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Compressed sensing aims to undersample certain high-dimensional
signals yet accurately reconstruct them by exploiting signal char-
acteristics. Accurate reconstruction is possible when the object
to be recovered is sufficiently sparse in a known basis. Cur-
rently, the best known sparsity–undersampling tradeoff is achieved
when reconstructing by convex optimization, which is expensive
in important large-scale applications. Fast iterative thresholding
algorithms have been intensively studied as alternatives to con-
vex optimization for large-scale problems. Unfortunately known
fast algorithms offer substantially worse sparsity–undersampling
tradeoffs than convex optimization. We introduce a simple cost-
less modification to iterative thresholding making the sparsity–
undersampling tradeoff of the new algorithms equivalent to that
of the corresponding convex optimization procedures. The new
iterative-thresholding algorithms are inspired by belief propa-
gation in graphical models. Our empirical measurements of the
sparsity–undersampling tradeoff for the new algorithms agree
with theoretical calculations. We show that a state evolution for-
malism correctly derives the true sparsity–undersampling tradeoff.
There is a surprising agreement between earlier calculations based
on random convex polytopes and this apparently very different
theoretical formalism.

combinatorial geometry | phase transitions | linear programming | iterative
thresholding algorithms | state evolution

C ompressed sensing refers to a growing body of techniques
that “undersample” high-dimensional signals and yet recover

them accurately (1). Such techniques make fewer measurements
than traditional sampling theory demands: rather than sampling
proportional to frequency bandwidth, they make only as many
measurements as the underlying “information content” of those
signals. However, compared with traditional sampling theory,
which can recover signals by applying simple linear reconstruction
formulas, the task of signal recovery from reduced measurements
requires nonlinear and, so far, relatively expensive reconstruction
schemes. One popular class of reconstruction schemes uses linear
programming (LP) methods; there is an elegant theory for such
schemes promising large improvements over ordinary sampling
rules in recovering sparse signals. However, solving the required
LPs is substantially more expensive in applications than the linear
reconstruction schemes that are now standard. In certain imag-
ing problems, the signal to be acquired may be an image with 106

pixels and the required LP would involve tens of thousands of con-
straints and millions of variables. Despite advances in the speed
of LP, such problems are still dramatically more expensive to solve
than we would like.

Here, we develop an iterative algorithm achieving reconstruc-
tion performance in one important sense identical to LP-based
reconstruction while running dramatically faster. We assume that
a vector y of n measurements is obtained from an unknown N-
vector x0 according to y = Ax0, where A is the n×N measurement
matrix n < N . Starting from an initial guess x0 = 0, the first-
order approximate message-passing (AMP) algorithm proceeds
iteratively according to.

xt+1 = ηt(A∗zt + xt), [1]

zt = y − Axt + 1
δ

zt−1〈η′
t−1(A∗zt−1 + xt−1)

〉
. [2]

Here ηt(·) are scalar threshold functions (applied component-
wise), xt ∈ R

N is the current estimate of x0, and zt ∈ R
n is

the current residual. A∗ denotes transpose of A. For a vector
u = (u(1), . . . , u(N)), 〈u〉 ≡ ∑N

i=1 u(i)/N . Finally η′
t( s ) = ∂

∂s ηt( s ).
Iterative thresholding algorithms of other types have been pop-

ular among researchers for some years (2), one focus being on
schemes of the form

xt+1 = ηt(A∗zt + xt), [3]

zt = y − Axt. [4]

Such schemes can have very low per-iteration cost and low storage
requirements; they can attack very large-scale applications, much
larger than standard LP solvers can attack. However, Eqs. 3 and
4 fall short of the sparsity–undersampling tradeoff offered by LP
reconstruction (3).

Iterative thresholding schemes based on Eqs. 3 and 4 lack the
crucial term in Eq. 2, namely, 1

δ
zt−1〈η′

t−1(A∗zt−1 + xt−1)〉 is not
included. We derive this term from the theory of belief propaga-
tion in graphical models and show that it substantially improves
the sparsity–undersampling tradeoff.

