)

If (H,M) = (H′,M ′) then

Return false

Return (b = b′ = 1)

Figure 5: Binding security games for committing AEAD. Sender binding (left game) models a setting where
a malicious sender wants to send a message, but prevent commitment opening from succeeding. Receiver
binding (right game) models a setting where a sender and recipient collude to open a ciphertext to different
messages.

Ciphertext integrity. We also want our CE schemes to enjoy ciphertext integrity. As with
confidentiality, we will lift the standard (randomized) AEAD security notions to the multiple-
opening and single-opening CE settings. The game MO-CTXTACE is shown in Figure 4. The
adversary can obtain encryptions and decryptions under the secret key, and its goal is to query a
valid ciphertext to a challenge decryption oracle. That ciphertext must not have been returned
by the encryption oracle. We measure the multiple-openings ciphertext integrity (MO-CTXT)
advantage of an adversary A against a scheme CE by

Advmo-ctxt
CE (A) = Pr

[
MO-CTXTACE ⇒ true

]
.

As with confidentiality, we can also specify a single-opening version of security by removing the
decryption oracle Dec from game MO-CTXTACE. Let the resulting game be CTXTACE. We measure
the single-openings ciphertext integrity (CTXT) advantage of an adversary A against a scheme CE
by

Advctxt
CE (A) = Pr

[
CTXTACE ⇒ true

]
.

All-in-one notions. We have given separate confidentiality and ciphertext integrity notions.
As with traditional AEAD security, however, we can alternatively give an all-in-one notion that
simultaneously captures confidentiality and integrity goals. We defer the details to Appendix B.

Security for AEAD. Given the fact that CE schemes encompass (randomized) AEAD schemes
as well (see our comments above), we note that the ROR and CTXT notions apply to standard
(randomized) AE schemes. As a slight abuse of notation, we will therefore use ROR and CTXT
and their associated games and advantage measures for the security of traditional AE schemes.

Binding security notions. We introduce two security notions for binding: sender binding and
receiver binding. Sender binding ensures the sender of a message is bound to the message it
actually sent. In abuse-reporting scenarios, this prevents the sender of an abusive message from
generating a bogus commitment that does not give the receiver the ability to report the message.
The pseudocode game s-BIND on the left-hand-side of Figure 5 formalizes this requirement. To an
adversary A and CE scheme CE we associate the sender binding advantage

Advs-bind
CE (A) = Pr

[
s-BINDACE ⇒ true

]
.

A CE scheme can generically meet sender binding by running Ver during Dec and having Dec

return ⊥ if Ver returns 0. We omit the proof of this, which follows by inspection. But legacy AEAD
schemes do not do this, and one needs to check sender binding. For new schemes we will see more
efficient ways to achieve sender binding.

The second security notion, receiver binding, is a lifting of the more traditional binding notion
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from commitment schemes (see Section 2). This definition is important in abuse reporting, where it
formalizes the intuition that a malicious receiver should not be able to accuse a non-abusive sender
of having said something abusive. A malicious receiver could do this by opening one of the sender’s
ciphertexts to an abusive message instead of the one the sender intended.

The pseudocode game r-BIND is shown on the right in Figure 5. It has an adversary output
a pair of triples containing associated data, a message, and an opening. The adversary outputs a
franking tag C2 as well. The adversary wins if verification succeeds on both triples with C2 and
the header/message pairs differ. To a CE scheme CE and adversary A we associate the receiver
binding advantage

Advr-bind
CE (A) = Pr

[
r-BINDACE ⇒ true

]
.

It is important to note that r-BIND security does not imply s-BIND security. These notions
are, in fact, orthogonal. Moreover, our MO-ROR and MO-CTXT notions do not generically imply
either of the binding notions.

Discussion. Our definitions also allow associated data, sometimes referred to as headers. This
puts committing AEAD on equal footing with modern authenticated encryption with associated
data (AEAD) schemes [56], which require it. That said, modern AEAD schemes are increasingly
formalized as nonce-based, meaning that instead of allowing internal randomness, a non-repeating
value (the nonce) is an explicit input and encryption is deterministic. Existing systems relevant to
abuse complaints use randomized AEAD (e.g., Signal [48]) that do not meet nonce-based AEAD
security. That said, we will explore nonce-based committing AEAD in Section 7.

5 Are Existing AEAD Schemes Committing?

In this section we study whether existing AEAD schemes meet our security goals for CE. We
believe it is important to study legacy schemes for several reasons. If existing AEAD schemes
are also traditionally committing when the key is used as the opening, it will have important
implications for deployed protocols (such as Facebook’s franking scheme) that implicitly rely on
binding properties of symmetric encryption. It is also helpful for protocol designers who may
want to build a protocol on top of existing legacy encryption (e.g. [63]). If well-tested, mature
implementations of AEAD can be used as CE schemes without code changes, the attack surface of
new protocol implementations is minimized.

Security of encryption schemes under key misuse has been studied in prior work on robust
encryption [1, 33, 34, 52]. Informally, an encryption scheme is robust if it is difficult to find a key
(other than the one used to encrypt) which correctly decrypts a ciphertext. In [34] Farshim et
al. introduce a “best-possible” robustness notion (FROB security) for symmetric primitives. In
Appendix A we show that when associated data is excluded, FROB implies r-BIND security for
traditionally committing schemes. We also show that with associated data, FROB and r-BIND
are incomparable. Since our positive results in this section include associated data, the proofs of
FROB security for encrypt-then-MAC (EtM) and MAC-then-encrypt (MtE) variants from [34] do
not imply our results. See Appendix A for more discussion of the connection between robustness
and binding in authenticated encryption.

We only examine the binding properties of schemes, since past work has shown they meet
standard definitions for confidentiality and integrity in the single-opening setting. Our positive
results below imply the schemes are binding when the entire ciphertext is the commitment (i.e.
they are traditionally committing). We will actually prove stronger statements that show the
schemes are still binding when the commitment is only a substring of the full ciphertext (i.e. they
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Enc(K,H,M):

R←$ {0, 1}r

C ← ẼH
K (M ‖R ‖ 0s)

ℓ← l + r + s− t

C1 ← C[1, . . . , ℓ]

C2 ← C[ℓ+ 1, . . . , l + r + s]

Return (C1, C2)

Dec(K,H,C1, C2):

M ′ ‖R′ ‖ Z ← D̃H
K (C1 ‖ C2)

If Z 6= 0s then

Return ⊥

Return (M ′, (R′,K))

Ver(H,M,Kf , C2):

R ‖K ← Kf

ℓ← l + r + s− t

C ← ẼH
K (M ‖R ‖ 0s)

Return C[ℓ+ 1, . . . , l + r + s] = C2

Figure 6: Encode-then-encipher as a committing AEAD scheme where the commitment is the final t bits of
the ciphertext. ẼH

K and D̃H
K refer to encryption and decryption for a tweakable blockcipher TC where the

header H is the tweak and K is the key.

are compactly committing). We begin by proving that encode-then-encipher satisfies our binding
notions in the ideal cipher model. Then, we will prove the EtM generic composition satisfies our
binding notions if the MAC used in EtM is a collision-resistant PRF. We will prove MtE meets
our binding notions in the random oracle and ideal cipher model. We will conclude with some
simple attacks that break binding for real-world modes using Carter-Wegman MACs (GCM and
ChaCha20/Poly1305).

5.1 Committing Encode-then-Encipher

The Encode-then-Encipher (EtE) construction of Bellare and Rogaway shows how to achieve AE
security for messages given only a variable-input-length PRP [12]. Their construction is simple:
given a variable-input-length tweakable cipher TC = (Ẽ, D̃) and key K ∈ K, encrypt a message
M ∈ M (|M| = 2l) with header H ∈ H by first drawing a random string R←$ {0, 1}r and
computing c = ẼH

K (M ‖ R ‖ 0s) (using the header H as the tweak). Decrypting a ciphertext M

works by first running M ′ = D̃H
K(C) and checking whether the last s bits of M ′ are all zero. If they

are, we call the message “valid” and output M , else we output ⊥. For compactness, we commit
to only the last t bits of the ciphertext. We must include the randomness used to encrypt in the
opening of the commitment.

To analyze r-BIND security, we will assume that TC is an ideal tweakable cipher—that is, a fresh
uniformly random permutation is drawn for each distinct key and tweak pair input to encryption
or decryption. Instantiating the ideal tweakable cipher used in our proof is not straightforward. An
AEZ variant [44] (which uses a collision-resistant hash for associated data) could be used. Doubts
have been raised about the security of AEZ, however [25], and with suitable modifications more
mature variable-input-length tweakable cipher constructions such as CMC [39] or EME [40] could
perhaps be used instead. We note that while these constructions have been proven to be strong
pseudorandom permutations, it is not currently known if either are indifferentiable from an ideal
tweakable cipher.

Now we will prove encode-then-encipher when used according to the pseudocode in Figure 6
meets r-BIND security when a length-t substring of the ciphertext is used as the commitment. Our
bound is in terms of the number of ideal cipher queries made during the course of the game, both
by the adversary and by the game itself during Ver. The scheme achieves perfect s-BIND security:
the advantage of any adversary is zero because the output of decryption is re-computed in Ver.

Theorem 2 Let EtE[TC] be the scheme defined above using an ideal tweakable cipher TC and
parameters s, t > 0. Let A be a r-BINDEtE[TC] adversary and let q be the total number of queries

made by the adversary and by the game itself during Ver. Then Advr-bind
EtE[TC](A) ≤

q
2s−1 + q2

2t−1 .
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G0 G1 :

B ← {P ‖ 0s |P ∈ {0, 1}l+r}

((H,M,Kf ), (H
′,M ′,K′

f
), C2)←$AẼ,D̃

b← Ver(H,M,Kf , C2)

b′ ← Ver(H′,M ′,K′
f
, C2)

If (H,M) = (H′,M ′) then

Return false

Return (b = b′ = 1)

Ẽ(K,H,M):

If R[K,H,M ] 6= ⊥:

return R[K,H,M ]

C←$ Rng[K,H]

If M ∈ B and C ∈ V then

bad12 ← true

ℓ← l + r + s− t

C2 ← C[ℓ+ 1, . . . , l+ r + s]

V
∪
← {S ‖ C2 |S ∈ {0, 1}ℓ}

R[K,H,M ]← C

Rng[K,H]← Rng[K,H] \ {C}

D[K,H,C]←M

Dom[K,H]← Dom[K,H] \ {M}

Return R[K,H,M ]

D̃(K,H,C):

If D[K,H,C] 6= ⊥:

return D[K,H,C]

M ←$ Dom[K,H]

If M ∈ B then

bad01 ← true

M ←$ Dom[K,H] \B

D[K,H,C]←M

Dom[K,H]← Dom[K,H] \ {M}

R[K,H,M ]← C

Rng[K,H]← Rng[K,H] \ {C}

Return D[K,H,C]

Ver(H,M,Kf , C2):

R ‖K ← Kf

ℓ← l + r + s− t

C ← Ẽ(K,H,M ‖R ‖ 0s)

Return C[ℓ+ 1, . . . , l + r + s] = C2

G2:

