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Abstract—In a recent paper, the authors proposed a new class
of low-complexity iterative thresholding algorithms for recon-
structing sparse signals from a small set of linear measurements
[1]. The new algorithms are broadly referred to as AMP, for
approximate message passing. This is the second of two conference
papers describing the derivation of these algorithms, connection
with related literature, extensions of original framework, and
new empirical evidence.

This paper describes the state evolution formalism for analyz-
ing these algorithms, and some of the conclusions that can be
drawn from this formalism. We carried out extensive numerical
simulations to confirm these predictions. We present here a few
representative results.

I. GENERAL AMP AND STATE EVOLUTION

We consider the model

y = A so + wo , so ∈ R
N , y, wo ∈ R

n , (1)

with so a vector that is ‘compressible’ and wo a noise vector.

We will assume that the entries of wo are centered independent

gaussian random variables with variance v.

The general AMP (approximate message passing) algorithm

reads

xt+1 = ηt(x
t + A∗zt) , (2)

zt = y − Axt +
1

δ
zt−1〈η′

t−1(x
t−1 + A∗zt−1)〉 , (3)

with initial condition x0 = 0. Here, for a vector u =
(u1, . . . , uN ) we write 〈u〉 ≡

∑N
i=1 ui/N , and η′( · ; · )

indicates the derivative of η with respect to its first argument.

Further δ ≡ n/N and {ηt( · )}t≥0 is a sequence of scalar

non-linearities (see Section III), a typical example being soft

thresholding, which contracts its argument towards zero.

A. Structure of the Algorithm

This algorithm is interesting for its low complexity: its

implementation is dominated at each step by the cost of

applying A and A∗ to appropriate vectors. In some important

settings, matrices A of interest can be applied to a vector

implicitly by a pipeline of operators requiring N log(N) flops;

an example would be A whose rows are randomly chosen from

among the rows of a Fourier matrix; then Ax can be computed

by FFT and subsampling.

Even more, the algorithm is interesting for the message

passing term 1
δ
zt−1〈η′

t−1(x
t−1+A∗zt−1)〉. Similar algorithms

without this term are common in the literature of so-called iter-

ative thresholding algorithms. As discussed in the companion

paper, the message passing term approximates the combined

effect on the reconstruction of the passing of nN messages in

the the full message passing algorithm.

The message passing term completely changes the statis-

tical properties of the reconstruction, and it also makes the

algorithm amenable to analysis by a technique we call State

Evolution. Such analysis shows that the algorithm converges

rapidly, much more rapidly than any known result for the

IST algorithm. Furthermore, it allows us to make a variety

of theoretical predictions about performance characteristics of

the algorithm which are much stronger than any predictions

available for competing methods.

B. State Evolution

In the following we will assume that the columns of A are

normalized to unit Euclidean length. We define the effective

variance

σ(xt)
2 ≡ v +

1

Nδ
||xt − s0||

2
2 . (4)

The effective variance combines the observational variance

v with an additional term 1
Nδ

||xt − s0||
2
2 that we call the

interference term. Notice that v is merely the squared recon-

struction error of the naive ‘matched filter’ for the case where

s0 contains all zeros and a single nonzero in a given position

i and the matched filter is just the i-th column of A.

The interference term measures the additional error in

estimating a single component of so,i that is caused by the

many small errors in other components j 6= i. The formula

states that the effective variance at iteration t is caused by the

observational noise (invariant across iteration) and the current

errors at iteration t (changing from iteration to iteration). The

interference concept is well known in digital communications,

where phrases like mutual access interference are used for

what is algebraically the same phenomenon.

We will let σ̂t denote any estimate of σt, and we will assume

that σ̂t ≈ σt; see [1] for more careful discussion. Suppose that

the nonlinearity takes the form ηt( · ) = η( · ; θt) where θ is

a tuning parameter, possibly depending on σ̂t; see below for

more. Let F denote the collection of CDFs on R and F be the

CDF of s0(i). Define the MSE map Ψ : R+ ×R
3 ×F 7→ R

+
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by

Ψ(σ; v, δ, θt, F ) = v +
1

δ
E

{[
ηt

(
X + σ Z

)
− X

]2}

where X has distribution F and Z ∼ N (0, 1) is independent

of X . We suppose that a rule Θ(σ; v, δ, θ, F ) for the update

of θt is also known.