Extensive numerical and Monte Carlo work reported here
shows that AMP, defined by Eqs. 1 and 2 achieves a sparsity–
undersampling tradeoff matching the theoretical tradeoff which
has been proved for LP-based reconstruction. We consider a para-
meter space with axes quantifying sparsity and undersampling.
In the limit of large dimensions N , n, the parameter space splits
in two phases: one where the AMP approach is successful in
accurately reconstructing x0 and one where it is unsuccessful.
Refs. 4–6 derived regions of success and failure for LP-based
recovery. We find these two ostensibly different partitions of the
sparsity–undersampling parameter space to be identical. Both
reconstruction approaches succeed or fail over the same regions
(see Fig. 1).

Our finding has extensive empirical evidence and strong theo-
retical support. We introduce a state evolution (SE) formalism and
find that it accurately predicts the dynamical behavior of numer-
ous observables of the AMP algorithm. In this formalism, the
mean squared error (MSE) of reconstruction is a state variable;
its change from iteration to iteration is modeled by a simple scalar
function, the MSE map. When this map has non-zero fixed points,
the formalism predicts that AMP will not successfully recover
the desired solution. The MSE map depends on the underlying
sparsity and undersampling ratios and can develop non-zero fixed
points over a region of sparsity/undersampling space. The region
is evaluated analytically and found to coincide very precisely (i.e.,
within numerical precision) with the region over which LP-based
methods are proved to fail. Extensive Monte Carlo testing of AMP
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Fig. 1. The phase transition lines for reconstructing sparse nonnegative vec-
tors (problem +, red), sparse signed vectors (problem ±, blue) and vectors
with entries in [−1, 1] (problem �, green). Continuous lines refer to analyt-
ical predictions from combinatorial geometry or the SE formalisms. Dashed
lines present data from experiments with the AMP algorithm, with signal
length N = 1, 000 and T = 1, 000 iterations. For each value of δ, we consid-
ered a grid of ρ values, at each value, generating 50 random problems. The
dashed line presents the estimated 50th percentile of the response curve. At
that percentile, the root MSE after T iterations obeys σT ≤ 10−3 in half of
the simulated reconstructions. The discrepancy between the observed PT for
AMP and the theoretical curves is statistically significant (t-score 7). Accord-
ing to Theorem 2 a discrepancy should be detectible at finite T . SI Appendix,
Section 13 shows that Theorem 2 accurately describes the evolution of MSE
for the AMP algorithm.

reconstruction finds that the region where AMP fails is, to within
statistical precision, the same region.

In short we introduce a fast iterative algorithm that is found to
perform as well as corresponding LP-based methods on random
problems. Our findings are supported from simulations and from
a theoretical formalism.

Remarkably, the success/failure phases of LP reconstruction
were previously found by methods in combinatorial geometry; we
give here what amounts to a very simple formula for the phase
boundary, derived using a very different and seemingly elegant
theoretical principle.

Underdetermined Linear Systems. Let x0 ∈ R
N be the signal of

interest. We are interested in reconstructing it from the vector of
measurements y = Ax0, with y ∈ R

n, for n < N . For the moment,
we assume that the entries Aij of the measurement matrix are
independent and identically distributed normal N(0, 1/n).

We consider three canonical models for the signal x0 and three
reconstruction procedures based on LP.

+: x0 is nonnegative, with at most k entries different from 0.
Reconstruct by solving the LP: minimize

∑N
i=1 xi subject to x ≥ 0,

and Ax = y.
±: x0 has as many as k non-zero entries. Reconstruct by solving

the minimum �1 norm problem: minimize ||x||1, subject to Ax = y.
This can be cast as an LP.

�: x0 ∈ [−1, 1]N , with at most k entries in the interior (−1, 1).
Reconstruction by solving the LP feasibility problem: find any
vector x ∈ [−1, +1]N with Ax = y.

Despite the fact that the systems are underdetermined, under
certain conditions on k, n, N these procedures perfectly recover
x0. This takes place subject to a sparsity–undersampling tradeoff,
namely, an upper bound on the signal complexity k relative to n
and N .

Phase Transitions. The sparsity–undersampling tradeoff can most
easily be described by taking a large-system limit. In that limit, we

fix parameters (δ, ρ) in (0, 1)2 and let k, n, N → ∞ with k/n → ρ
and n/N → δ. The sparsity–undersampling behavior we study is
controlled by (δ, ρ), with δ being the undersampling fraction and ρ
being a measure of sparsity (with larger ρ corresponding to more
complex signals).