B ← {P ‖ 0s |P ∈ {0, 1}l+r}

((H,M,Kf ), (H
′,M ′,K′

f
), C2)←$AẼ,D̃

b← Ver(H,M,Kf , C2)

b′ ← Ver(H′,M ′,K′
f
, C2)

If (H,M) = (H′,M ′) then

Return false

Return (b = b′ = 1)

Ẽ(K,H,M):

If R[K,H,M ] 6= ⊥ then

return R[K,H,M ]

C←$ Rng[K,H]

If M ∈ B and C ∈ V then

bad12 ← true

C←$ Rng[K,H] \ V

ℓ← l + r + s− t

C2 ← C[ℓ+ 1, . . . , l + r + s]

V
∪
← {S ‖ C2 |S ∈ {0, 1}ℓ}

R[K,H,M ]← C

Rng[K,H]← Rng[K,H] \ {C}

D[K,H,C]←M

Dom[K,H]← Dom[K,H] \ {M}

Return R[K,H,M ]

D̃(K,H,C):

If D[K,H,C] 6= ⊥:

return D[K,H,C]

M ←$ Dom[K,H] \B

D[K,H,C]←M

Dom[K,H]← Dom[K,H] \ {M}

R[K,H,M ]← C

Rng[K,H]← Rng[K,H] \ {C}

Return D[K,H,C]

Ver(H,M,Kf , C2):

R ‖K ← Kf

ℓ← l + r + s− t

C ← Ẽ(K,H,M ‖R ‖ 0s)

Return C[ℓ+ 1, . . . , l + r + s] = C2

Figure 7: EtE security games for proof of Theorem 2.
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Proof: The games for this proof are in Figure 7. Game G0 is a rewriting of the game r-BINDAEtE.
In all games we use lazy sampling for the ideal ciphers.

We will use two game transitions to move to a game in which the adversary’s probability of success
is zero. The first transition is from G0 to G1. Game G1 is the same as G0 but with the boxed
statement included. The boxed code sets a flag if the random plaintext chosen as the decryption
of a query is valid (i.e. it ends with s zero bits). Importantly, note that decrypting the ciphertext
of a previously-encrypted valid point will not set this flag, because it will return the point stored
in our table D. By the fundamental lemma of game-playing [13] we have that

Pr [G0 ⇒ true ] ≤ Pr [G1 ⇒ true ] + Pr [G1 sets bad01 ] .

To bound the rightmost term, observe that after i queries which do not set the flag, there are at
most 2l+r+s− i points remaining which can be sampled. Of those points which can still be sampled
after i queries, 2l+r will set the flag. Thus, the probability of setting the flag on the ith query is at
most 2l+r

2l+r+s−i
, and a union bound gives us

Pr [G1 sets bad01 ] ≤

q∑

i=1

2l+r

2l+r+s − i
.

The largest term in this summation is upper-bounded by 2l+r

2l+r+s−1 , so we can rewrite as

Pr [G1 sets bad01 ] ≤

q∑

i=1

1

2s−1
=

q

2s−1
.

The next transition is from G1 to G2. Game G2 is the same as G1 except for the boxed code in
encryption, which re-samples the ciphertext C if the one previously sampled has the same t-bit
suffix as any previous ciphertext. We can again use the fundamental lemma of game-playing to get
that

Pr [G1 ⇒ true ] ≤ Pr [G2 ⇒ true ] + Pr [G2 sets bad12 ] .

To bound the rightmost term, we need to count the number of points in the set V after i failed
queries. When we generate a ciphertext with some t-bit suffix, we add all points with that suffix
to V. After i queries there are at most i2l+r+s−t strings in V, and 2l+r+s − i points left to sample.
This upper bound holds even if the adversary queries with multiple different keys. A union bound
over the queries gives us

Pr [G2 sets bad12 ] ≤

q∑

i=1

i2l+r+s−t

2l+r+s − i
.

Each term in the summation is upper-bounded by i2l+r+s−t

2l+r+s−1 , so rewriting and cancelling gives us

Pr [G2 sets bad12 ] ≤

q∑

i=1

i

2t−1
≤

q2

2t−1
.

To complete the proof, note that Pr
[
GA2 ⇒ true

]
= 0, since none of its queries can output a

ciphertext which decrypts to a valid message under two different keys. Thus,

Advr-bind
EtE[TC](A) ≤ Pr [G1 sets bad01 ] + Pr [G2 sets bad12 ] ≤

q

2s−1
+

q2

2t−1
.
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Enc(K,H,M):

Ke ← KDFK(0)

Km ← KDFK(1)

R←$R

R ‖ C ← encKe (M ; R)

T ← FKm (H ‖R ‖ C)

Return (R ‖ C, T )

Dec(K,H,C1, C2):

R ‖ C ← C1

Ke ← KDFK(0)

Km ← KDFK(1)

T ′ ← FKm (H ‖R ‖ C1)

If T ′ 6= C2 then Return ⊥

M ← decKe (C1)

If M = ⊥ then Return ⊥

Return (M, (R,K))

Ver(H,M, (R,K), C2):

Ke ← KDFK(0)

Km ← KDFK(1)

C ← encKe (M ; R)

T ← FKm (H ‖R ‖ C)

Return T = C2

Figure 8: Committing AEAD scheme EtM[KDF, F, SE] that composes an encryption scheme SE =
(kg, enc, dec) using random coins from R, a MAC F , and that derives keys via a function KDF.

5.2 Encrypt-then-MAC

The classic Encrypt-then-MAC (EtM) construction composes a symmetric encryption scheme and
a message authentication code (MAC), by first encrypting the message, then computing the MAC
over the ciphertext and any associated data. We first prove that EtM is binding if a collision-
resistant key derivation function (KDF) is used to derive separate encryption and authentication
keys. Then, we give a counterexample that shows EtM is not binding if encryption and MAC keys
are specified directly and not derived via a KDF.

Committing EtM. We analyze EtM as a committing AEAD scheme in the case that the en-
cryption and authentication keys are derived via a KDF that is a collision-resistant pseudoran-
dom function. The scheme EtM[KDF, F, SE] is detailed in Figure 8. Beyond the functions F and
KDF, the scheme also makes use of a public-coin randomized symmetric encryption algorithm
SE = (kg, enc, dec) that does not use associated data and whose key generation is a random selec-
tion of some fixed-length bit string. It is important that the scheme is public coin, as we require
that the randomness is recoverable during decryption so it can be included in the opening.

There are deployed protocols which use a collision-resistant KDF to derive encryption and
authentication keys for EtM. The Signal protocol [48], for example, uses HKDF to derive keys for
use with CTR mode encryption combined with HMAC. An “opening” phase would be added to the
protocol using these keys, and a new analysis would likely be needed to verify the protocol remains
secure when keys are exposed by opening a ciphertext. We leave the details as an interesting
open problem for future work. The following theorem proves the committing EtM construction
in Figure 8 meets r-BIND if the MAC and key derivation function are both collision-resistant
PRFs. The s-BIND security of EtM[KDF, F, SE] is perfect because verification re-encrypts the
plaintext to check the tag.

Theorem 3 Let EtM = EtM[KDF, F, SE] be the EtM construction using functions F and KDF as
well as encryption scheme SE. Let A be any r-BINDEtM adversary. Then there exist adversaries B
and C, each that run in time that of A, such that Advr-bind

EtM (A) ≤ Advcr
F (B) +Advcr

KDF(C).

Proof: In this proof we will refer to Figure 9. We will use two game hops to transition to a game
in which the adversary’s probability of winning is zero.

Start with game G0, which is a syntactic rewriting of r-BINDAEtM. Thus Pr
[
r-BINDAEtM ⇒ true

]
=

Pr [G0 ⇒ true ]. From G0 we will transition to the game G1, which is identical to G0 except for
the boxed code which sets K̃m to be different from Km (in particular, it sets K̃m to be the bitwise
complement of Km) if flag bad is set. The flag is set only if Km = K̃m. The games G0 and G1 are
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G0 G1 :

(P, P ′, C2)←$A

(H,M,Kf )← P

(H̃, M̃, K̃f )← P ′

If (H,M) = (H̃, M̃) then

Return false

IV,K ← Kf

Ke ← KDFK(0)

Km ← KDFK(1)

C ← encKe (IV ;M)

T ← FKm (H ‖ IV ‖ C)

b← (T = C2)
˜IV , K̃ ← K̃f

K̃e ← KDF
K̃
(0)

K̃m ← KDF
K̃
(1)

If Km = K̃m then

bad← true

K̃m = ¬Km

C̃ ← enc
K̃e ( ˜IV ; M̃)

T̃ ← F
K̃m (H̃ ‖ ˜IV ‖ C̃)

If T = T̃ then

bad1 ← true

b̃← (T̃ = C2)

return b ∧ b̃

G2:

(P, P ′, C2)←$A

(H,M,Kf )← P

(H̃, M̃, K̃f )← P ′

If (H,M) = (H̃, M̃) then

Return false

IV,K ← Kf

Ke ← KDFK(0)

Km ← KDFK(1)

C ← encKe (IV ;M)

T ← FKm (H ‖ IV ‖ C)

b← (T = C2)
˜IV , K̃ ← K̃f

K̃e ← KDF
K̃
(0)

K̃m ← KDF
K̃
(1)

If Km = K̃m then

bad← true

K̃m = ¬Km

C̃ ← enc
K̃e ( ˜IV ; M̃)

T̃ ← F
K̃m (H̃ ‖ ˜IV ‖ C̃)

If T = T̃ then

bad1 ← true

T̃ = ¬T

b̃← (T̃ = C2)

return b ∧ b̃

Figure 9: Game for Theorem 3.

identical-until-bad, so by the fundamental lemma of code-based games we can write

Pr [G0 ⇒ true ] ≤ Pr [G1 ⇒ true ] + Pr [ bad is set ] .

We can bound the probability bad is set using a reduction to the collision-resistance of KDF. Call
this reduction C, and we have Pr [ bad is set ] ≤ Advcr

KDF(C).

Next we transition from game G1 to G2. Game G2 is the same as G1 except for the boxed code,
which sets T̃ to be the bitwise complement of T (ensuring they are different) if flag bad1 is set. The
flag is set only if T = T̃ . Using the same lemma as above gives us that

Pr [G1 ⇒ true ] ≤ Pr [G2 ⇒ true ] + Pr [ bad1 is set ] .

As above, we can bound the probability the flag is set by a reduction to the collision-resistance of
F . Call this reduction B, and we have Pr [ bad1 is set ] ≤ Advcr

F (B).

We conclude by noting that Pr [G2 ⇒ true ] = 0 since for both b and b̃ to be true, T and T̃ must
be equal. The second game transition ensures they are not equal. Combining and rewriting gives
us the bound.