Definition I.1. The state is a 5-tuple S = (σ; v, δ, θ, F ); state

evolution is the evolution of the state by the rule

(σ2
t ; v, δ, θt, F ) 7→ (Ψ(σ2

t ); v, δ, θt+1, F )

t 7→ t + 1

As the parameters (v, δ, F ) remain fixed during evolution, we

usually omit mention of them and think of state evolution

simply as the iterated application of Ψ and Θ:

σ2
t 7→ σ2

t+1 ≡ Ψ(σ2
t )

θt 7→ θt+1 ≡ Θ(St)

t 7→ t + 1

The initial state is taken to have σ2
0 = v + ||s0||

2
2/Nδ.

As described, State Evolution is a purely analytical con-

struct, involving sequential application of rules Ψ and Θ. The

crucial point is to know whether this converges to a fixed point,

and to exploit the properties of the fixed point. We expect that

such properties are reflected in the properties of the algorithm.

To make this precise, we need further notation.

Definition I.2. State-Conditional Expectation. Given a func-

tion ζ : R4 7→ R, its expectation in state St is

E(ζ|St) = E
{
ζ(U, V, W, η(U + V + W ))

}
,

where U ∼ F , V ∼ N(0, v) and W ∼ N(0, σ2
t − v).

Different choices of ζ allow to monitor the evolution of

different metrics under the AMP algorithm. For instance, ζ =
(u − x)2 corresponds to the mean square error (MSE). The

False Alarm Rate is tracked by ζ = 1{η(v+w) 6=0} and the

Detection Rate by ζ = 1{η(u+v+w) 6=0}.

Definition I.3. Large-System Limits. Let ζ : R
4 7→ R be

a function of real 4-tuples (s, u, w, x). Suppose we run the

iterative algorithm A for a sequence of problem sizes (n, N)
at a the value (v, δ, F ) of underlying implicit parameters,

getting outputs xt, t = 1, 2, 3, . . . The large-system limit

ls.lim(ζ, t,A) of ζ at iteration t is

ls.lim(ζ, t,A) = p.limN→∞〈ζ(so,i, ut,i, wo,i, xt,i)〉N ,

where 〈 · 〉N denotes the uniform average over i ∈
{1, . . . , N} ≡ [N ], and p.lim denotes limit in probability.

Hypothesis I.4. Correctness of State Evolution for AMP.

Run an AMP algorithm for t iterations with implicit state

variables v, δ, F . Run state evolution, obtaining the state St at

time t. Then for any bounded continuous function ζ : R4 7→ R

of the real 4-tuples (s, u, w, x), and any number of iterations

t,

1) The large-system limit ls.lim(ζ, t,A) exists for the ob-

servable ζ at iteration t.
2) This limit coincides with the expectation E(ζ|St) com-

puted at state St.

State evolution, where correct, allows us to predict the

performance of AMP algorithms and tune them for optimal

performance. In particular, SE can help us to choose the non-

linearities {ηt} and their tuning. The objective of the rest of

this paper is twofold: (1) Provide evidence for state evolution;

(2) Describe some guidelines towards the choice of the non-

linearities {ηt}.

II. AMP-BASED ALGORITHMS

Already in [1] we showed that a variety of algorithms

can be generated by varying the choice of η. We begin with

algorithms based on soft thresholding. Here ηt(x) = η(x; θt)
is given by the soft threshold function

η(x; θ) =






x − θ if θ < x,

0 if −θ ≤ x ≤ θ,

x + θ if x < −θ.

(5)

This function shrinks its argument towards the origin. Several

interesting AMP-Based algorithms are obtained by varying the

choice of the sequence {θt}t∈N.

A. AMP.M(δ)

The paper [1] considered the noiseless case v = 0 where

the components of so are iid with common distribution F that

places all but perhaps a fraction ǫ = ρ(δ) · δ, ρ ∈ (0, 1) of its

mass at zero. That paper proposed the choice

θt = τ(δ)σ̂t . (6)

where an explicit formula for τ(δ) is derived in the online

supplement [2]. As explained in that supplement, this rule has

a minimax interpretation, namely, to give the smallest MSE

guaranteed across all distributions F with mass at zero larger

than or equal to 1 − ǫ.

