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1. INTRODUCTION

The focus of this article is to find approximate isomorphisms, or alignments, between
large graphs. This problem is motivated by applications in several areas including biol-
ogy, computer vision, and natural language processing. For example, the study of pro-
tein interactions across different species has made network alignment a common topic
in computational biology [Flannick et al. 2006, 2008; Klau 2009; Kuchaiev et al. 2009;
Singh et al. 2007, 2008]. In computer vision, network alignment is used for match-
ing images [Conte et al. 2004; Schellewald and Schnörr 2005], and in the ontology
alignment, it is used for finding correspondence between different representations of a

database [Lacoste-Julien et al. 2006; Melnik et al. 2002; Šváb 2007].
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Fig. 1. The setup for network alignment problem. The goal is to maximize the number of overlaps in any
matching subset of L and the weight of the matching.

The formulation of the problem studied in this article is a variation of classic
algorithmic problems: graph isomorphism, maximum common subgraph, and the
quadratic assignment problem. Because of the intractability of the problem, our focus
will be on practical heuristics. We will give a quick review of the existing results and
their applications. Then, we will present two message passing algorithms that yield
near optimal results in practice determined by comparison to an upper bound from a
linear program. Both algorithms easily work on graphs with 100,000–1,000,000 ver-
tices. Because our algorithms use message passing, they can be parallelized on MapRe-
duce and bulk-synchronous processing architectures for even larger problems.

1.1. Problem Definition

Consider two sets of vertices VA = {1, 2, . . . , n} and VB = {1′, 2′, . . . , m′}. Let A =
(VA, EA) and B = (VB, EB) be two undirected graphs with their respective vertex
and edge sets. Let L be a bipartite graph between the vertices of A and B, formally
L = (VA ∪ VB, EL). Our overall goal is to find a matching between A and B using only
edges from L. In other words, we seek a subset of EL such that no two edges share a
common endpoint. Under such a matching M, we say that an edge (i, j) ∈ EA is over-
lapped with (i′, j′) ∈ EB if (i, i′) and (j, j′) belong to M. See Figure 1 for an illustration.

More generally, and following Singh et al. [2007], we will study the case where the
edges between A and B are weighted. That is, each edge e = (k, k′) ∈ EL has a non-
negative weight we indicating a measure of similarity between vertices k and k′. In
these cases, a matching has a weight that is equal to the sum of the weights of edges
in the matching.

Definition 1.1. Given graphs A, B and L, as well as the weight function w, find a
matching M maximizing a linear combination of the matching weight and the number
of overlapped edges.

This problem is a generalization of several NP-complete problems including the
densest subgraph problem as well as the maximum common subgraph problem. The
latter is also known to be APX-hard.

1.2. Our Contribution

In this article, we provide

(1) two novel message passing algorithms: NetAlignMP and NetAlignMP++ for the
problem based on max-product belief propagation (Section 5);

(2) an extensive comparison between NetAlignMP, NetAlignMP++ and two of the
best existing algorithms on two synthetic matching problems (Section 7), two
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Table I. Notation for the Paper

A, S capital letters are sets and graphs

A, B, S bold capitals are matrices

x, w lowercase bold letters are vectors

Aij, S[ ii′, jj ′] subscripts or brackets denote matrix entries

(i, i′) , ii′ edges in L

ii′ � jj ′ squares in EL × EL

1n n by 1 vector of all ones

Ax , AB standard vector and matrix products

A • B =
∑

ij AijBij matrix inner product

bioinformatics problems, and three large ontology alignment problems (Section 8)
including a multilingual problem with a known alignment.

We will show that our algorithms are fast, robust, and yield near-optimal1 objec-
tive values for a large family of graphs, including real datasets. In one of the cases
where there is a known alignment produced by experts, our algorithms recover a large
fraction of the correct matches quickly, without any tweaking.

In evaluating our algorithms on synthetic datasets, we will observe that for both
sparse and dense cases, our algorithms produce near-optimal solution (using the the-
oretical upper bounds). As the number of edges in L increases, our approaches out-
perform existing methods by a factor of 2 or more. On the other hand, when there
are only a small number of potential matches in L, our results nearly ties with Klau’s
algorithm [Klau 2009].