Two-key EtM is not binding. The use of a KDF to derive the encryption and MAC keys above
is requisite to achieve receiver binding security. Consider omitting the KDF steps, and instead
letting keys be a pair (Ke,Km) where each component is chosen randomly. The opening output by
encryption and used by verification is instead (R, (Ke,Km)). The rest of the scheme remains the
same as that in Figure 8. But it is easy to break the receiver binding for this two-key variant: have
an adversary A choose an arbitrary header H, message M , keys (Ke,Km), and randomness R, and
compute R‖C ← encKe(M ;R) and then T ← FKm(H‖R‖C). It then chooses another key K̃e 6= Ke,
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Enc(K,H,M):

Ke,Km ← K

IV ←$ {0, 1}n

T ← ROKm (H ‖M)

C ← CBCKe (Padn(M ‖ T ) ; IV )

ℓ← Padn(M ‖ T )/n

C′ ‖ Cℓ−2 ‖ Cℓ−1 ‖ Cℓ ← C

Return (C′, IV ‖ Cℓ−2 ‖ Cℓ−1 ‖ Cℓ)

Dec(K,H,C1, C2):

Ke,Km ← K

IV ‖ Cℓ−2 ‖ Cℓ−1 ‖ Cℓ ← C2

Cf ← Cℓ−2 ‖ Cℓ−1 ‖ Cℓ

M ‖ T ← CBC−1
Ke (C1 ‖ Cf ; IV )

T ′ ← ROKm (H ‖M)

If T 6= T ′ then Return ⊥

Return (M, (Ke,Km))

Ver(H,M,Kf , C2):

Ke,Km ← Kf

IV ‖ C′
ℓ−2
‖ C′

ℓ−1
‖ C′

ℓ
← C2

T ← ROKm (H ‖M)

P ← Padn(M ‖ T )

C ← CBCKe (P ; IV )

C′ ‖ C′′
ℓ−2
‖ C′′

ℓ−1
‖ C′′

ℓ
← C

Return
ℓ∧

i=ℓ−2

(C′′
i = C′

i)

Figure 10: Committing authenticated encryption based on MtE composition of CBC mode and a MAC
modeled as a random oracle. The length ℓ is defined to be Padn(M ‖T )/n. The function Pad is the standard
(min-length) PKCS#7 padding used in TLS. The notation CBCK(· ; IV ) and CBC−1

K (· ; IV ) means CBC
mode encryption and decryption with key K and initialization vector IV .

and computes M̃ ← dec
K̃e(R ‖ C). Finally, it outputs (H, (R, (Ke,Km))), (H, (R, (K̃e,Km))), T ).

This adversary will win the r-BIND game with probability close to one, assuming SE is such that
decrypting the same ciphertext under different keys yields distinct plaintexts with overwhelming
probability. A similar counterexample was given by Farshim et al. [34] to separate two notions of
robustness for authenticated encryption.

5.3 MAC-then-Encrypt

The MAC-then-encrypt mode generically composes a MAC and an encryption scheme by first
computing the MAC of the header and message, then appending the MAC to the message and
encrypting them both. The pseudocode in Figure 10 uses for concreteness CBC mode encryption
and we refer to this committing AEAD scheme as MtE. We will also assume the MAC is suitable
to be modeled as a keyed random oracle; HMAC-SHA256 is one such [29]. CBC with HMAC in an
MtE mode is a common cipher suite for modern TLS connections, which motivated these choices.
Prior work has investigated the security of MtE in the sense of CTXT [46,55] and its ROR security
is inherited directly from the encryption mode. We do not allow the empty message to be encrypted
in our scheme. Below we will assume that the block size of n bits for the cipher underlying CBC
mode, and that our MACs have output length 2n bits. With suitable modifications to the scheme,
the result below generalizes to other parameter choices as well. Instead of including the IV in the
opening (as in EtM), we include the IV in the commitment. Because the first ciphertext block in
CBC mode is the XOR of the IV and the first plaintext block, putting the IV in the opening would
give the attacker the ability to create a “free” collision in the first block of the ciphertext. Since we
disallow the empty message, in the worst case (where the message is a single bit) this would allow
the adversary to break r-BIND security after only about q2/2n+1 random oracle queries.

Unlike with Encrypt-then-MAC, we are able to prove the two-key version of MtE secure in the
sense of receiver binding. The binding security of MtE in the case where keys are derived via a
KDF follows as a corollary, though we believe better bounds can be achieved in that case. Our
bound below is in terms of the number of ideal cipher and random oracle queries made both by the
adversary and by the game itself during Ver. A sketch of an argument that MtE is binding (in the
traditional sense where the entire ciphertext is the commitment) appeared in [63]. Their approach,
which only relied on modeling the MAC as a RO and made no assumptions about CBC mode, led
to a rather loose bound. We instead additionally model the cipher underlying CBC as ideal.
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Theorem 4 Let MtE be the scheme defined above using a random oracle and an ideal cipher in
CBC mode. Let n be the block size of the ideal cipher, and let 2n be the output length of the
random oracle. For any adversary A in game r-BINDMtE where at most qi queries are made to the
ideal cipher (including those made by Ver) and qr queries are made to the random oracle, it holds
that Advr-bind

MtE (A) < qiqr/2
2n.

Proof: Note first that the way we’ve specified the committing portion ofMtE ciphertexts guarantees
that the entire MAC will be encrypted in the commitment. Fixing a key Ke

1 , message M , header
H, and IV IV determines the ciphertext output except for the blocks containing bits of the MAC.
If the commitment output by the adversary is a valid encryption of some MAC under some key,
it can be decrypted at most qi different ways given qi queries to the ideal cipher underlying CBC
mode. Since fixing the other key Ke

2 fixes the decryption of the commitment, it also fixes the string
T which must be ROKm(H ‖M). By a union bound the probability of hitting the right string T is
at most qr

22n
using qr queries to the RO. A second union bound over the decryptions of the string

C2 yields the result.

The s-BIND advantage against compactly-committing MtE is zero, since the commitment along
with the output of a successful call to Dec uniquely defines the inputs to Ver. Thus, no other
ciphertext can be computed in Ver other than the one previously decrypted in Dec, because the
inputs to Ver are fixed by Dec.

MtE with CTR mode. With some modifications, our proof also applies when CTR mode is
used instead of CBC. Changing to CTR mode does require some care, but even in the two-key case
MtE seems to resist the attack against two-key EtM described in the previous section. We leave
a more detailed treatment of the r-BIND security of MtE in CTR mode as an open problem for
future work.

5.4 Some Non-binding AEAD schemes

In this section we will briefly detail attacks which break the receiver binding security of some
deployed AEAD schemes. In particular, typical schemes that use MACs which are not collision
resistant, such as Carter-Wegman MACs, do not suffice. For completeness we spell out an example
of breaking the receiver binding of GCM [50], an encrypt-then-MAC style construction that uses a
Carter-Wegman MAC.

A slight simplification of the GCM MAC is the function F shown in Figure 11 applied to a ci-
phertext. (We ignore associated data for simplicity.) It uses a key K for a block cipher E with block
size n, as well as a nonce N . An initial point P0 ← EK(0n) and a pad R← EK(N) are computed.

F (K,N, (C1, . . . , Cm)):

P0 ← EK(0n)

R← EK(N)

S ←
m∑
i=1

CiP
m−i
0

T ← R⊕ S

Return T

Figure 11: A simplified descrip-
tion of the CW MAC used in
GCM.

GCM uses an ǫ-almost XOR universal (ǫ-AXU) [62] hash func-
tion computed by considering a ciphertext of m encrypted message
blocks an m-degree polynomial defined over a finite field F. The
field is a particular representation of GF(2128). This polynomial
is evaluated at the encryption point P0 and the result is XORed
with the pad R. The GCM AEAD scheme encrypts the message
using CTR mode encryption using EK and a random 96-bit IV
concatenated with a 32-bit counter initially set at one, and then
MACs the resulting ciphertext C = C1, . . . , Cm to generate a tag
T = F (K, IV ‖ 032, C1, . . . , Cm).

A straightforward way to consider GCM as a compactly com-
mitting AEAD is to have encryption output as the commitment portion C2 the tag T , and the
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CtE1-Enc(K,H,M)

(Kf , C2)←$ Com(H ‖M)

C1←$ encK(C2,M ‖Kf )

Return (C1, C2)

CtE2-Enc(K,H,M)

(Kf , C2)←$ Com(H ‖M)

C1←$ encK(H,M ‖Kf )

Return (C1, C2)

CtE1-Dec(K,H,C1, C2)

(M ‖Kf )← decK(C2, C1)

If M = ⊥ then Return ⊥

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

Return (M,Kf )

CtE2-Dec(K,H,C1, C2)

(M ‖Kf )← decK(H,C1)

If M = ⊥ then Return ⊥

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

Return (M,Kf )

Figure 12: Algorithms for two Commit-then-Encrypt variants. Facebook’s scheme uses CtE2 with an HMAC-
based commitment. CtE1-Ver and CtE2-Ver both just output VerC(H,M,Kf , C2).

rest of the ciphertext as the first portion C1. Decryption works as usual for GCM, but addition-
ally outputs (IV,K) as the opening. Verification works by recomputing encryption and check-
ing that the resulting tag matches the commitment value C2. We denote this scheme simply by
GCM = (Kg,Enc,Dec,Ver) below.

We now give an r-BINDGCM adversary A. We ignore associated data for simplicity. To win, A
must output ((M, (IV,K), (M ′, (IV ′,K ′), T ) so that Ver(M, (IV,K), T ) = Ver(M ′, (IV ′,K ′), T ) =
1. We will build an A that chooses messages such that |M | = |M ′|. The adversary A will start by
choosing a ciphertext C1, . . . , Cm such that

F (K, IV,C1, . . . , Cm) = F (K ′, IV ′, C1, . . . , Cm) (1)

and letting M (resp. M ′) be the CTR-mode decryption of C1, . . . , Cm under IV,K (resp. IV ′,K ′).
Choosing the ciphertext such that condition 1 holds is straightforward, as plugging in for the
definition of F and rearranging, the adversary must solve the equation[

m∑

i=1

Ci(P
m−i + (P ′)m−i)

]
+ (EK(N) + EK′(N ′)) = 0

where P ← EK(0n) and P ′ ← EK′(0n). For example, pick arbitrary C1, . . . , Cm−1 and solve for
the Cm that satisfies the equation.

This attack works even if associated data is used, or if the whole ciphertext is used as the
commitment. A very similar attack works on ChaCha20/Poly1305 [15]; a small tweak is required
to handle the fact that not every member of F2130−5 is a valid ciphertext block.

6 Composing Commitment and AEAD

In the last section we saw that existing AEAD schemes already realize (compactly) committing
AEAD in some cases. These schemes, however, only realize single-opening security as the opening
includes the secret key. We now turn to schemes that achieve multi-opening committing AEAD,
and focus specifically on schemes that generically compose AEAD with a commitment scheme.

Commit-then-Encrypt. We start with a simple general construction, what we call the Commit-
then-Encrypt scheme.6 It combines a commitment scheme CS = (Com,VerC) with an AEAD scheme
SE = (kg, enc, dec). Formally the scheme CtE1[CS, SE] = (kg,CtE1-Enc,CtE1-Dec,CtE1-Ver)
works as shown in Figure 12.

The CtE1 scheme produces a commitment value to the message and associated data H, and
then encrypts the message along with the opening of the commitment. It uses as associated data

6This name was also used in [37], but the scheme is distinct. See Section 9.
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during encryption the commitment value, but notH. This nevertheless binds the underlying AEAD
ciphertext to H as well as C2 — as we will show tampering with either will be detected and rejected
during decryption. One could additionally include H in the associated data for enc, but this would
be less efficient. Should a protocol want H to not be in the commitment scope, one can instead
include H only as associated data within enc and omit it from the commitment.