The domain (δ, ρ) ∈ (0, 1)2 has two phases, a “success” phase,
where exact reconstruction typically occurs, and a “failure” phase
where exact reconstruction typically fails. More formally, for each
choice of χ ∈ {+, ±, �} there is a function ρCG(·; χ) whose graph
partitions the domain into two regions. In the upper region, where
ρ > ρCG(δ; χ), the corresponding LP reconstruction x1(χ) fails to
recover x0 in the following sense: as k, n, N → ∞ in the large-
system limit with k/n → ρ and n/N → δ, the probability of exact
reconstruction {x1(χ) = x0} tends to zero exponentially fast. In the
lower region, where ρ < ρCG(δ; χ), LP reconstruction succeeds to
recover x0 in the following sense: as k, n, N → ∞ in the large-
system limit with k/n → ρ and n/N → δ, the probability of exact
reconstruction {x1(χ) = x0} tends to one exponentially fast. We
refer to refs. 4–6 for proofs and precise definitions of the curves
ρCG(·; χ).

The three functions ρCG(·; +), ρCG(·; ±), ρCG(·; �) are shown
in Fig. 1; they are the red, blue, and green curves, respectively.
The ordering ρCG(δ; +) > ρCG(δ; ±) (red > blue) says that know-
ing that a signal is sparse and positive is more valuable than
only knowing it is sparse. Both the red and blue curves behave
as ρCG(δ; +, ±) ∼ (2 log(1/δ))−1 as δ → 0; surprisingly large
amounts of undersampling are possible, if sufficient sparsity is
present. In contrast, ρCG(δ; �) = 0 for δ < 1/2 (green curve) so
the bounds [−1, 1] are really of no help unless we use a limited
amount of undersampling, i.e., by less than a factor of 2.

Explicit expressions for ρCG(δ; +, ±) are given in refs. 4 and
5; they are quite involved and use methods from combinator-
ial geometry. By Finding 1 below, they agree within numerical
precision to the following formula:

ρSE(δ; χ) = max
z≥0

{
1 − (κχ/δ)[(1 + z2)Φ(−z) − zφ(z)]
1 + z2 − κχ[(1 + z2)Φ(−z) − zφ(z)]

}
, [5]

where κχ = 1, 2 respectively for χ = +, ±. This formula, a princi-
pal result of this work, uses methods unrelated to combinatorial
geometry.

Iterative Approaches. Mathematical results for the large-system
limit correspond well to application needs. Realistic modern
problems in spectroscopy and medical imaging demand recon-
structions of objects with tens of thousands or even millions of
unknowns. Extensive testing of practical convex optimizers in
these problems (7) has shown that the large system asymptotic
accurately describes the observed behavior of computed solutions
to the above LPs. But the same testing shows that existing con-
vex optimization algorithms run slowly on these large problems,
taking minutes or even hours on the largest problems of interest.

Many researchers have abandoned formal convex optimization,
turning to fast iterative methods instead (8–10).

The iteration (Eqs. 1 and 2) is very attractive because it does not
require the solution of a system of linear equations and because
it does not require explicit operations on the matrix A; it only
requires that one apply the operators A and A∗ to any given vec-
tor. In a number of applications—for example magnetic resonance
imaging—the operators A which make practical sense are not
really Gaussian random matrices, but rather random sections of
the Fourier transform and other physically inspired transforms
(1). Such operators can be applied very rapidly using fast Fourier
transforms, rendering the above iteration extremely fast. Pro-
vided the process stops after a limited number of iterations, the
computations are very practical.

The thresholding functions {ηt(·)}t≥0 in these schemes depend
on both iteration and problem setting. Here, we consider

2 of 6 www.pnas.org / cgi / doi / 10.1073 / pnas.0909892106 Donoho et al.
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ηt(·) = η(·; λσt, χ), where λ is a threshold control parameter,
χ ∈ {+, ±, �} denotes the setting, and σ2

t = AvejE{(xt(j)− x0(j))2}
is the MSE of the current estimate xt (in practice an empirical
estimate of this quantity is used).

For instance, in the case of sparse signed vectors (i.e., problem
setting ±), we apply soft thresholding ηt(u) = η(u; λσ, ±), where

η(u; λσ, ±) =
⎧⎨
⎩

(u − λσ) if u ≥ λσ,
(u + λσ) if u ≤ −λσ,
0 otherwise,

[6]

where we dropped the argument ± to lighten notation. Notice that
ηt depends on the iteration number t only through the MSE σ2

t .