All of our algorithms are implemented in MATLAB and the software and datasets
for this paper are available to public from the web page http://www.cs.purdue.edu
/homes/dgleich/codes/netalign.
We also include all the experimental code to reproduce the figures in this paper. Using
our network alignment MATLAB package, solving the network alignment problem in
Figure 1 is done with the following code.

load('data/example_overlap.mat'); % load the data
[S,w,li ,lj]= netalign_setup(A,B,L); % setup the quadratic program
x=netalignmp(S,w,1,1,li ,lj); % call our netalignmp
[mi ma mb]= mwmround(x,li ,lj); % round to matching

This manuscript is an extension of our previous paper [Bayati et al. 2009] and in-
cludes a full derivation of our belief propagation algorithm, as well as a new algorithm.
It also includes a more thorough experimental evaluation.

2. A MATHEMATICAL PROGRAM FOR NETWORK ALIGNMENT

In this section, we adapt standard mathematical programming ideas to formulate the
network alignment as a quadratic program (QP). Let us start by introducing some
notation in Table I.

Given A = (VA, EA), B = (VB, EB), and L = (VA ∪ VB, EL), our goal is to produce
a matching M to maximize a linear combination of overlap and matching weight. For
each edge of EL we will use the notations (i, i′) and ii′ interchangeably. Each matching
in EL is represented by a zero-one vector by assigning a variable xii′ to each ii′ ∈ EL,

1For the families of graphs that we study, we have a theoretical upper bound provided by linear program-
ming for the objective function. Hence, we can check the quality of all algorithms’ solutions.
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which is equal to 1 if ii′ is in the matching or 0 if it is not. For convenience of notation,
we define an ordering OL over the set EL. We will use the same ordering in vector
representation of the edges. Note that xii′ is only defined for edges in L, and |EL| ≪
|VA| · |VB|. This differs from many other formulations of the problem where the set L
is implicitly the full bipartite collection.

Next, we define a zero-one matrix S of size |EL|×|EL| indexed by edges of EL. Denote
the entry at row ii′ and column jj ′ by S[ ii′, jj ′], where

S[ ii′, jj ′] =

{

1 if (i, j) ∈ EA and (i′, j′) ∈ EB

0 otherwise.

We also say that two edges ii′ and jj ′ in EL form a square if S[ ii′, jj ′] = 1 and denote it
by ii′ � jj ′. In other words, S is the indicator matrix of all squares.

Let x be the indicator vector for a matching. The total number of overlapped
edges is

(1/2)xTSx =
∑

ii′�jj ′

xii′xjj ′ .

Moreover, let wii′ be the weight of each ii′ and denote the vector of all weights by w. The
constraint that x must be a valid matching can be written by set of linear inequalities.
For all vertices (i, i′) ∈ L,

∑

j′:(ij′)∈EL

xij′ ≤ 1,
∑

j:(ji′)∈EL

xji′ ≤ 1 xii′ ∈ {0, 1}.

To write these constraints more compactly, define C to be the binary incidence matrix
of graph L of dimensions |VL| × |EL|. Then the matching constraints can be written as
Cx ≤ 1|VL|.

Using these definitions, the network alignment problem is an integer quadratic pro-
gram (QP)

maximize
x

αwTx + β/2xTSx

subject to Cx ≤ 1n+m, xii′ ∈ {0, 1},
(NAQP)

where α and β are arbitrarily chosen nonnegative constants that define the trade-
off between the similarity and overlap objectives. When α = 0 and β = 1, then the
program solves a special case we call the overlap graph matching problem or the pure
overlap problem. When α = 1 and β = 0, it solves the maximum weight matching
problem. Figure 2 shows an example of the network alignment problem and an explicit
construction of the matrices S and C.

A general integer QP is an NP-hard problem. In fact, even a real-valued QP with an
indefinite Hessian matrix is an NP-hard problem. Because the matrix S is indefinite,
we cannot easily find the global maximizer even after relaxing the constraints.

This derivation is closely related to what is done by Klau [2009], and also related
to standard statement of a quadratic assignment problem [Burkard et al. 2012]. The
primary difference is that we specialize on the case when only a small subset of possible
matches is present. We derive a few additional relationships to the standard case in
the discussion of the IsoRank algorithm (Section 4.1).
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Fig. 2. A small sample problem and the data for the QP formulation.