B. AMP.T(τ)

Instead of taking a worst case viewpoint, we can think of

specifically tuning for the case at hand. Consider general rules

of the form:

θt = τ σ̂t . (7)

Such rules have a very convenient property for state evolution;

namely, if we suppose that σ̂t ≡ σt, we can redefine the

state as (σ2
t ; v, δ, τ, F ), with (v, δ, τ, F ) invariant during the

iteration, and then the evolution is effectively one-dimensional:

σ2
t 7→ σ2

t+1 ≡ Ψ(σ2
t ). The dynamics are then very easy to

study, just by looking for fixed points of a scalar function Ψ.

(This advantage is also shared by AMP.M(δ), of course).

While the assumption σ̂t ≡ σt does not hold, strictly

speaking, at any finite size, it will hold asymptotically in the

large system limit for many good estimators of the effective

variance.



It turns out that, depending on F and δ, different values

of τ lead to very different performance characteristics. It is

natural to ask for the fixed value τ = τ∗(v, δ, F ) which, under

state evolution gives the smallest equilibrium MSE. We have

developed software to compute such optimal tuning; results

are discussed in [5].

C. AMP.A(λ)

In much current work on compressed sensing, it is desired

to solve the ℓ1-penalized least squares problem

minimize
1

2
‖y − Ax‖2

2 + λ‖x‖1. (8)

In different fields this has been called Basis Pursuit denoising

[6] or Lasso [7]. Large scale use of general convex solvers is

impractical when A is of the type interesting from compressed

sensing, but AMP-style iterations are practical. And, surpris-

ingly an AMP-based algorithm can effectively compute the

solution by letting the threshold ‘float’ to find the right level

for solution of the above problem. The threshold recursion is:

θt+1 = λ +
θt

δ
〈η′(xt + A∗zt; θt)〉 . (9)

D. AMP.0

It can also be of interest to solve the ℓ1-minimization

problem

min
x

‖x‖1 subject to y = Ax. (10)

This has been called Basis Pursuit [6] in the signal processing

literature. While formally it can be solved by linear program-

ming, standard linear program codes are far too slow for many

of the applications interesting to us.

This is formally the λ = 0 case of AMP.A(λ). In fact it can

be advantageous to allow λ to decay with the iteration number

θt+1 = λt +
θt

δ
〈η′(xt + A∗zt; θt)〉 . (11)

Here, we let λt ↓ 0 as t → ∞.

E. Other Nonlinearities

The discussion above has focused entirely on soft thresh-

olding, but both the AMP algorithm and SE formalism make

perfect sense with many other nonlinearities. Some case of

specific interest include

• The Bayesian conditional mean: η(x) = E{s0|s0 + U +
V = x}, where U and V are just as in Definition I.2. This

is indeed discussed in the companion paper [3], Section

V.

• Scalar nonlinearities associated to various nonconvex op-

timization problems, such as minimizing ℓp pseudonorms

for p < 1.

III. CONSEQUENCES OF STATE EVOLUTION

A. Exponential Convergence of the Algorithm

When State Evolution is correct for an AMP-type algorithm,

we can be sure that the algorithm converges rapidly to its

limiting value – exponentially fast. The basic point was

shown in [1]. Suppose we are considering either AMP.M(δ)
or AMP.T(τ). In either case, as explained above, the state

evolution is effectively one-dimensional. Then the following

is relevant.

Definition III.1. Stable Fixed Point. The Highest Fixed Point

of the continuous function Ψ is

HFP(Ψ) = sup{m : Ψ(m) ≥ m}.

The stability coefficient of the continuously differentiable func-

tion Ψ is

SC(Ψ) =
d

dm
Ψ(m)

∣∣∣∣
m=HFP(Ψ)

.

We say that HFP(Ψ) is a stable fixed point if 0 ≤ SC(Ψ) < 1.

Let µ2(F ) =
∫

x2dF denote the second-moment functional

of the CDF F .

Lemma III.2. Let Ψ( · ) = Ψ( · ; v, δ, F ). Suppose that

µ2(F ) > HFP(Ψ). The sequence of iterates σ2
t defined by

starting from σ2
0 = µ2(F ) and σ2

t+1 = Ψ(σ2
t ) converges:

σ2
t → HFP(Ψ), t → ∞.