Heuristics for Iterative Approaches. Why should the iterative
approach work, i.e., converge to the correct answer x0? We focus
in this section on the popular case χ = ±. Suppose first that A is
an orthogonal matrix, so A∗ = A−1. Then the iteration of Eqs. 1
and 2 stops in one step, correctly finding x0. Next, imagine that A
is an invertible matrix; using ref. 11 with clever scaling of A∗ and
clever choice of decreasing threshold, that iteration correctly finds
x0. Of course both these motivational observations assume n = N ,
i.e., no undersampling.

A motivational argument for thresholding in the undersampled
case n < N has been popular with engineers (1) and leads to a
proper “psychology” for understanding our results. Consider the
operator H = A∗A − I and note that A∗y = x0 + Hx0. If A were
orthogonal, we would of course have H = 0, and the iteration
would, as we have seen, immediately succeed in one step. If A is
a Gaussian random matrix and n < N , then of course A is not
invertible and A∗ is not A−1. Instead of Hx0 = 0, in the under-
sampled case Hx0 behaves as a kind of noisy random vector, i.e.,
A∗y = x0 + noise. Now x0 is supposed to be a sparse vector, and,
as one can see, the noise term is accurately modeled as a vec-
tor with independent and identically distributed Gaussian entries
with variance n−1‖x0‖2

2.
In short, the first iteration gives us a “noisy” version of the sparse

vector that we are seeking to recover. The problem of recovering a
sparse vector from noisy measurements has been heavily discussed
(12), and it is well understood that soft thresholding can produce
a reduction in MSE when sufficient sparsity is present and the
threshold is chosen appropriately. Consequently, one anticipates
that x1 will be closer to x0 than A∗y.

At the second iteration, one has A∗(y−Ax1) = (x0−x1)+H(x0−
x1). Naively, the matrix H does not correlate with x0 or x1, and so
we might pretend that H(x0 −x1) is again a Gaussian vector whose
entries have variance n−1||x0 − x1||22. This “noise level” is smaller
than at iteration zero, and so thresholding of this noise can be
anticipated to produce an even more accurate result at iteration
two, and so on.

There is a valuable digital communications interpretation of this
process. The vector w = Hx0 is the cross-channel interference or
mutual access interference (MAI), i.e., the noiselike disturbance
each coordinate of A∗y experiences from the presence of all the
other “weakly interacting” coordinates. The thresholding itera-
tion suppresses this interference in the sparse case by detecting the
many “silent” channels and setting them a priori to zero, produc-
ing a putatively better guess at the next iteration. At that iteration,
the remaining interference is proportional not to the size of the
estimand, but instead to the estimation error; i.e., it is caused by
the errors in reconstructing all the weakly interacting coordinates;
these errors are only a fraction of the sizes of the estimands and
so the error is significantly reduced at the next iteration.

SE. The above “sparse denoising/interference suppression”
heuristic does agree qualitatively with the actual behavior one can
observe in sample reconstructions. It is very tempting to take it
literally. Assuming it is literally true that the MAI is Gaussian and
independent from iteration to iteration, we can formally track the
evolution, from iteration to iteration, of the MSE.

This gives a recursive equation for the formal MSE, i.e., the
MSE which would be true if the heuristic were true. This takes the
form

σ2
t+1 = Ψ

(
σ2

t

)
, [7]

Ψ(σ2) ≡ E

{[
η

(
X + σ√

δ
Z; λσ

)
− X

]2
}

. [8]

Here expectation is with respect to independent random variables
Z ∼ N(0, 1) and X , whose distribution coincides with the empiri-
cal distribution of the entries of x0. We use soft thresholding (6) if
the signal is sparse and signed, i.e. if χ = ±. In the case of sparse
non-negative vectors, χ = +, we will let η(u; λσ, +) = max(u −
λσ, 0). Finally, for χ = �, we let η(u; �) = sign(u) min(|u|, 1).
Calculations of this sort are familiar from the theory of soft
thresholding of sparse signals; see SI Appendix for details.

We call Ψ : σ2 �→ Ψ(σ2) the MSE map (see Fig. 2).