3. APPLICATIONS

Network alignment is deeply intertwined with many classical computational problems
such as graph isomorphism, quadratic assignment, maximum common subgraph, and
maximum clique. For a survey of these connections, see Conte et al. [2004]. In this
section, we briefly highlight the key applications of network alignment that appear in
pattern recognition, ontology alignment and bioinformatics.

3.1. Pattern Recognition

Network alignment for pattern recognition involves identifying a small model graph
within a large scene graph. The model graph typically represents the desired pattern—
a rooftop, a face, a person—and the scene graph describes the entire space—possibly a
picture. The assumptions are often that the data are noisy and the goal is not an exact
subgraph isomorphism. Again, Conte et al. [2004] is a good starting point to explore
this literature. Recent work includes trying to learn good scores w to avoid using the
quadratic matching formulations [Caetano et al. 2009].
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3.2. Ontology Matching

An ontology is a set of statements, which connect subjects to objects with verbs. An
elementary example is an ontology describing the authors of this article:

subject verb object

David Gleich wrote Sparse Network Alignment

Mohsen Bayati wrote Sparse Network Alignment

Sparse Network Alignment is an Academic Manuscript

Academic Manuscript is a Paper

and so on. An ontology is a flexible data description format, and a fundamental problem
is how to align two ontologies about the same data. Suppose that Citeseer and DBLP
expose their networks of papers as an ontology, the problem of ontology alignment
is to figure out the correspondence between Citeseer papers and DBLP papers. This
problem has been studied extensively. See Hu et al. [2005, 2008], Ehrig and Staab
[2004], and Blondel et al. [2004] for a few different approaches to these problems. All
of these approaches utilize some heuristic approach for a network alignment problem.

3.3. Finding Common Pathways in Biological Networks

Network alignment is becoming a small industry within bioinformatics. Broadly speak-
ing, this emergence is due to the rapid increase in high quality data about protein in-
teractions. A protein-protein interaction (PPI) graph has proteins as vertices and edges
that connect proteins known to interact. Suppose that A and B are two PPI networks,
and we compute an alignment between them. The alignment produces a one-to-one
mapping between proteins in A and proteins in B. If the proteins are from two differ-
ent species, then the alignment hints at similar functions for the two proteins, or two
groups of proteins. Alternatively, we may know information about proteins in A. An
alignment with B suggests what information about A might apply to the proteins in B.

Due to the wide interest in this problem, several tools have been developed for
aligning protein-protein interaction networks. These include NetworkBLAST [Sharan
et al. 2005], MAWISH [Koyutürk et al. 2006] NetAlign [Liang et al. 2006], Græm-
lin [Flannick et al. 2006, 2008], IsoRank [Singh et al. 2007, 2008], GRAAL [Kuchaiev
et al. 2010], Natalie [Klau 2009], Natalie 2.0 [El-Kebir et al. 2011] and the algorithm
of Bradde et al. [2010]. Some of these tools have extensions for aligning more than two
networks, but we focus on the two network case here. We review the IsoRank algo-
rithm in detail in Section 4.1. Alternative approaches are proposed by Berg and Lässig
[2006] and Kuchaiev et al. [2009].

4. EXISTING ALGORITHMS FOR NETWORK ALIGNMENT

In this section, we review existing algorithms that produce good solutions for the net-
work alignment.

4.1. IsoRank Algorithm

Singh et al. [2007] proposed IsoRank to approximately solve NAQP when L is a com-
plete bipartite graph. In this section, we present IsoRank and our variation SpaIso-
Rank, which is more efficient when L is sparse.
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The main idea of IsoRank algorithm is to approximate the objective of NAQP without
direct concern for the matching constraints. Let A and B be the adjacency matrices for
graphs A and B, and also let DA and DB be the diagonal matrices of their degrees,
respectively. IsoRank solves for the matrix Z that satisfies:

γ ATDA
︸ ︷︷ ︸

PT

Z DBB
︸ ︷︷ ︸

Q

+(1 − γ )W = Z.

Here Wi,j = wi,j is the weight function on edges in L represented as a matrix when
L is the complete bipartite graph. The intuition is that each entry Zi,i′ is a real num-
ber based on a weighted average of all neighboring values Zj,j′ where (i, j) ∈ EA and
(i′, j′) ∈ EB. With this heuristic solution Z, they compute a binary solution X by solv-
ing a maximum weight matching problem where the weights are from Z. We discuss
rounding schemes in more detail in Section 6.