Suppose that the stability coefficient 0 < SC(Ψ) < 1. Then

(σ2
t − HFP(Ψ)) ≤ SC(Ψ)t · (µ2(F ) − HFP(Ψ)).

In short, when F and v are such that the highest fixed point

is stable, state evolution converges exponentially fast to that

fixed point.

Other iterative thresholding algorithms have theoretical

guarantees which are far weaker. For example, FISTA [8] has

a theoretical guarantee of O(1/t2), while SE evolution implies

O(exp(−ct)).

B. Phase Transitions For ℓ1 minimization

Consider the special setting where the noise is absent wo =
0 and the object so obeys a strict sparsity condition; namely

the distribution F places a fraction ≥ 1− ǫ of its mass at the

origin; and thus, if so is iid F , approximately N · (1 − ǫ) of

its entries are exactly zero.

A phase transition occurs in this setting when using ℓ1
minimization for reconstruction. Namely, if we write ǫ = ρ · δ
then there is a critical value ρ(δ) such that, for ǫ < ρ(δ) ·δ, ℓ1
minimization correctly recovers so, while for ǫ > ρ(δ) · δ, ℓ1
minimization fails to correctly recover so, with probability ap-

proaching one in the large size limit. State Evolution predicts

this phenomenon, because, for ǫ < ρSE(δ) ·δ, the highest fixed

point is at σ2
t = 0, while above this value, the highest fixed

point is at σ2
t > 0. Previously, the exact critical value ρ(δ) at

which this transition occurs was computed by combinatorial

geometry, with a rigorous proof; however, it was shown in [1]

that the algorithm AMP.M(δ) has ρ(δ) = ρSE(δ), validating

the correctness of SE.
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Fig. 1. Observables versus iteration, and predictions by state evolution. Panels
(a)-(d): MSENZ, MSE, MDR, FAR. Curve in red: theoretical prediction. Curve
in blue: mean observable. For this experiment, N = 5000, δ = n/N = .3.
F = 0.955δ0 + 0.045δ1

C. Operating Characteristics of ℓ1 penalized Least-squares.

State evolution predicts the following relationships between

AMP.T(τ) and BPDN(λ). AMP.T(τ) has, according to SE,

for its large-t limit an equilibrium state characterized by its

equilibrium noise plus interference level σ∞(τ). In that state

AMP.T(τ) uses an equilibrium threshold θ∞(τ). Associated

to this equilibrium NPI and Threshold, there is an equilibrium

detection rate

EqDR(τ) = P{η(U + V + W ; θ∞) 6= 0}

where U ∼ F , V is N(0, v) and W is N(0, σ2
∞ − v), with

U ,V ,W independent. Namely, for all sufficiently large τ (i.e

τ > τ0(δ, F, v)) we have

λ = (1 − EqDR(τ)/δ) · θ∞(τ);

this creates a one-one relationship λ ↔ τ(λ; v, δ, F ) cal-

ibrating the two families of procedures. SE predicts that

observables of the ℓ1-penalized least squares estimator with

penalty λ will agree with the calculations of expectations for

AMP.T(τ(λ; v, δ, F )) made by state evolution.

IV. EMPIRICAL VALIDATION

The above-mentioned consequences of State Evolution can

be tested as follows. In each case, we can use SE to make

a fixed prediction in advance of an experiment and then we

can run a simulation experiment to test the accuracy of the

prediction.

A. SE Predictions of Dynamics of Observables

Exponential convergence of AMP-based algorithms is

equivalent to saying that a certain observable – Mean-squared

error of reconstruction – decays exponentially in t. This is but

one observable of the algorithm’s output; and we have tested

not only the SE predictions of MSE but also the SE predictions

of many other quantities.

In Figure 1 we present results from an experiment with

signal length N = 5000, noise level v = 0, indeterminacy

δ = n/N = 0.30 and sparsity level ǫ = 0.045. The distribution

F places 95.5% of its mass at zero and 4.5% of its mass at

1. the fit between predictions and observations is extremely

good – so much so that it is hard to tell the two curves apart.

For more details, see [2].