Theorem 5 [CtE1 confidentiality] Let CtE1 = CtE1[CS, SE]. LetA be anMO-RORCtE1 adversary
making at most q queries to its oracles. Then we give adversaries B1, B2, C such that

Advmo-ror
CtE1 (A) ≤ Advror

SE (B1) +Advror
SE (B2) +Advcs-ror

CS (C) .

The adversaries B1, B2, and C all run in the same amount of time as A with an O(q) overhead and
make the same number of queries as A.

Proof: We will use a sequence of game hops, bounding the distinguishing advantage of each hop.
Let game G0 be the same as MO-REALACtE1. We can do a purely syntactic rewriting of this game
to remove the Dec calls from Dec, instead indexing the message M and opening Kf in a table with
the (H,C1, C2) tuple corresponding to the encryption query in which M and Kf were created.

Next, transition to the game G1, which replaces C1 values generated during Enc and ChalEnc
queries in G0 with random bits. The distinguishing advantage between G0 and G1 can be upper-
bounded using a reduction to the ROR security of SE. Call this reduction B1.

Next, transition to the game G2, which replaces the C2 values output by ChalEnc with random
bits. Crucially, we do not also replace C2 values output by Enc — the adversary gets openings
for these commitments, so it could distinguish the games with probability 1 by running Ver on the
output. We can bound the distinguishing advantage between G2 and G1 using a reduction C to
the real-or-random security of CS. This reduction is straightforward except we have C run Com on
queries to Enc.

At this point, A’s ChalEnc oracle is outputting random bits, as in game MO-RANDACtE1. We
can do on more game hop using ROR security of SE to put real calls to Enc back into Enc. Call
the reduction for this hop B2. Finally, we can undo our initial lossless game transition to have
Dec call decryption instead of using a table lookup for decryption. Our final game is exactly
MO-RANDACtE1.

Theorem 6 [CtE1 integrity] Let CtE1 = CtE1[CS, SE]. Let A be an MO-CTXTCtE1 adversary
making at most q queries to its oracles. Then we give adversaries B, C such that

Advmo-ctxt
CtE1 (A) ≤ Advctxt

SE (B) +Advv-bind
CS (C)

Adversary B runs in the same amount of time as A with an O(q) overhead. Adversary C runs in
the same amount of time as A does. The adversaries also make the same number of queries to their
oracles as A does.

Proof: Games for this proof are in Figure 13. We start with game MO-CTXTACtE1 of Figure 13.
This is a rewriting of MO-CTXTACE of Figure 4 with the encryption and decryption algorithms of
CtE1. We then transition to game G0 of Figure 13. In this game, decryption in Dec of previously-
encrypted values is done by table lookup. If a ciphertext is submitted to Dec that successfully
decrypts but was not present in the table, we set flag win to true. This strictly increases the
probability of A winning the game. Then, we have that

Advmo-ctxt
CtE1[CS,SE](A) ≤ Pr

[
GA0 ⇒ true

]
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MO-CTXTA
CtE1:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M)

(Kf , C2)←$ Com(H ‖M)

C1←$ encK(C2,M ‖Kf )

Y ← Y ∪ {(H,C1, C2)}

Return (C1, C2)

Dec(H,C1, C2)

P ← decK(C2, C1)

If P = ⊥ then Return ⊥

(M ‖Kf )← P

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

Return (M,Kf )

ChalDec(H,C1, C2)

If (H,C1, C2) ∈ Y then

Return ⊥

P ← decK(C2, C1)

If P = ⊥ then Return ⊥

(M ‖Kf )← P

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

If M 6= ⊥ then

win← true

Return (M,Kf )

G0:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(H,M)

(Kf , C2)←$ Com(H ‖M)

C1←$ encK(C2,M ‖Kf )

Y ← Y ∪ {(H,C1, C2)}

D[H,C1, C2]← (M,Kf )

Return (C1, C2)

Dec(H,C1, C2)

If D[H,C1, C2] 6= ⊥ then

Return D[H,C1, C2]

P ← decK(C2, C1)

If P = ⊥ then Return ⊥

(M ‖Kf )← P

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

win← true

Return (M,Kf )

ChalDec(H,C1, C2)

If (H,C1, C2) ∈ Y then

Return ⊥

P ← decK(C2, C1)

If P = ⊥ then Return ⊥

(M ‖Kf )← P

b← VerC(Kf , C2, H ‖M)

If b = 0 then

Return ⊥

If M 6= ⊥ then

win← true

Return (M,Kf )

Figure 13: Games for CtE1 integrity proof of Theorem 6.

Note that for win to be set in either decryption oracle with a query (H,C1, C2), it must be that
no previous encryption query (H,M) for some M returned (C1, C2). Let the winning decryption
oracle query be on the values (H∗, C∗1 , C

∗
2 ). We partition the probability of setting win into two

cases, either (C∗1 , C
∗
2 ) is distinct from all encryption outputs, or it is not and H∗ is not the header

for the encryption query that returned C∗1 , C
∗
2 . Let winH be the event that A wins with a query

where H∗ is a different header, and winC be the event that A wins with a query where (C∗1 , C
∗
2 ) is

distinct. Then

Pr
[
GA0 ⇒ true

]
≤ Pr [ winH ] + Pr [ winC ] .

We’ll first bound Pr [ winC ]. In this case we will construct an adversary in the CTXT game of
SE, B. This adversary simulates G0 for A, as follows. When A queries (H,M) to Enc, B first
generates a commitment and opening Kf , C2. Then, B queries enc(C2,M ‖Kf ). It stores the result
in a table, then outputs C1, C2 to A. It simulates Dec and ChalDec queries that are outputs of
previous Enc queries by consulting its table and outputting either the proper value (for Dec) or
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⊥ (for ChalDec). When A queries Dec or ChalDec with a value not in the table, B submits
(C2, C1) as a forgery to its decryption oracle. Our B perfectly simulates G0 for A. Since A’s query
must be a successful forgery for win to be set in G0, B’s output is a successful forgery and B will
break CTXT in this reduction with probability at least Pr [ winC ]. Thus,

Pr [ winC ] ≤ Advctxt
SE (B) .

To bound Pr [ winH ] and complete the proof we can build another reduction using a vBINDCS

(as in Section 2) adversary C. The adversary C simulates A’s view of G0 as B did, except C
generates a random encryption key and computes enc and dec internally. When A makes a query
(H,C1, C2) to Dec or ChalDec where H is not the header input to the encryption query that
output C1, C2, C fetches from its stored values the message M and opening Kf corresponding to
C2, as well as H0, the header part of the encryption query that produced C1, C2. In its game C
outputs ((H,M,Kf ), (H0,M,Kf ), C2). The environment of G0 is perfectly simulated by C. Since
in this case the winning query differs in the header, to win in G0, A’s winning query must cause
Ver to output 1. In this case, A has broken binding of CS, and so will C in the reduction. Thus,

Pr [ winH ] ≤ Advv-bind
CS (C)

and to conclude we can sum this and the upper-bound for B to get

Pr
[
GA0 ⇒ true

]
≤ Advctxt

SE (B) +Advv-bind
CS (C) .

The receiver binding security of CtE1 is trivially implied by the security of the underlying
commitment scheme, as captured by the next theorem.

Theorem 7 [CtE1 receiver binding] Let CtE1 = CtE1[CS, SE]. Let A be an r-BINDCtE1 adversary.
Then Advr-bind

CtE1 (A) = Advv-bind
CS (A).

We conclude the section by noting CtE1 meets s-BIND security, since it runs Ver during de-
cryption.

Facebook’s scheme. The Facebook franking scheme (Section 3) is almost, but not quite, an
instantiation of CtE1 using HMAC as the commitment scheme CS. One difference is that their
franking scheme does not bind C2 to C1 by including C2 in the associated data during encryption.
The other difference is that the Facebook scheme builds a commitment from HMAC by first gen-
erating a random secret key, then using it to evaluate HMAC on the concatenation of the message
and the key itself (see Figure 3 for a diagram). Assuming HMAC remains a collision-resistant
PRF when evaluated on its own key, we can prove Facebook’s non-standard construction is a se-
cure commitment (see Theorem 1). To analyze Facebook’s scheme, then, we introduce the scheme
CtE2[SE,CS] that works as shown in Figure 12. Note that Facebook does not discuss how to han-
dle associated data, and so their scheme is CtE2 using CS instantiated with HMAC and requiring
H = ε.

There are two benefits to the approach of CtE1: (1) proving ciphertext integrity does not require
any special properties of the commitment scheme, and (2) it is more efficient because associated
data is cryptographically processed once, rather than twice. We therefore advocate CtE1, but
analyze CtE2 here since it is already in use.

CtE2 is not secure assuming just that CS is hiding and binding. The reason is that such
commitments can be malleable and this allows easy violation of ciphertext integrity. Specifically,
consider a commitment scheme CSBad = (ComBad,VerBad) built using a standard commitment
scheme CS = (Com,VerC). Algorithm ComBad(M) runs (Kc, C)←$ Com(M) and then outputs
(Kc, C ‖ 1). Algorithm VerBad(M,Kf , C ‖ b) runs VerC(M,Kf , C) and outputs the result. An easy
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reduction shows that CSBad is both hiding and binding, assuming CS is too. But it’s clear that
CtE2[SE,CSBad] does not enjoy ciphertext integrity. The adversary simply obtains one ciphertext,
flips the last bit, and submits to the challenge decryption oracle to win.

This shows that standard commitments with hiding and binding properties are insufficient to
instantiate CtE2. But if a scheme CS has unique commitments, then we can in fact show security of
CtE2. A scheme has unique commitments if for any pair (Kc,M) ∈ Kf ×M it holds that there is a
single commitment value C ∈ C for which Ver(Kc, C,M) = 1. All hash-based CS schemes, including
the HMAC one used by Facebook’s franking scheme, have unique commitments. If one wanted to
use a scheme that does not have unique commitments, then one would need the commitment to
satisfy a form of non-malleability [30]. The following sequence of theorems captures the security of
CtE2 assuming a unique commitment scheme.

Theorem 8 [CtE2 confidentiality] Let CtE2 = CtE2[CS, SE]. Let A be an MO-RORCtE2 adver-
sary, making at most q queries to its oracles, and assume CS has unique commitments. Then we
give adversaries B1, B2, C such that

Advmo-ror
CtE2[CS,SE](A) ≤ Advror

SE (B1) +Advror
SE (B2) +Advcs-ror

CS (C)

The adversaries B1, B2, and C all run in the same amount of time as A, with an O(q) overhead,
and make the same number of queries as A.

This proof uses a sequence of game transitions similar to the corresponding real-or-random proof
for CtE1, so we will omit it.

Theorem 9 [CtE2 integrity] Let CtE2 = CtE2[CS, SE]. Let A be an MO-CTXTCtE2 adversary
and assume CS has unique commitments. Then we give adversaries B, C such that

Advmo-ctxt
CtE2[CS,SE](A) ≤ Advctxt

SE (B) +Advv-bind
CS (C) .