Now we discuss our extensions of IsoRank algorithm for the case when L is sparse.
This extension rests on the Kronecker product. Recall that the Kronecker product of
an m × n matrix A and another matrix B is defined by

A ⊗ B =

⎛

⎜
⎝

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

⎞

⎟
⎠ . (1)

When L is the complete bipartite graph, then the matrix indicating potential overlaps,
or squares, is S = B ⊗ A (up to an arbitrary permutation based on the edge order OL).
Moreover, the mixed product property states that

PTZQ = (Q ⊗ P) vec(Z),

where vec(Z) is a column-wise vector representation of a matrix:

vec(Z) =

⎡

⎢
⎢
⎢
⎣

Ze1

Ze2
...

Zen

⎤

⎥
⎥
⎥
⎦

.

Note that Q ⊗ P = diag[ S1|EL|] (B ⊗ A).
Thus, the following PageRank problem is equivalent to IsoRank when L is the com-

plete bipartite graph, but handles sparse L as well:

γ DSSTz + (1 − γ )w = z.

We compute z using a standard algorithm for PageRank. At each iteration, we employ
one of two rounding schemes to produce a matching. The first just uses the vector z(k)

as the weight on each edge in L and solves a bipartite max-weight matching prob-
lem. The second uses the vector αw + (β/2)Sz(k) as the weights on L and more closely
mirrors the original objective function.
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Algorithm SpaIsoRank

INPUT S, L, damping (nonnegative) parameter γ < 1, ε, niter, rounding type ∈ {1, 2}

1 v = w/

(

1T
|EL|

w
)

2 d = S1|EL|, P = diag[ d]−1 S

3 z(0) = v, δ = ε + 1
4 for k = 1 to niter unless δ < ε

5 z(k) = γ PTz(k−1) + (1 − γ )v

6 δ =

∥
∥
∥z(k) − z(k−1)

∥
∥
∥

7 if rounding type is 1

8 x(k) = bipartite match(L, z(k))

9 obj(k) = objective(x(k))
10 else if rounding type is 2

11 x(k) = bipartite match(L, αw + (β/2)Sz(k))

12 obj(k) = objective(x(k))
13 end
14 end

15 return x(k) with the highest value of obj(k)

4.2. Linear Program Formulations

We now review a series of linear programming (LP) relaxations for network align-
ment. These ideas originated in mixed integer translations of the quadratic assign-
ment problem [Lawler 1963], and subsequent tightened versions by that were orig-
inally described by Frieze and Yadegar [1983] and Adams and Johnson [1994]. The
adaptation to network alignment appeared in Klau [2009].

In the first relaxation, Lawler [1963], converted NAQP into a mixed integer linear
program. To do so, replace each product xii′xjj ′ with a new variable yii′,jj ′ , and add
constraints yii′,jj ′ ≤ xii′ , and yii′,jj ′ ≤ xjj ′ . These constraints enforce yii′,jj ′ ≤ xii′xjj ′ when
xii′ and xjj ′ are binary. We also add symmetry constraints yii′,jj ′ = yjj ′,ii′ . Notice that
with the symmetry constraints the constraints yii′,jj ′ ≤ xjj ′ can be dropped.

Before writing the new integer program, let us define YS to be a matrix with the
same dimension as S where

YS[ ii′, jj ′] =

{

yii′,jj ′ if S[ ii′, jj ′] = 1

0 Otherwise.

Thus, we arrive at:

maximize
x,y

αwTx +
β
2

∑

ii′
∑

ii′�jj ′ yii′,jj ′

subject to Cx ≤ 1n+m, xii′ ∈ {0, 1},

yii′,jj ′ ≤ xii′ for all ii′ � jj ′,

YS = YT
S

(NAILP)

as a mixed-integer linear program to solve the network alignment problem
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In contrast with the quadratic program, we can relax the binary constraint on
NAILP and get an efficient algorithm. After we write

∑

ii′
∑

ii′�jj ′ yii′,jj ′ as S • YS, the

relaxed program is

maximize
x,y

αwTx +
β
2 S • YS

subject to Cx ≤ 1n+m, xii′ ∈[ 0, 1] ,

yii′,jj ′ ≤ xii′ for all ii′ � jj ′,

YS = YT
S

. (NARLP)

It admits a polynomial-time solution with an appropriate linear program solver.