B. Phase Transition Calculations

Empirical observations of Phase transitions of ℓ1 minimiza-

tion and other algorithms have been made in [4], [9], and we

follow a similar procedure. Specifically, to observe a phase

transition in the performance of a sparsity-seeking algorithm,

we perform 200 reconstructions on randomly-generated prob-

lem instances with the same underlying situation (v = 0, δ,

F ) and we record the fraction of successful reconstructions in

that situation. We do this for each member of a large set of

situations by varying the undersampling ratio δ and varying

sparsity of F . More specifically, we define a (δ, ρ) phase

diagram [0, 1] and consider a grid of sites in this domain with

δ = .05, .10, . . . and ρ = .03, .06, . . . , .99. For each δ, ρ pair

in this grid, we generate random problem instances having a

k-sparse solution s0, i.e. a vector having k ones and n − k
zeros; here k = ρ · δ · N .

Defining success as exact recovery of s0 to within a small

fixed error tolerance, we define the empirical phase transition

as occurring at the ρ value where the success fraction drops

below 50%. For more details, see [2].

Figure 2 depicts the theoretical phase transition predicted

by State Evolution as well as the empirical phase transition

of AMP.M(δ) and a traditional iterative soft thresholding

algorithm. In this figure N = 1000, and AMP.M(δ) was run

for T = 1, 000 iterations. One can see that empirical phase

transition of AMP.M(δ) matches closely the state evolution

prediction. One can also see that the empirical phase transition

of iterative soft thresholding, without the message passing

term, is substantially worse than that for the AMP-based

method with the message passing term.

C. Operating Characteristics of ℓ1 penalized Least-squares

The phase transition study gives an example of SE’s accu-

racy in predicting AMP-based algorithms in a strictly sparse

setting, i.e. where only a small fraction of entries in s0 are

nonzero. For a somewhat different example, we consider the

generalized Gaussian family, i.e. distribution functions Fα with

densities

fα(x) = exp(−|x|α)/Zα.

In the case α = 1 there is a very natural connection with ℓ1-

minimization algorithms, which then become MAP estimation

schemes. In the case α = 1, an iid realization from fα,

properly rescaled to unit ℓ1 norm, will be uniformly distributed

on the surface of the ℓ1 ball, and in that sense this distribution

samples all of the ℓ1 ball, unlike the highly sparse distributions

used in the phase transition study, which sample only the low-

dimensional faces. When α < 1, the sequence is in a sense
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Fig. 2. Phase transitions of reconstruction algorithms. Blue Curve:
Phase Transition predicted by SE; Red Curve empirical phase transition
for AMPM(δ) as observed in simulation; Green Curve, empirical phase
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more sparse than when α = 1. The case α = .7 has been found

useful in modelling wavelet coefficients of natural images.

We considered exponents α ∈ {0.35, 0.50, 0.65, 0.75, 1.0}.

At each such case we considered incompleteness ratios δ ∈
{0.1, 0.2, 0.3, 0.4, 0.5}. The set of resulting (α, δ) pairs gives

a collection of 25 experimental conditions. At each such

experimental condition, we considered 5 or so different values

of λ for which SE-predicted MSE’s were available. In total,

simulations were run for 147 different combinations of α, δ
and λ. At each such combination, we randomly generated 200

problem instances using the problem specification, and then

computed more than 50 observables of the solution. In this

subsection, we used N = 500.

To solve an instance of problem (8) we had numerous

options. Rather than a general convex optimizer, we opted to

use the LARS/LASSO algorithm.

Figure 3 shows a scatterplot comparing MSE values for

the LARS/LASSO solution of (8) with predictions by State

Evolution, as decribed in section III.C. Each data point cor-

responds to one experimental combination of α, δ, λ, and the

datapoint presents the median MSE across 200 simulations

under that combination of circumstances. Even though the

observed MSE’s vary by more than an order of magnitude, it

will be seen that the SE predictions track them accurately. It

should be recalled that the problem size here is only N = 500,

and that only 200 replications were made at each experimental

situation. In contrast, the SE prediction is designed to match

large-system limit. In a longer paper, we will consider a much

wider range of observables and demonstrate that, at larger

problem sizes N , we get successively better fits between

observables and their SE predictions.
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