Adversaries B and C both run in the same amount of time as A, with an O(q) overhead. The
adversaries also make the same number of queries to their oracles as A does.

Proof: We begin here, as in the integrity proof for CtE1, by transitioning to a game in which
decryption in Dec of previously-encrypted values is done by table lookup. If a ciphertext is sub-
mitted to Dec that successfully decrypts but was not present in the table, we set flag win to true.
We can set win to true in two places in our game. Here our proof diverges from the one above for
MO-CTXTCtE1, for the following reason. Take some output of Enc and its header, (H,C1, C2).
Let C ′2 be some other valid commitment returned by a different call to Enc. Because the commit-
ments are not included in the associated data of encryption, it does not violate CTXT of SE to
query (H,C1, C

′
2) to decryption! Our reduction B from the previous proof no longer applies. Here

is where we must use the fact that CS has unique commitments. Because fixing H and C1 fixes
Kf , there exists only one C2 value for which Ver(Kf , C2, H ‖M) will output 1 during decryption.
Thus, the query (H,C1, C

′
2) cannot set win to true. Our reduction to CTXT, B, therefore behaves

as above except it only submits a decryption query to its forgery oracle if C1 differs from the one
it output to A in Enc. The reduction C to vBINDCS security behaves identically, and the result
follows.

Theorem 10 [CtE2 binding] Let CtE2 = CtE2[CS, SE]. Let A be an r-BINDCtE2 adversary. Then
we give an adversary B such that

Advr-bind
CtE1[CS,SE](A) ≤ Advv-bind

CS (B) .
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The adversary B runs in the same amount of time as A and makes the same number of queries to
its oracles as A.

The proof of this theorem is identical to the proof of Theorem 7. Finally, note that CtE2 achieves
s-BIND security because it verifies the commitment during decryption.

7 Nonce-based Committing AEAD and the CEP Construction

The committing AEAD schemes we’ve examined thus far have all been randomized. Cryptographers
have advocated that modern AEAD schemes should be designed as nonce-based instead. Here one
replaces internal randomness during encryption with an input, called the nonce. Security should
hold as long as the nonce never repeats throughout the course of encrypting messages with a
particular key.

We formalize nonce-based committing AEAD and provide a construction of it that additionally
achieves a number of attractive properties. It achieves a multiple-opening security notion suitably
modified to the nonce-based setting. It is faster than the other multiple-opening schemes, requiring
only two cryptographic passes during encryption and decryption, and a single one during verifica-
tion. It also reduces ciphertext stretch compared to the schemes of Section 6, since the opening
will be recomputed in the course of decryption and so does not need to be sent in the encryption.

Nonce-based committing AEAD. A nonce-based CE scheme is a tuple of algorithms nCE =
(Kg,Enc,Dec,Ver). We define it exactly like CE schemes (Section 4) except for the following
differences. In addition to the other sets, we associate to any nCE scheme a nonce space N ⊆ Σ∗.
Encryption and decryption are now defined as follows:

• Encryption: Encryption Enc is deterministic and takes as input a tuple (K,N,H,M) ∈ (Σ∗)4

and outputs a pair (C1, C2) ∈ C × T or a distinguished error symbol ⊥. We require that for
any (K,N,H,M) ∈ K ×N ×H×M it is the case that Enc(K,N,H,M) 6= ⊥.

• Decryption: Decryption Dec is deterministic. It takes as input a quintuple (K,N,H,C1, C2) ∈
(Σ∗)5 and outputs a message, opening value pair (M,Kf ) ∈M×Kf or ⊥.

Key generation and verification are unchanged relative to randomized CE schemes. As for ran-
domized schemes, we assume that the length of ciphertexts are dictated only by the lengths of the
header and message. We will often write EncNK(H,M) for Enc(K,N,H,M) and DecNK(H,C1, C2)
for Dec(K,N,H,C1, C2).

Nonce-based security. We adapt the confidentiality and integrity security notions from Section 4
to the nonce-based setting. For a scheme nCE, we measure the nonce-based multiple-openings
real-or-random MO-nRORnCE advantage of an adversary A (using the games MO-nREALnCE and
MO-nRANDnCE in Figure 14) as

Advmo-nror
nCE (A) =

∣∣Pr
[
MO-nREALAnCE ⇒ 1

]
− Pr

[
MO-nRANDAnCE ⇒ 1

]∣∣ .

An adversary is nonce-respecting if its queries never repeat the same N across a pair of encryption
queries (two queries to Enc, two to ChalEnc, or one to each). We will assume nonce-respecting
MO-nRANDnCE adversaries.

For a scheme nCE, we measure the nonce-based multiple-openings real-or-randomMO-nCTXTnCE

advantage of an adversary A (using the game MO-nCTXTnCE in Figure 14) as

Advmo-nctxt
nCE (A) = Pr

[
MO-nCTXTAnCE ⇒ 1

]
.

As with randomized committing AEAD, we can provide single-opening versions of the above
definitions, and can give an all-in-one version of nonce-based MO and SO security. We omit the
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MO-nREALA
nCE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(N,H,M)

(C1, C2)← EncNK(H,M)

Y1 ← Y1 ∪ {(N,H,C1, C2)}

Return C

Dec(N,H,C1, C2)

If (N,H,C1, C2) /∈ Y1 then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

Return (M,Kf )

ChalEnc(N,H,M)

(C1, C2)← EncNK(H,M)

Y2 ← Y2 ∪ {(N,H,C1, C2)}

Return C

MO-nRANDA
nCE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc

Return b′

Enc(N,H,M)

(C1, C2)← EncNK(H,M)

Y1 ← Y1 ∪ {(N,H,C1, C2)}

Return C

Dec(N,H,C1, C2)

If (N,H,C1, C2) /∈ Y1 then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

Return (M,Kf )

ChalEnc(N,H,M)

(ℓ1, ℓ2)← clen(|H|, |M |)

(C1, C2)←$ {0, 1}ℓ1 × {0, 1}ℓ2

Y ← Y ∪ {(N,H,C1, C2)}

Return (C1, C2)

MO-nCTXTA
nCE:

K←$ Kg ; win← false

AEnc,Dec,ChalDec

Return win

Enc(N,H,M)

(C1, C2)← EncNK(H,M)

Y ← Y ∪ {(N,H,C1, C2)}

Return C

Dec(N,H,C1, C2)

Return DecNK(H,C1, C2)

ChalDec(N,H,C1, C2)

If (N,H,C1, C2) ∈ Y then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

If M 6= ⊥ then

win← true

Return (M,Kf )

Figure 14: Confidentiality (left two games) and ciphertext integrity (rightmost) games for nonce-based
committing AEAD.

details for the sake of brevity.
The sender binding notion s-BIND for nonce-based schemes is the same as for randomized

schemes except that the adversary also outputs a nonce N , which is used with Dec. Because
verification is unchanged, receiver binding security is formalized exactly the same for randomized
and nonce-based committing AEAD.

The Committing Encrypt-and-PRF scheme. One can analyze some traditional nonce-based
AEAD schemes to show they are compactly committing. As one example, it is easy to see that
the EtE construction (Section 5.1) works just as well with non-repeating nonces, but with only
single-opening security. The other schemes in Section 5 do not, but can be easily modified to by
replacing IV with EK(N). Here we focus on a new scheme that will have better overall performance
and security. Unlike the legacy schemes studied in Section 5 it will be provably secure for multiple
openings. At the same time, it will be more efficient than the schemes in Section 6.

Let G be a nonce-based PRG as defined in Section 2. Let F, F cr : {0, 1}n × {0, 1}t → {0, 1}t

be a PRF and a collision-resistant PRF, respectively, both as defined in Section 2. The scheme
CEP[G,F, F cr] = (CEP-Kg,CEP-Enc,CEP-Dec,CEP-Ver) is in the style of an Encrypt-and-PRF
construction. The key space for CEP is K = {0, 1}k and key generation simply outputs a random
draw from it. Encryption starts by using the nonce with the key K to derive a pad P from the
nonce-based PRG G. Part of this pad will be used to encrypt the message. The initial 2n bits are
used as two one-time keys for F cr and F . Finally it computes a binding value for H,M and applies
F to that commitment value to generate a tag. Detailed pseudocode is given in Figure 15.

We will need F cr to both be CR (for binding) as well as secure as a one-time PRF (for confi-
dentiality). This rules out some otherwise desirable choices such as CMAC [45], PMAC [57] and
Carter-Wegman-style PRFs such as Poly1305 [16] and UMAC [17]. These PRFs are some of the
fastest available, but would make CEP vulnerable to binding attacks. (See also the discussion in
Section 5.4.)

The most obvious choice is HMAC, for which formal analyses support it being a secure PRF for
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CEP-EncNK(H,M):

m← ⌈|M |/n⌉

P ← G(K,N,m+ 2n)

C1 ← (P2 ‖ · · · ‖ Pm+1)⊕M

C2 ← F cr
P0

(H ‖M)

T ← FP1
(C2)

Return (C1 ‖ T,C2)

CEP-DecNK(H,C1 ‖ T,C2):

m← ⌈|C1|/n⌉

P ← G(K,N,m+ 2n)

M ← (P2 ‖ · · · ‖ Pm+1)⊕ C1

C′
2 ← F cr

P0
(H ‖M)

T ′ ← FP1
(C′

2)

If T 6= T ′ ∨ C′
2 6= C2 then

Return ⊥

Return (M,P0)

CEP-Ver(H,M,Kf , C2):

C′
2 ← F cr

Kf
(H ‖M)

If C′
2 6= C2 then Return 0

Return 1

Figure 15: The nonce-based committing AEAD scheme CEP[G,F, F cr]. For the pad P generated by G, the
notation Pi refers to the ith n-bit block of P , i.e. P [in, . . . , (i+ 1)n− 1].

a key secret [2,3] and CR for adversarially chosen keys of the same length (assuming the underlying
hash function is CR). Other multi-property hash functions [10] would also suffice.

The reason we use G both for CTR mode and for key derivation is speed. This ensures that we
need ever only use a single key with G; in some environments rekeying can be very expensive. Any
nonce-based pseudorandom generator can be used to instantiate G, e.g., ChaCha-20 [15].

One might wonder why have a tag T as well as the commitment value C2. The reason is
that to achieve multi-opening security, we must disclose the key used with F cr, rendering the
unforgeability of C2 values moot. If one instead omitted T and only checked C ′2 = C2 to attempt
to achieve unforgeability, then there exists a straightforward MO-nCTXT attack that obtains a
ciphertext for a nonce N , queries it to Dec to get the key for F cr, and then uses that to forge a
new ciphertext to be submitted to ChalDec. The application of F under a distinct key provides
ciphertext integrity even after an adversary obtains openings (keys for F cr). Similarly, dropping
the check during decryption that C ′2 = C2 also leads to an attack, but this time on sender binding.

Comparisons. Before getting into the formal security analysis in the next section, we first com-
pare CEP to the generic composition constructions that also achieve multiple-opening security. The
first benefit over other schemes is that it is nonce-based, making it suitable for stateful as well as
randomized settings (see also Rogaway’s discussion of the benefits of nonce-based encryption [58]).