Remark 4.1. The relaxation NARLP is advantageous because it yields an upper
bound on the objective value of the network alignment problem. Furthermore, solving
NARLP with α = 0, β = 1 allows us to get an upper bound on the maximum possible
overlap between two networks.

4.3. Klau’s Iterative Matching Relaxation

Klau [2009] constructed an iterative algorithm to approximate NAQP. The key com-
ponents of this algorithm are a tighter LP relaxation of NAQP and the Lagrangian
decomposition of the symmetry constraints. We first explain the Lagrangian decompo-
sition for NARLP and then show the tightened LP. In the Lagrangian decomposition,

we drop all the symmetry constraints YS = YT
S by adding penalty terms of the form

uii′,jj ′(yii′,jj ′−yjj ′,ii′). Here uii′,jj ′ ’s are Lagrange multipliers, a set of n2−n new variables.
Following this idea, we arrive at

maximize
x,y

αwTx +
β
2 S • YS + US • (YS − YT

S)

subject to Cx ≤ 1n+m, xii′ ∈[ 0, 1] ,

yii′,jj ′ ≤ xii′ for all ii′ � jj ′.

(NALLP)

When YS = YT
S, the two linear programs NARLP and NALLP are equivalent. There-

fore, for any fixed US the optimum solution of NALLP is an upper bound for the ob-
jective of NARLP, which is itself an upper bound for the network alignment problem.
Standard Lagrangian theory dictates that with the optimal Lagrange multipliers US,
the two LP’s have the same optimum. The advantage of using NALLP is that the
solution is integral for any fixed US, and moreover, we can compute it by solving a
max-weight matching problem. Let us explain why that happens. For a fixed U, note
that the objective decouples between x and y:

α
∑

ii′

wii′xii′ +
β

2

∑

ii′�jj ′

yii′,jj ′ +
∑

ii�jj ′

uii′,jj ′(yii′,jj ′ − yjj ′,ii′)

= α
∑

ii′

wii′xii′ +
∑

ii′�jj ′

yii′,jj ′(
β

2
+ uii′,jj ′ − ujj ′,ii′).

Because yii′,jj ′ ≤ xii′ , the optimum is

yii′,jj ′ =

{

0 β
2 + uii′,jj ′ − ujj ′,ii′ < 0

xii′ otherwise.
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Therefore, let

w̄ii′ = αwii′ +
∑

ii′�jj ′

max{0,
β

2
+ uii′,jj ′ − ujj ′,ii′}.

Then, the solution of NALLP can be found by solving the following max-weight-
matching problem:

maximize
x

w̄Tx

subject to Cx ≤ 1n+m, xii′ ∈ {0, 1}.

Thus, for any fixed Lagrange multipliers, we can solve NALLP as a single max-weight
matching problem. In effect, we have grouped the objective function of NALLP into
pieces where yii′,jj ′ is completely determined by xii′ . Additionally, note that we if uii′,jj ′ −
ujj ′,ii′ = 0, then we get an especially simple mean of upper-bounding the overlap with
a single max-weight matching.

While these relaxations give upper bounds on the objective, there is often a large
gap between the upper bound and the integer solution. Frieze and Yadegar [1983] and
Adams and Johnson [1994] propose tightened LPs for the quadratic assignment prob-
lem. Klau’s algorithm adapts these improvements to the network alignment problem.
Notice that in both NAILP and NARLP

∑

j

yii′,jj ′ ≤
∑

j

xjj ′ ≤ 1,
∑

j′

yii′,jj ′ ≤
∑

j′

xjj ′ ≤ 1. (2)

for any fixed ii′. This means that row ii′ of YS (denoted by YS[ ii′, :]) should satisfy the

matching constraint C
(

YS[ ii′, :]
)T

≤ 1n+m. However, when the symmetry constraints
are removed, the inequalities (2) may be violated. The tightened LP re-adds these
constraints:

maximize
x,y

αwTx +
β
2 S • YS + US • (YS − YT

S)

subject to Cx ≤ 1n+m, xii′ ∈[ 0, 1] ,

yii′,jj ′ ≤ xii′ for all ii′ � jj ′,

C
(

YS[ ii′, :]
)T

≤ 1n+m for all ii′

(NATLP)