Fig. 2. Development of fixed points for formal MSE
evolution. Here we plot Ψ(σ2) − σ2, where Ψ(·) is the
MSE map for χ = + (left column), χ = ± (center col-
umn), and χ = � (right column) and where δ = 0.1
(upper row,χ ∈ {+, ±}), δ = 0.55 (upper row,χ = �),
δ = 0.4 (lower row,χ ∈ {+, ±}), and δ = 0.75 (lower
row,χ = �). A crossing of the y axis corresponds to
a fixed point of Ψ. If the graphed quantity is nega-
tive for positive σ2, Ψ has no fixed points for σ > 0.
Different curves correspond to different values of ρ:
where ρ is respectively less than, equal to, and greater
than ρSE. In each case, Ψ has a stable fixed point at
zero for ρ < ρSE and no other fixed points, an unsta-
ble fixed point at zero for ρ = ρSE, and develops two
fixed points at ρ > ρSE. Blue curves correspond to
ρ = ρSE(δ; χ), green corresponds to ρ = 1.05 · ρSE(δ; χ),
and red corresponds to ρ = 0.95 · ρSE(δ; χ).
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Definition 1. Given implicit parameters (χ, δ, ρ, λ, F), with F = FX
the distribution of the random variable X, SE is the recursive map
(one-dimensional dynamical system): σ2

t �→ Ψ(σ2
t ).

Implicit parameters (χ, δ, ρ, λ, F) stay fixed during the evolution.
Equivalently, the full state evolves by the rule(

σ2
t ; χ, δ, ρ, λ, FX

) �→ (
Ψ

(
σ2

t

)
; χ, δ, ρ, λ, FX

)
.

Parameter space is partitioned into two regions:
Region (I): Ψ(σ2) < σ2 for all σ2 ∈ (0, EX 2]. Here σ2

t → 0 as
t → ∞: the SE converges to zero.

Region (II): The complement of Region (I). Here, the SE
recursion does not evolve to σ2 = 0.

The partitioning of parameter space induces a notion of spar-
sity threshold, the minimal sparsity guarantee needed to obtain
convergence of the formal MSE:

ρSE(δ; χ, λ, FX ) ≡ sup{ρ : (δ, ρ, λ, FX ) ∈ Region (I)}. [9]

Of course, ρSE depends on the case χ ∈ {+, ±, �}; it also seems
to depend on the signal distribution FX ; however, an essential
simplification is provided by the following.

Proposition 1. For the three canonical problems χ ∈ {+, ±, �}, any
δ ∈ [0, 1], and any random variable X with the prescribed sparsity
and bounded second moment, ρSE(δ; χ, λ, FX ) is independent of FX .

Independence from F allows us to write ρSE(δ; χ, λ) for the
sparsity thresholds. For proof, see SI Appendix. Adopt the notation

ρSE(δ; χ) = sup
λ≥0

ρSE(δ; χ, λ). [10]

Finding 1. For the three canonical problems χ ∈ {+, ±, �}, and for
any δ ∈ (0, 1)

ρSE(δ; χ) = ρCG(δ; χ). [11]

In short, the formal MSE evolves to zero exactly over the same
region of (δ, ρ) phase space, as does the phase diagram for the
corresponding convex optimization.

SI Appendix proves Finding 1 rigorously in the case χ = �,
all δ ∈ (0, 1). It also proves for χ ∈ {+, ±}, the weaker relation
ρSE(δ; χ)/ρCG(δ; χ) → 1 as δ → 0. Numerical evaluations of both
sides of Eq. 11 are also observed to agree at all δ in a fine grid of
points in (0, 1).

Failure of Standard Iterative Algorithms. If we trusted that formal
MSE truly describes the evolution of the iterative thresholding
algorithm, Finding 1 would imply that iterative thresholding allows
undersampling just as aggressively in solving underdetermined
linear systems as the corresponding LP.

Finding 1 gives new reason to hope for a possibility that has
already inspired many researchers over the last five years: the pos-
sibility of finding a very fast algorithm that replicates the behavior
of convex optimization in settings +, ±, �.