The second is that ciphertext expansion is reduced by a security parameter number of bits
compared to the generic composition constructions, because in CEP we do not need to transport an
explicit opening — the recipient recomputes it pseudorandomly from the secret key. Consequently,
CEP ciphertexts are shorter than Facebook’s by 256 bits.

The third is that encryption and decryption both save an entire cryptographic pass over the
associated data and message. For Facebook’s chosen algorithms (HMAC for the commitment,
plus Encrypt-then-MAC using AES-CBC and HMAC), this means that CEP offers more than a
50% speed-up for both algorithms.7 While in some messaging settings encryption and decryption
may not be particularly performance-sensitive operations, any cost savings is desirable. In other
contexts, such as if one starts using committing encryption on larger files (images, videos) sent over
messaging applications or if one wants abuse reporting for streaming communications, performance
will be very important.

CEP achieves the stronger multiple-opening security goal, setting it apart from the legacy
committing AEAD schemes from Section 5. At the same time, CEP has equivalent or better
performance than those schemes. With respect to EtM and MtE, verification is reduced from two
cryptographic passes to one.

7HMAC, with suitable choice of hash function, is slower than AES. If AES-NI is available, then the speed-up will
be even larger, since the HMAC passes will be the performance bottleneck.
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8 Analysis of CEP

In this section we will analyze the nonce-based committing AEAD security of the CEP construction.
Before stating and proving the main results, we first recast the F ◦F cr function as a MAC scheme;
this will make our proofs more modular.

The MAC scheme Mac[F ◦ F cr] = (kg, tag, ver) is defined as follows. Key generation outputs
a single random n-bit string. Tag generation algorithm is tag(P1, (P0, X)) = FP1

(F cr
P0
(X)) for

random key P1 and any pair of strings (P0, X). In CEP the X will be the concatenation of the
associated data H and message M . The output of tag is a t-bit string. The verification procedure
ver(P1, (P0, X), T ) re-runs tag(P1, (P0, X)) and returns true if its output is equal to T , and false
otherwise.

Note that we have taken P0 to be a message. That’s because we require that F ◦ F cr realizes
a good MAC even when P0 is known to the adversary. Since the value P1 changes for every
encryption in CEP, it is easier to reduce to a multi-user unforgeability under chosen message
attack (see Section 2). We therefore state a result about the MU-UF-CMA security of our MAC
F ◦ F cr. The proof uses standard techniques, but we include it for completeness.

Lemma 2 Let A be an MU-UF-CMAF◦F cr adversary making at most q queries. Then we give in
the proof explicit adversaries B, C such that

Advmu-uf-cma
F◦F cr (A) ≤ Advmu-prf

F (B) +Advcr
F cr(C) +

q

2t
.

Adversary B makes at most q queries and runs in time that of A plus an O(q) overhead. Adversary
C runs in time that of A plus an O(q) overhead.

Proof: Begin with the game G0, which is the same as MU-UF-CMAAF◦F cr in Figure 2. Define
a new game G1 which is the same as G0 except with every call to FK[S] replaced by a call to a
random function R which is drawn uniformly at random for each new key identifier queried. We
can upper-bound the difference in A’s advantage in these two games using a reduction B to the
MU-PRF security of F . The reduction B has access to an oracle O(·, ·) which takes a key identifier
and a message. It uses O to simulate A’s Tag oracle on input (S, (P,M)) by returning the output
of O(S, F cr

P (M)). It records the message M in tableM[S] as well. It simulates B’s Ver oracle on
inputs (S, (P,M), T ) by returning (M 6∈ M[S] ∧ (O(S, F cr

P (M)) = T )). Then we have that

Pr [G0 ⇒ true ] ≤ Pr [G1 ⇒ true ] +Advmu-prf
F (B)

Next, define a game G2 which is identical to G1 except in Tag and Ver, F cr
P (M) is not run at

all—tags are generated by applying the random function R for key identifier S to the concatenation
of P and message M directly. Since R’s output (and, therefore, each tag generated) in both G2 and
G1 is a uniformly random string, the only way the tag outputs could change in G2 is if A finds a
collision in F cr. We can upper-bound the difference in A’s success probability in G1 and G2 using
a reduction C to the collision-resistance of F cr. The reduction C runs the code of game G1 exactly,
except it also records the values of F cr

P (M) it sees throughout queries to Tag and Ver. If it sees a
collision in F cr at any point, it outputs it. We have that

Pr [G1 ⇒ true ] ≤ Pr [G2 ⇒ true ] +Advcr
F cr(C)

Let (P,M), (P ′,M ′) be a collision in F cr. In G2, the query Ver(S, P ′,M ′,Tag(S, P,M)) will only
set win to true with probability 1

2t since the outputs of the random function, R(P ′ ‖ M ′) and
R(P ‖M), are equal with that probability. With this, we can complete the proof by noting that
Pr [G2 ⇒ true ] ≤ q

2t , since the only way to set win to true in G2 is to correctly guess the output of
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a random function on a previously unqueried point. In q queries this happens with probability at
most q

2t by a union bound. Summing and rewriting yields the bound.

Security of CEP. We are now in position to formally analyze the confidentiality, ciphertext
integrity, and binding of CEP. We give theorems and proofs for each in turn.

Theorem 11 [CEP confidentiality] Let CEP = CEP[G,F, F cr]. Let A be an MO-nRORCEP ad-
versary making q queries and whose queried messages total at most σ bits. Let the length of the
keys for F and F cr be n bits. Then we give explicit adversaries B, C,D below such that

Advmo-nror
CEP (A) ≤ 2 ·Advprg

G (B) + 2 ·Advmu-prf
F (C) +Advmu-prf

F cr (D)

Adversary B is nonce-respecting, makes at most q queries to its oracle, and the sum of its total
outputs requested is σ + 2qn bits. Adversary C makes at most q queries to its oracle, and never
repeats a key identifier. Adversary D make at most q queries to its oracle and never repeats a key
identifier. All adversaries run in the same amount of time as A with an O(q) overhead.

Proof: The proof uses a sequence of game transitions. We will start with the first game, G0, which
is the same as MO-nREALCEP[G,F,F cr]. Game G1 is the same as G0 except that G is replaced by
a routine R(·, ·) that outputs random bit strings, in a prefix-preserving way, for any query. We
construct a PRG adversary B0 against G that uses its oracle to simulate A’s oracles in game G0.
On query Enc(N,H,M), it queries its oracle with inputs N and ⌈|M |/n⌉+2n and uses the output
to run the rest of the CEP-Enc procedure. It simulates A’s other oracles similarly. We have that

Pr [ G0 ⇒ 1 ] ≤ Pr [ G1 ⇒ 1 ] +Advprg
G (B0) .

Game G2 is the same as G1 except that we replace F by random functions, one per nonce used.
We construct a reduction C0 to MU-PRF security of F by replacing calls to it in Enc(N,H,M)
with calls to C0’s oracle R with inputs (N,F cr

P0
(H ‖M)). We replace calls to F in A’s other oracles

similarly. Standard arguments give us that

Pr [ G1 ⇒ 1 ] ≤ Pr [ G2 ⇒ 1 ] +Advmu-prf
F (C0) .

The next game G3 replaces C2 values returned by ChalEnc by random values. Here we must be
careful, as the C2 values returned by Enc are not pseudorandom — we may release the associated
P1 values later due to a decryption query. Therefore we reduce to the MU-PRF security of F cr, but
where the reduction itself generates keys for Enc queries and only uses its own oracle for ChalEnc
queries’ use of F cr. This step relies on the fact that A is nonce-respecting, lest Enc and ChalEnc
could end up using the same F cr keys.

Let D be the MU-PRF adversary against F cr that starts by running A, and simulates its oracles
as follows. For Enc and Dec it simply runs the code of game G2’s procedures. For ChalEnc, it
works as in G2 except that the F cr execution is replaced by a query to D’s oracle on (N,H ‖M).
This gives that

Pr [ G2 ⇒ 1 ] ≤ Pr [ G3 ⇒ 1 ] +Advmu-prf
F cr (D) .

Game G3 returns a random string of bits in response to any ChalEnc oracle query, because A
is nonce-respecting and so the random pad P is always a uniform fresh choice, the families of
random functions that replaced F and F cr are only ever used on a single point. Game G3 is
not equivalent yet to MO-nRANDnCE since the Enc and Dec oracles are using random pads and
random functions, as opposed to G and F . But symmetric arguments to the ones used above give
specific adversaries C1 and then B1 such that

Pr [ G3 ⇒ 1 ] ≤ Pr
[
MO-nRANDAnCE ⇒ 1

]
+Advmu-prf

F (C1) +Advprg
F (B1) .
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Finally a standard argument gives adversaries B, C such that

Advmu-prf
F (C0) +Advmu-prf

F (C1) ≤ 2 ·Advmu-prf
F (C) and

Advprg
G (B0) +Advprg

G (B1) ≤ 2 ·Advprg
B (B) .

The next theorem captures the ciphertext integrity of the scheme.

Theorem 12 [CEP ciphertext integrity] Let CEP = CEP[G,F, F cr]. Let A be an MO-nCTXTCEP

adversary making at most q queries with query inputs totalling at most σ bits. Let F ◦ F cr be the
MAC described above, with keys of length 2n bits. Then we give adversaries B, C such that

Advmo-nctxt
CEP (A) ≤ Advprg

G (B) +Advmu-uf-cma
F◦F cr (C) .

Adversary B runs in time that of A plus at most O(q) overhead and makes q queries totaling at
most σ + 2nq bits. Adversary C makes at most q queries and runs in time that of A plus at most
O(q) overhead.

Proof: Let G0 = MO-nCTXTACEP. By a standard reduction to the security of G we can transition
to a game G1 in which G is replaced by a routine R(·, ·) returning prefix-preserving random bit
strings. We have that

Pr
[
GA0 ⇒ 1

]
≤ Pr

[
GA1 ⇒ 1

]
+Advprg

G (B) .

We modify game G1 to obtain game G2, shown in Figure 16. The differences are that: (1) queries
to Dec on tuples (N,H,C1 ‖ T,C2) for which there was a previous query to Enc(N,H,M) that
returned C1 ‖ T,C2 simply reply with (M,P0) without bothering to do decryption, and (2) we set
win to true if any other query to Dec successfully decrypts. The first difference is without loss,
since the Dec in G1 would have anyway returned (M,P0). The second difference only increases
the adversary’s probability of success. Thus

Pr
[
GA1 ⇒ 1

]
≤ Pr

[
GA2 ⇒ 1

]
.

We now bound A’s probability of success in G2 by its ability to forge against F ◦F cr(P1, P0, H ‖M).
Notice that in G2 the adversary only ever uses P1 values for F and that, by our earlier transition,
these are uniformly random, independent bit strings for each N . The MU-UF-CMAF◦F cr (as
in Figure 2) adversary C, shown in Figure 16, simulates the environment of A and uses its Tag and
Ver oracles to perform tagging and verification using F ◦ F cr. (Recall that verification works by
simply re-executing F ◦ F cr and checking that the computed and submitted tags are equal.) We
will argue that

Pr
[
GA2 ⇒ 1

]
= Advmu-uf-cma

F◦F cr (C) .