This tighter LP still can be solved using a MWM algorithm. Like in NALLP, yii′,jj ′ can
be grouped by ii′. Now the term

max
y

∑

ii′�jj ′

yii′,jj ′(
β

2
+ uii′,jj ′ − ujj ′,ii′)

equals xii′ times the solution of a small MWM problem

maximize
YS[ii′ ,:]

YS[ ii′, :]
[

β
2 1T

|EL| + US[ ii′, :] −UT
S[ ii′, :]

]T

subject to C
(

YS[ ii′, :]
)T

≤ 1n+m, yii′,jj ′ ∈ {0, 1}

. (3)

Klau’s final algorithm is an iterative procedure that uses a subgradient algorithm to
optimize US (step 8 in the algorithm). Each step of the subgradient method involves
solving NATLP for a new US. These subproblems are solved by solving |EL| small
max-weight matching problems for (3) and then a single large max-weight matching
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problem for NATLP. Because each iteration of this algorithm calls many max-weight
matching functions, we call this algorithm the matching relaxation or MR for short.

To state the algorithm compactly, we need a small bit of new notation. First, let
a ≤ b. Define

bound
a,b

z ≡ min(b, max(a, z)) =

⎧

⎨

⎩

a z < a

z a ≤ z ≤ b

b z > b

and let both bounda,b x and bounda,b A be defined element-wise. Also define

d, SL = maxrowmatch(S, L),

where each entry ii′ in d is the result of a MWM on all the other edges in row ii′

of S, with weights from the corresponding entries of S. Written formally, dii′ = bipar-
tite match({jj ′ : S[ ii′, jj ′] = 1)}). The matrix SL has a 1 for any edge used in the optimal
solution of the bipartite matching problem for a row.

Algorithm NetAlignMR

INPUT S, w, nonnegative damping parameters γ ≤ 1, niter, mstep, α, β

1 U(0) = 0
2 for k = 1 to niter

3 d, SL = maxrowmatch((β/2)S + U − UT , L)

4 w̄(k) = αw + d

5 x(k) = bipartite match(L,w̄(k))

6 obj(k) = αx(k)T
w + β/2x(k)T

Sx(k)

7 upper(k) = w̄(k)T
x(k)

8 F = U(k−1) − γ X(k)triu(SL) + γ tril(SL)TX(k)

9 U(k) = bound
−0.5,0.5

F

10 if upper(k) has not changed in mstep iterations,
11 set γ = γ /2
12 end
13 end

14 return x(k) with the largest value of obj(k)

Here triu(SL) (tril(SL)) represents the upper (lower) triangular part of SL. We re-
duce the subgradient step-length γ on a schedule determined by the change in the
upper-bound.

5. OUR RESULT: TWO MESSAGE-PASSING ALGORITHMS

In this section, we introduce two message-passing algorithms for network alignment.
Message passing has been remarkably successful in coding theory [Gallager 1963], ar-
tificial intelligence [Pearl 1988], solving constraint satisfaction problems [Mezard and
Zecchina 2002], structural biology [Yanover and Weiss 2002], computer vision [Tappen
and Freemand 2003], data clustering [Frey and Dueck 2007], and compressed sensing
[Donoho et al. 2009].
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More precisely, we will use a Belief Propagation (BP) approach. In general, BP works
by iteratively making local and greedy decisions. Decisions are updated by passing
messages between neighboring entities (nodes of the graph).

In what follows, we provide a quick overview of related BP approaches for the match-
ing problems, next we derive a BP-based algorithm that passes messages along the
edges of graph L and also among the squares (Section 5.3). These messages have an in-
tuitive representation, which we present in Section 5.4. Next, we state a matrix-based
version of the same algorithm (Section 5.5) in order to elucidate the data organization
and computation. Finally, we conclude by developing a more technical message passing
algorithm that includes additional constraints from NATLP (Section 5.6).