Unhappily the formal MSE calculation does not describe the
behavior of iterative thresholding:

1. SE does not predict the observed properties of iterative
thresholding algorithms.

2. Iterative thresholding algorithms, even when optimally
tuned, do not achieve the optimal phase diagram.

Ref. 3 carried out an extensive empirical study of iterative
thresholding algorithms. Even optimizing over the free parame-
ter λ and the nonlinearity η, the phase transition was observed at
significantly smaller values of ρ than those observed for LP-based
algorithms. Even improvements over iterative thresholding such
as CoSaMP and Subspace Pursuit (13, 14) did not achieve the
transitions of LP-based methods (see also Fig. 3).

Numerical simulations also show very clearly that the MSE map
does not describe the evolution of the actual MSE under iterative
thresholding. The mathematical reason for this failure is quite
simple. After the first iteration, the entries of xt become strongly
dependent, and SE does not predict the moments of xt.

Message-Passing (MP) Algorithm. The main surprise of our work
here is that this failure is not the end of the story. We now consider
a modification of iterative thresholding inspired by MP algorithms
for inference in graphical models (15), and graph-based error cor-
recting codes (16). These are iterative algorithms, whose basic
variables (“messages”) are associated to directed edges in a graph
that encodes the structure of the statistical model. The relevant
graph here is a complete bipartite graph over N nodes on one
side (variable nodes), and n on the others (measurement nodes).
Messages are updated according to the rules

xt+1
i→a = ηt

⎛
⎝ ∑

b∈[n]\a

Abizt
b→i

⎞
⎠ , [12]

zt
a→i = ya −

∑
j∈[N]\i

Aajxt
j→a, [13]

for each (i, a) ∈ [N] × [n]. Just as in other areas where MP arises,
the subscript i → a is vocalized “i sends to a,” and a → i as “a
sends to i.”

This MP algorithm† has one important drawback with respect
to iterative thresholding. Instead of updating N estimates, at each
iteration it updates Nn messages, increasing significantly the algo-
rithm complexity. On the other hand, the right-hand side of Eq.
12 depends weakly on the index a (only one out of n terms is
excluded) and the right-hand side of Eq. 12 depends weakly on
i. Neglecting altogether this dependence leads to the iterative
thresholding in Eqs. 3 and 4. A more careful analysis of this depen-
dence leads to corrections of order one in the high-dimensional
limit. Such corrections are however fully captured by the last term
on the right-hand side of Eq. 2, thus leading to the AMP algo-
rithm. Statistical physicists would call this the “Onsager reaction
term” (22).

SE is Correct for MP. Although AMP seems very similar to simple
iterative thresholding in Eqs. 3 and 4, SE accurately describes its
properties but not those of the standard iteration. As a conse-
quence of Finding 1, properly tuned versions of MP-based algo-
rithms are asymptotically as powerful as LP reconstruction. We
have conducted extensive simulation experiments with AMP and
more limited experiments with MP, which is computationally more
intensive (for details see SI Appendix). These experiments show
that the performance of the algorithms can be accurately modeled
using the MSE map. Let’s be more specific.

According to SE, performance of the AMP algorithm is pre-
dicted by tracking the evolution of the formal MSEσ2

t via the recur-
sion in Eq. 7. Although this formalism is quite simple, it is accurate
in the high-dimensional limit. Corresponding to the formal quan-
tities calculated by SE are the actual quantities, so of course
to the formal MSE corresponds the true MSE N−1‖xt − x0‖2

2.
Other quantities can be computed in terms of the state σ2

t as
well: for instance, the true false-alarm rate (N − k)−1#{i : xt(i) �=
0 and x0(i) = 0} is predicted via the formal false-alarm rate
P{ηt(X + δ−1/2σtZ) �= 0|X = 0}. Analogously, the true missed-
detection rate k−1#{i : xt(i) = 0 and x0(i) �= 0} is predicted by the

† For earlier applications of MP to compressed sensing, see refs. 17–19. Relationships
between MP and LP were explored in a number of papers, albeit from a different
perspective (e.g., see refs. 20 and 21).
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Fig. 3. Observed phase transitions of reconstruction algorithms. Red curve,
AMP; green curve, iterative soft thresholding (IST); blue curve, theoretical
�1 transition. Parameters of IST tuned for best possible phase transition (3).
Reconstruction signal length N = 1, 000. T = 1, 000 iterations. Empirical phase
transition is value of ρ at which success rate is 50%. Details are in SI Appendix.

formal missed-detection rate P{ηt(X +δ−1/2σtZ) = 0|X �= 0}, and
so on.

Our experiments establish large N-agreement of actual and
formal quantities. SI Appendix justifies the following.