To do so we need to show that anytime win would have been set in G2, the corresponding query to
Ver(N∗, (P ∗0 , H

∗ ‖M∗), T ∗) is a successful forgery (where we have added asterisks to distinguish
this winning query from other queries). To be a successful forgery the MU-UF-CMA game must
return true, which is clear by inspection, and it must be that there was not a previous query
Tag(N∗, (P ∗0 , H

∗‖M∗)) that returned T ∗. Suppose otherwise, and let N, (P0, H ‖M) be that query.
Let the return from the corresponding Enc query on inputs (N,H,M) be the pair (C1 ‖ T,C2).
Then by assumption H = H∗, and M = M∗. We also have that N = N∗, P0 = P ∗0 , and P = P ∗.
In turn, since F is deterministic T = T ∗ and C2 = C∗2 . Finally, C = M ⊕ P = M∗ ⊕ P ∗ = C∗1 .
Thus, (N,H,C1 ‖ T,C2) = (N∗, H∗, C∗1 ‖ T

∗, C∗2 ), implying that either V[N∗, H∗, C∗1 ‖ T
∗, C∗2 ] 6= ⊥

(for Dec) or (N∗, H∗, C∗1 ‖T
∗, C∗2 ) ∈ Y (for ChalDec), which is a contradiction since it means that

Ver could not have been called.
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G2:

win← false

AEnc,Dec,ChalDec

Return win

Enc(N,H,M):

(P0, P1, P )←$ R(N, 2n+ |M |)

C1 ←M ⊕ P

C2 ← F cr
P0

(H ‖M)

T ← FP1
(C2)

V[N,H,C1 ‖ T,C2]← (M,P0)

Return (C1 ‖ T,C2)

Dec(N,H,C1 ‖ T,C2):

If V[N,H,C1 ‖ T,C2] 6= ⊥ then

Return V[N,H,C1 ‖ T,C2]

(P0, P1, P )←$ R(N, 2n+ |C1|)

M ← C1 ⊕ P

C′
2 ← F cr

P0
(H ‖M)

T ′ ← FP1
(C′

2)

If T ′ 6= T then Return ⊥

win← true

Return (M,P0)

ChalDec(N,H,C1 ‖ T,C2):

If (N,H,C1 ‖ T,C2) ∈ Y then

Return ⊥

(P0, P1, P )←$ R(N, 2n+ |C1|)

M ← C1 ⊕ P

C′
2 ← F cr

P0
(H ‖M)

T ′ ← FP1
(C′

2)

If T ′ 6= T then Return ⊥

win← true

Return (M,P0)

CTag,Ver:

win← false

AEnc,Dec,ChalDec

Return win

Enc(N,H,M):

(P0, P1, P )←$ R(N, 2n+ |M |)

C1 ←M ⊕ P

C2 ← F cr
P0

(H ‖M)

T ← Tag(N, (P0, H ‖M))

V[N,H,C1 ‖ T,C2]← (M,P0)

Return (C1 ‖ T,C2)

Dec(N,H,C1 ‖ T,C2):

If V[N,H,C1 ‖ T,C2] 6= ⊥ then

Return V[N,H,C1 ‖ T,C2]

(P0, P1, P )←$ R(N, 2n+ |C1|)

M ← C1 ⊕ P

b← Ver(N, (P0, H ‖M), T )

If b 6= b′ then Return ⊥

Return (M,P0)

ChalDec(N,H,C1 ‖ T,C2):

If (N,H,C1 ‖ T,C2) ∈ Y then

Return ⊥

N ← N ∪ {N}

(P0, P1, P )← R(N, 2n+ |C1|)

M ← C1 ⊕ P

b← Ver(N, (P0, H ‖M), T )

If b 6= b′ then Return ⊥

Return (M,P0)

Figure 16: Games for proof of MO-nCTXT in Theorem 12. The functions Ver and Tag are verification and
tag generation oracles, respectively, for C’s MU-UF-CMA game as in Figure 2.
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Finally, we turn to binding. Recall that any scheme that effectively runs commitment veri-
fication during decryption achieves sender binding. The check that C ′2 = C2 during decryption
accomplishes this, and so the scheme is perfectly sender binding. For receiver binding, a simple
reduction gives the following theorem showing that the CR of F cr implies binding of CEP.

Theorem 13 [CEP receiver binding] Let CEP = CEP[G,F, F cr]. Let A be any r-BINDCEP adver-
sary. Then we give an adversary B such that Advr-bind

CEP (A) ≤ Advcr
F cr(B) and B runs in the same

amount of time as A.

Proof: The adversary B runs A until it outputs ((H,M,Kf ), (H
′,M ′,K ′f ), C2). Since r-BINDACEP

outputs 1 only if F cr
Kf

(H ‖M) = F cr
K′

f
(H ′ ‖M ′) = C2, a output for which r-BINDACEP ⇒ 1 is also a

valid collision in F cr. Thus, if B outputs whatever A does, the result follows.

9 Related Work

The primary viewpoint in the literature has been that committing encryption is undesirable either
because one wants deniability [20,22,54] or due to the theoretical challenges associated with proving
encryption confidentiality in the face of adaptive compromises [23]. Thus while non-committing
encryption has received significant attention (e.g., [22–24, 26, 28, 35, 36, 43, 47, 53, 54, 67–70]), there
is a dearth of literature on building purposefully committing encryption.

We are aware of only one previous work on building committing encryption schemes, due to
Gertner and Herzberg [37]. They give definitions that are insufficient for the message franking
setting (in particular they do not capture server binding or multiple opening security). They do
not analyze AE schemes, and focus only on building asymmetric primitives.

Our receiver binding security property is related to the concept of robust encryption, introduced
by Abdalla et al. [1]. They give two security notions for public-key encryption (PKE). The stronger,
called strong robustness, asks that an adversarially-chosen ciphertext should only correctly decrypt
under at most one legitimate secret key. Mohassel [52] showed efficient ways of adapting existing
PKE schemes to be robust. Farshim et al. [33] subsequently pointed out that some applications
require robustness to adversarially generated secret keys, and introduced a notion called complete
robustness. In a later work, Farshim, Orlandi, and Rosie [34] adapt these robustness definitions to
the setting of authenticated encryption, message authentication codes (MACs), and pseudorandom
functions (PRFs). They show that in this context, the simpler full robustness notion of [33] is the
strongest of those considered.

These prior notions, in particular the full robustness for AE notion from [34], do not suffice
for formalizing binding for AEAD. First, it does not capture sender binding. Second, for receiver
binding, it turns out that the most straightforward adaptation of full robustness to handle associated
data fails to imply receiver binding. We provide a more detailed explanation in Appendix A.

Abdalla et al. [1] propose a generic composition of a commitment scheme and PKE scheme
to achieve robustness and Farshim et al. [34] show a variant of this for the symmetric encryption
setting. The latter construction commits to the key, not the message, and could not be used to
achieve the multiple opening security targeted by our generic composition constructions.

Selective-opening security allows an adversary to adaptively choose to corrupt some senders that
sent (correlated) encrypted messages [8] or to compromise the keys of a subset of receivers [41].
Bellare et al. [8] gave the first constructions of schemes secure against selective-opening attacks
for sender corruptions. Non-committing encryption can be used to realize security for receiver
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corruptions. Our definitions do not model selective-opening attacks, and as mentioned in the intro-
duction, assessing the viability of committing AEAD in selective-opening settings is an interesting
open problem.
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r-BINDA
SE:

((H,M,K), (H′,M ′,K′), C)←$A

M ← dec(K,H,C)

M
′
← dec(K′, H′, C)

Return (M = M) ∧ (M ′ = M
′
) ∧ ((H,M) 6= (H′,M ′))

FROBA
SE:

((H,K), (H′,K′), C)←$A

If K = K′ then Return false

M ← Dec(K,H,C)

M ′ ← Dec(K′, H′, C)

Return (M 6= ⊥) ∧ (M ′ 6= ⊥)

Figure 17: (Left) An equivalent formulation of receiver binding for the case of traditionally committing
encryption schemes. (Right) The full robustness security game.

A Traditionally Committing Encryption and Robust Encryption

Traditionally committing encryption. Committing AEAD as formulated in the body explic-
itly aims to accommodate compactness. For traditionally committing encryption, in which the
entire ciphertext is taken as the commitment, the secret key is the opening, and one opens by
decrypting the ciphertext, then one can dispense with some complexities of the treatment given
in the body. This will also allow us to compare with prior work directly, which does not consider
compact commitments.

To consider traditionally committing encryption, we return to standard symmetric encryption
schemes given by a tuple SE = (kg, enc, dec) as defined in Section 2. Then the single-opening
security notions for ROR and CTXT apply (with the obvious syntactic tweak to change ciphertext
to singletons as opposed to pairs). We give the variant of receiver binding on the left of Figure 17.
This is equivalent to receiver binding for CE schemes for which: (1) the entire ciphertext is the
commitment C2; (2) the opening value is the secret key; and (3) Ver(H,M,Kf , C2) works by running
M ′ ← Dec(Kf , H,C2), outputting one if M = M ′, and outputting zero otherwise.

Robust encryption. Robust encryption, introduced by Abdalla et al. [1], targets schemes for
which a ciphertext cannot decrypt under distinct keys to valid messages. Robustness is important
when using anonymous encryption, and may also help render encryption more misuse resistant.
Robustness is closely related to traditionally committing encryption, though there are several sub-
tleties.

Figure 17 (right box) provides a game defining full robustness, following the formulation of
robustness for AE schemes given in [34] with minor adaptations to our notation and to accommodate
headers. The adversary A outputs a pair of keys K,K ′, a pair of headers H,H ′, and a ciphertext
C. The adversary wins if the keys are distinct and the ciphertext decrypts to a valid message under
(K,H) and (K ′, H ′). The FROBASE advantage is defined by

Advfrob
SE (A) = Pr

[
FROBASE ⇒ true

]
.

Receiver binding does not imply full robustness for traditionally committing encryption. The
reason is that receiver binding requires messages be distinct, and so one can come up with a scheme
that achieves receiver binding but not full robustness.

On the other hand, full robustness implies receiver binding for, crucially, schemes that do not
have associated data. When dispensing with associated data, we remove from security games and
schemes reference to headers. Consider an adversary A that achieves success in the r-BINDSE

game for some scheme SE which does not use headers. Then, for A to win it must output a pair
((M,K), (M ′,K ′), C) for which C decrypts under K to M and K ′ to M ′ and M 6= M ′ and neither
equal ⊥. It must be the case that K 6= K ′ since otherwise decryption, which is deterministic, would
produce the same message. Thus, this triple is a winning triple for full robustness: K 6= K ′ and
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both keys decrypt C to valid messages. The following theorem formalizes this implication.

Theorem 14 Let SE be any authenticated encryption scheme which does not use headers. Let A
be an r-BINDSE adversary. Then we construct an adversary B which runs in the same amount of
time as A such that Advr-bind

SE (A) ≤ Advfrob
SE (B).

Note that this theorem implies that the FROB-secure AE schemes from Farshim et al. meet receiver
binding security. It is simple to adapt those schemes and show they are committing authenticated
encryption schemes (with no associated data) as we have defined them.

When associated data is again considered, things get more complicated because it is no longer
the case that the same key, ciphertext pair must decrypt to the same plaintext — the associated
header may differ. Indeed in this case we give a counter-example showing that receiver binding is
not implied by full robustness.

Let SE = (kg, enc, dec) be a symmetric encryption scheme, with key space K = {0, 1}κ for some
κ and ciphertext space C. Assume it enjoys full robustness, real-or-random security, and ciphertext
integrity. We use it to construct a new scheme, SE = (kg, enc, dec), that will likewise enjoy full
robustness, real-or-random security, and ciphertext integrity, yet is not receiver binding. Let C∗ /∈ C
be a distinguished ciphertext. The ciphertext space for SE is C = C ∪ {C∗}. The key space for
SE is K = {0, 1}κ+1. Key generation kg runs kg and outputs K ‖ 0. Encryption enc(K ‖ b,H,M)
runs enc(K,H,M) and outputs the resulting ciphertext. Decryption dec(K ‖ b,H,C) first checks
if K = 1κ+1 and C = C∗ for some distinguished ciphertext value C∗. If so, it outputs H as the
message (we assume that H ⊆ M, meaning the header space is a subset of the message space).
If instead C = C∗ but K 6= 1κ+1, it outputs ⊥. Otherwise it runs dec(K,H,C) and outputs the
result.

The scheme SE is not receiver binding: have an adversary output (H,H, 1κ+1), (H ′, H ′, 1κ+1), C∗)
for some arbitrary H 6= H ′. At the same time, the artificial behavior of SE on the all ones key
does not compromise robustness, because the latter requires producing distinct keys. We show this
formally in the next theorem.

Theorem 15 Let SE be the SE scheme constructed as defined above using scheme SE. Then for
any FROBSE adversary A we give an FROBSE adversary B such that Advfrob

SE
(A) ≤ Advfrob

SE (B).
Adversary B runs in time that of A.

Proof: Adversary B runs A to obtain output ((H,K ‖ b), (H ′,K ′ ‖ b′), C). Adversary B checks if
C = C∗, and if so outputs an arbitrary triple of values (essentially giving up). Otherwise B outputs
((H,K), (H ′,K ′), C). We will show that the only way for B to obtain advantage is by not using
C∗, in which case a successful attack against SE translates to one against SE.

First consider the case that A’s output has C 6= C∗. Then for A to win against SE it must be the
case that B wins against SE — for C 6= C∗ decryption dec just runs dec on the truncated key. Now
consider the case that C = C∗. Then because winning requires that K 6= K ′, it must be that either
K 6= 1κ+1 or K ′ 6= 1κ+1 for A to succeed. But whichever is not equal to 1κ+1 cannot lead to an
output other than ⊥ from decryption, by construction of dec. Thus in this case A cannot win.

It can be verified that SE inherits the ROR security and CTXT integrity of SE (up to some
small additive loss related to a key being randomly chosen as the all ones key). This means that
enjoying these properties as well as full robustness is still not sufficient to imply receiver binding.

A stronger robustness notion. The fact that full robustness and receiver binding are orthogonal
(when associated data is considered) raises the question of whether there exists a stronger notion
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eFROBA
SE:

((H,K), (H′,K′), C)←$A

M ← dec(K,H,C)

M ′ ← dec(K′, H′, C)

Return (M 6= ⊥) ∧ (M ′ 6= ⊥) ∧ ((H,M,K) 6= (H′,M ′,K′))

Figure 18: A stronger notion of full robustness.

that implies both. In fact, we can relax the condition in full robustness thatK 6= K ′ to (H,M,K) 6=
(H ′,M ′,K ′). See Figure 18. We refer to this notion as ‘even fuller robustness’. The eFROBSE

advantage of an adversary A is given by

Advefrob
SE (A) = Pr

[
eFROBASE ⇒ true

]
.

It is easy to verify that this notion is strictly stronger than both receiver binding and full robustness.
From the point of view of receiver binding, what this strengthening does is extend security to

also prevent attacks that produce different secret keys, yet open the same ciphertext to the same
message using the same header. This does not seem to be a meaningful attack in the context of
abuse reporting, but may prove important elsewhere.

B All-in-one Confidentiality/Integrity Security Notions

Here we provide all-in-one versions of committing AEAD confidentiality and integrity security for
both single-opening and multiple-opening security. We focus on multiple-openings security for
nonce-based schemes; an analogous treatment for randomized schemes and/or single-openings is
easily derived from the following.

The all-in-one games MO-nREAL-CAnCE and MO-nRANDAnCE are shown in Figure 4. We mea-
sure the multiple-openings real-or-random MO-nROR-CnCE advantage of an adversary A against
a scheme nCE by

Advmo-nror-ctxt
nCE (A) = |Pr [ MO-nREAL-CnCE,A ⇒ 1 ]− Pr [ MO-nRAND-CnCE,A ⇒ 1 ]| .

An adversary A is nonce-respecting if its queries never repeat the same N in its encryption queries
(to either Enc or ChalEnc).

The next theorem shows that the all-in-one notion is implied by the two standalone notions.

Theorem 16 Let nCE be a nonce-based committing AEAD scheme, let A be an MO-nROR-CnCE

adversary making at most q queries to its oracles. Then there exist specific adversaries B, C given
in the proof below such that

Advmo-nror-ctxt
nCE (A) ≤ 2 ·Advmo-ctxt

nCE (B) +Advmo-ror
nCE (C) .

Adversaries B and C use at most the same number of queries as A. Adversary C runs in time that
of A. Adversary B runs in time that of A plus an O(q) overhead.

Proof: We start with a game G0 = MO-nREAL-CACE. Game G1 is the same as G0 except that:
(1) Dec queries on tuples (N,H,C1, C2) /∈ Y1 are returned with ⊥, and (2) ChalDec queries are
always answered with ⊥. We construct an adversary B0 such that

Pr [ G0 ⇒ 1 ] = Pr [ G1 ⇒ 1 ] +Advmo-nctxt
nCE (B0) . (2)

Adversary B0 starts by runningA. It simulatesEnc andChalEnc queries as in the MO-nREAL-CnCE

game but using its own Enc oracle for encryption executions. It simulates Dec by checking if
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MO-nREAL-CA
nCE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc,ChalDec

Return b′

Enc(N,H,M)

(C1, C2)← EncNK(H,M)

Y1 ← Y1 ∪ {(N,H,C1, C2)}

Return C

Dec(N,H,C1, C2)

If (N,H,C1, C2) ∈ Y2 then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

Return (M,Kf )

ChalEnc(N,H,M)

(C1, C2)←$ EncNK(H,M)

Y2 ← Y2 ∪ {(N,H,C1, C2)}

Return C

ChalDec(N,H,C1, C2)

If (N,H,C1, C2) ∈ Y1 ∪ Y2 then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

Return (M,Kf )

MO-nRAND-CA
nCE:

K←$ Kg

b′←$AEnc,Dec,ChalEnc,ChalDec

Return b′

Enc(N,H,M)

(C1, C2)←$ EncNK(H,M)

Return C

Dec(N,H,C1, C2)

If (N,H,C1, C2) ∈ Y2 then

Return ⊥

(M,Kf )← DecNK(H,C1, C2)

Return (M,Kf )

ChalEnc(N,H,M)

(ℓ1, ℓ2)← clen(|H|, |M |)

(C1, C2)←$ {0, 1}ℓ1 × {0, 1}ℓ2

Y2 ← Y2 ∪ {(N,H,C1, C2)}

Return (C1, C2)

ChalDec(N,H,C1, C2)

Return ⊥

Figure 19: All-in-one confidentiality and ciphertext integrity games for nonce-based committing AEAD.

(N,H,C1, C2) ∈ Y1. If so, it queries its own Dec oracle and returns the result. Otherwise, it
proceeds by checking if (N,H,C1, C2) ∈ Y2, returning ⊥ if so, and otherwise makes a query to
ChalDec(N,H,C1, C2) and returns the result. Finally it simulates ChalDec queries by replac-
ing decryption with a call to its own ChalDec oracle. By construction B0 never queries its own
ChalDec in the case that N,H,C1, C2 was returned by any of its encryption queries. It is straight-
forward to verify that for this B0 equality (2) holds.

At this stage game G1 only runs decryption on values (N,H,C1, C2) that were returned by Enc.
The next game G2 is the same as G1 except that ChalEnc queries are answered with random bits
as in MO-nRAND-CnCE. We construct an adversary C such that

Pr [ G1 ⇒ 1 ] = Pr [ G2 ⇒ 1 ] +Advmo-nror
nCE (C) . (3)

Adversary C starts by running A. It simulates Enc queries as in the MO-nREAL-CCE game,
but using its own Enc oracle. Similarly it simulates Dec queries using its own Dec oracle for
decryption. Notice that by our earlier transitions, it’s the case that only tuples (N,H,C1, C2)
returned by C’s Enc queries are queried to its Dec oracle. To any ChalDec query, it replies with
⊥. It forwards ChalEnc queries to its own ChalEnc oracle. It is straightforward to verify that
for this B0 equality (3) holds.

Game G2 is almost the same as MO-nRAND-CnCE, the only difference is that Dec only performs
decryption on points that were returned by a previous query to Enc. We therefore introduce one
more game G3 which is the same as G2 except that we go back to performing decryption for any
query to Dec besides those in the set Y2. To do so we give an adversary B1 such that

Pr [ G2 ⇒ 1 ] = Pr [ G3 ⇒ 1 ] +Advmo-nctxt
nCE (B1) . (4)
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Adversary B1 starts by runningA. It simulatesEnc andChalEnc queries as in the MO-nRAND-CnCE

game but using its own Enc oracle for encryption executions within Enc. It simulates Dec by
checking if (N,H,C1, C2) ∈ Y1. If so, it queries its own Dec oracle and returns the result. Oth-
erwise, it proceeds by checking if (N,H,C1, C2) ∈ Y2, returning ⊥ if so, and otherwise makes a
query to ChalDec(N,H,C1, C2) and returns the result. Finally it simulates ChalDec queries
as in MO-nRAND-CnCE, i.e., returning ⊥ for any query. By construction B1 never queries its
own ChalDec in the case that (N,H,C1, C2) was returned by any of its encryption queries. It is
straightforward to verify that for this B1 equality (4) holds.

Finally, a standard argument gives a concrete B such that

Advmo-nctxt
nCE (B0) +Advmo-nctxt

nCE (B1) ≤ 2 ·Advmo-nctxt
nCE (B) .

Combining all the equations above, and verifying the run-times and query complexity of the ad-
versaries, proves the theorem.

Next we give a theorem showing that the all-in-one notion implies the multiple-opening stan-
dalone notions. We omit the proofs, which are simple, for the sake of brevity.

Theorem 17 Let nCE be a nonce-based committing AEAD scheme, A1 be an MO-nRORnCE

adversary, and A2 be an MO-nCTXTnCE adversary. Then there exists concrete adversaries B1,B2
such that Advmo-nror

nCE (A1) ≤ Advmo-nror-ctxt
nCE (B1) and Advmo-nctxt

nCE (A2) ≤ Advmo-nror-ctxt
nCE (B2). For

x ∈ {1, 2}, adversary Bx uses at most as many queries as Ax and runs in time that of Ax.
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