Finding 2. For the AMP algorithm, and large dimensions N , n, we
observe

I. SE correctly predicts the evolution of numerous statistical
properties of xt with the iteration number t. The MSE, the
number of non-zeros in xt, the number of false alarms, the
number of missed detections, and several other measures
all evolve in way that matches the SE formalism to within
experimental accuracy.

II. SE correctly predicts the success/failure to converge to the
correct result. In particular, SE predicts no convergence when
ρ > ρSE(δ; χ, λ), and convergence if ρ < ρSE(δ; χ, λ). This
is indeed observed empirically.

Analogous observations were made for MP.

Optimizing the MP Phase Transition. An inappropriately tuned ver-
sion of MP/AMP will not perform well compared with other
algorithms, for example LP-based reconstructions. However, SE
provides a natural strategy to tune MP and AMP (i.e., to choose
the free parameter λ): simply use the value achieving the maxi-
mum in Eq. 10. We denote this value by λχ(δ), χ ∈ {+, ±, �} and
refer to the resulting algorithms as to optimally tuned MP/AMP
(or sometimes MP/AMP for short). They achieve the SE phase
transition:

ρSE(δ; χ) = ρSE(δ; χ, λχ(δ)).

An explicit characterization of λχ(δ), χ ∈ {+, ±} can be found
in the next section. Optimally tuned AMP/MP has a formal
MSE evolving to zero exponentially fast everywhere below phase
transition.

Theorem 2. For δ ∈ [0, 1], ρ < ρSE(δ; χ), and any associated ran-
dom variable X, the formal MSE of optimally tuned AMP/MP evolves
to zero under SE. Viceversa, if ρ > ρSE(δ; χ), the formal MSE
does not evolve to zero. Furthermore, for ρ < ρSE(δ; χ), there exists

b = b(δ, ρ) > 0 with the following property. If σ2
t denotes the formal

MSE after t SE steps, then, for all t ≥ 0

σ2
t ≤ σ2

0 exp(−bt). [14]

This rigorous result about evolution of formal MSE is comple-
mented by empirical work showing that the actual MSE evolves
the same way (see SI Appendix, which also offers formulas for the
rate exponent b).

Details About the MSE Mapping
In this section, we sketch the proof of Proposition 1: the iterative
threshold does not depend on the details of the signal distribu-
tion. Furthermore, we show how to derive the explicit expression
for ρSE(δ; χ), χ ∈ {+, ±}, given in the Introduction.

Local Stability Bound. The SE threshold ρSE(δ; χ, λ) is the supre-
mum of all ρ’s such that the MSE map Ψ(σ2) lies below the σ2

line for all σ2 > 0. Since Ψ(0) = 0, for this to happen it must be
true that the derivative of the MSE map at σ2 = 0 is smaller than
or equal to 1. We are therefore led to define the following “local
stability” threshold:

ρLS(δ; χ, λ) ≡ sup
{
ρ :

dΨ

dσ2

∣∣∣∣
σ2=0

< 1
}

. [15]

The above argument implies that ρSE(δ; χ, λ) ≤ ρLS(δ; χ, λ).
Considering for instance χ = +, we obtain the following

expression for the first derivative of Ψ:

dΨ

dσ2 = (δ−1 + λ2) · E Φ

(√
δ

σ
(X − λσ)

)

− E

{
(X + λσ)

σ
√

δ
φ

(√
δ

σ
(X − λσ)

)}
,

where φ(z) is the standard Gaussian density at z, Φ(z) =∫ z
−∞ φ(z′) dz′ is the Gaussian distribution, and ξ = δ−1 + λ2.

Evaluating this expression as σ2 ↓ 0, we get the local stability
threshold for χ = +:

ρLS(δ; χ, λ) = 1 − (κχ/δ)[(1 + z2)Φ(−z) − zφ(z)]
1 + z2 − κχ[(1 + z2)Φ(−z) − zφ(z)]

∣∣∣∣
z=λ

√
δ

,

whereκχ is the same as in Eq. 5. Notice thatρLS(δ; +, λ) depends on
the distribution of X only through its sparsity (i.e., it is independent
of FX ).

Tightness of the Bound and Optimal Tuning. We argued that
dΨ

dσ2 |σ2=0 < 1 is necessary for the MSE map to converge to 0. This
condition turns out to be sufficient because the function σ2 �→
Ψ(σ2) is concave on R+. This indeed yields

σ2
t+1 ≤ dΨ

dσ2

∣∣∣∣
σ2=0

σ2
t , [16]

which implies exponential convergence to the correct solution
(14). In particular we have

ρSE(δ; χ, λ) = ρLS(δ; χ, λ), [17]

whence ρSE(δ; χ, λ) is independent of FX as claimed.
To prove σ2 �→ Ψ(σ2) is concave, one computes its second

derivative. In the case χ = +, one needs to differentiate t the
first derivative expression given above (SI Appendix). Two useful
remarks follow. (i) The contribution due to X = 0 vanishes. (ii)
Since a convex combination of concave functions is also concave, it
is sufficient to consider the case in which X = x∗ deterministically.
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As a by-product of this argument we obtain explicit expressions
for the optimal tuning parameter, by maximizing the local stability
threshold

λ+(δ) = 1√
δ

arg max
z≥0

{
1 − (κχ/δ)[(1 + z2)Φ(−z) − zφ(z)]
1 + z2 − κχ[(1 + z2)Φ(−z) − zφ(z)]

}
.

Before applying this formula in practice, please read the important
notice in SI Appendix.

Discussion
Comparing Analytic Approaches. Refs. 10, 13, 14, and 23 ana-
lyzed iterative-thresholding-like algorithms and obtained rigorous
results guaranteeing perfect recovery; the sparsity conditions they
require are qualitatively correct but quantitatively are often con-
siderably more stringent than what is truly necessary in practice.
In contrast, we combine rigorous analysis of SE with extensive
empirical work (documented in SI Appendix), to establish what
really happens for our algorithm.

Relation with Minimax Risk. Let F±
ε be the class of probability dis-

tributions F supported on (−∞, ∞) with P{X �= 0} ≤ ε, and let
η(x; λ, ±) denote the soft-threshold function (6) with threshold
value λ. The minimax risk (12) is

M±(ε) ≡ inf
λ≥0

sup
F∈F±

ε

EF{[η(X + Z; λ, ±) − X ]2}, [18]

with λ±(ε) the optimal λ. The optimal SE phase transition and
optimal SE threshold obey

δ = M±(ρδ), ρ = ρSE(δ; ±). [19]

An analogous relation holds between the positive case ρSE(δ; +),
and the minimax threshold risk M+, where F is constrained to be
a distribution on (0, ∞). Exploiting Eq. 19, SI Appendix proves the
high-undersampling limit:

ρCG(δ) = ρSE(δ)(1 + o(1)), δ → 0.

Other MP Algorithms. The nonlinearity η(·) in AMP Eqs. 1 and 2
might be chosen differently. For sufficiently regular such choices,
the SE formalism might predict evolution of the MSE. One might
hope to use SE to design better threshold nonlinearities. The
threshold functions used render MSE maps σ2 �→ Ψ(σ2) both
monotone and concave. As a consequence, the phase transition
line ρSE(δ; χ) for optimally tuned AMP is independent of the
empirical distribution of the vector x0. SE may be inaccurate
without such properties.

Where SE is accurate, it offers limited room for improvement
over the results here. If ρ̃SE denotes a (hypothetical) phase transi-
tion derived by SE with any nonlinearity whatsoever, SI Appendix
exploits Eq. 19 to prove

ρ̃SE(δ; χ) ≤ ρSE(δ; χ)(1 + o(1)), δ → 0, χ ∈ {+, ±}.
In the limit of high undersampling, the nonlinearities studied here
offer essentially unimprovable SE phase transitions. Our recon-
struction experiments also suggest that other nonlinearities yield
little improvement over thresholds used here.

Universality. The SE-derived phase transitions are not sensitive
to the detailed distribution of coefficient amplitudes. Empirical
results in SI Appendix find similar insensitivity of observed phase
transitions for MP.

Gaussianity of the measurement matrix A can be relaxed;
SI Appendix finds that other random matrix ensembles exhibit
comparable phase transitions.

In applications, one often uses very large matrices A, which are
never explicitly represented, but only applied as operators; exam-
ples include randomly undersampled partial Fourier transforms.
SI Appendix finds that observed phase transitions for MP in the
partial Fourier case are comparable to those for random A.
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