5.1. Related Work on BP and Graph Matching

BP approaches have been shown to correctly find the optimum solution for a variety
of optimization problems including maximum-weight matching [Bayati et al. 2005,
2007a; Sanghavi et al. 2011], and our algorithm for network alignment problem is in-
spired [Bayati et al. 2005, 2007a; Sanghavi et al. 2011]. The matching problem studied
in Bayati et al. [2005, 2007a] and Sanghavi et al. [2011], is a very special case of the
network alignment problem (when β = 0 in NAQP) that can be solved exactly in poly-
nomial time. The quadratic term that appears when β 	= 0 is NP hard to maximize and
requires special treatment, which we carry by defining a new factor graph on squares
and edges of the graph L. Recently, and independently from our work, Bradde et al.
[2010] introduced a completely different BP approach for aligning graphs in biology
using a sub-graph isomorphism representation of the problem. Bradde et al. [2010]
aims at finding an injective matching π : A → B (assuming A has less nodes than B).
In particular, in one version, the factor graph is the dense complete graph on all nodes
of A, which is not applicable to large graphs. In their second approach, Bradde et al.
[2010] relax the matching constraint and add an extra parameter p and a term pNπ

to the cost function where Nπ is the number of matched nodes of B that are matched
using π . As p → ∞ the number of violations of the matching constraint goes to zero.
Although both Bradde et al. [2010] and this work share the use of a BP approach, the
factor graph and the algorithms are different.

5.2. A Factor Graph Representation

To use BP, it is standard to define a probability distribution on the space of all match-
ings in L that assigns the highest probability to the matching that maximizes NAQP.
This matching is also called the maximum a posteriori assignment (MAP). We begin
with this construction.

Let VA = {1, . . . , n} and VB = {1′, . . . , m′}. For any square formed by the two edges ii′

and jj ′ of EL, we create a new vertex ii′jj ′, and denote the set of all such vertices by
VS, i.e.

VS =
{

ii′jj ′| ii′ and jj ′ form a square
}

.

Now, we assign a binary variable xii′ to each edge ii′ ∈ EL and a binary variable xii′jj ′

for each square ii′jj ′ ∈ VS. We also use notation xD for any subset D ⊂ EL ∪ VS

to denote the vector [ xd]d∈D. The set of neighbors of a node v in a graph G is
denoted by ∂v.

Next, we define a new graph (factor graph) that has the following two types of nodes:

(i) Variable Nodes. |EL| + |VS| nodes, one for each element of EL and VS. The binary
variables assigned to these nodes are denoted by (xEL

, xS) ∈ {0, 1}|EL|+|S|.
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Fig. 3. The graph (b) is the factor-graph representation of the network alignment problem in (a).

(ii) Function Nodes. |VA| + |VB| + |S| nodes of two types. One type is for enforcing the
integer constraints. That is for each vertex i ∈ VA (i′ ∈ VB), we define a function
node fi : {0, 1}|EL|+|S| → R (gi′ : {0, 1}|EL|+|S| → R) by:

fi
(

x∂fi

)

=

{

1
∑

ii′∈EL
xii′ ≤ 1

0 otherwise
for all i

gi′
(

x∂gi′

)

=

{

1
∑

ii′∈EL
xii′ ≤ 1

0 otherwise
for all i′ .

The neighbor operation used to define the left-hand vector x∂fi is implicitly defined
by the set of variables used on the right-hand side of the equation. In words, the
function node fi (gi′ ) enforces the matching constraint at i (i′)
Another type of function nodes check the validity of squares. For each square ii′ � jj ′

define a function node hii′jj ′ : {0, 1}|EL|+|S| → R:

hii′jj ′

(

x∂hii′jj ′

)

=

{

1 xii′jj ′ = xii′xjj ′

0 otherwise
for all (ii′, jj ′) ∈ VS .

In other words, hii′jj ′ guarantees that xii′jj ′ = 1 if and only if xii′ = xjj ′ = 1.

The edges of the factor graph are simply connecting each function node to the vari-
able nodes it acts on. For example each fi is connected to all variable nodes ii′ ∈ EL

and each hii′jj ′ is connected to ii′, jj ′ and ii′jj ′ in EL ∪ VS. Therefore, the factor graph
is bipartite.

Figure 3 shows an example of a graph pair A, B and their factor-graph representation
as described previously.

Now define the following probability distribution

p(xL, xS) =
1

Z

⎡

⎣

n
∏

i=1

fi(x∂fi)

m
∏

j=1

gj(x∂gj
)

∏

ijrs∈VS

hijrs(x∂hijrs
)

⎤

⎦ e
αwTxL+

β
2 1T

|S|
xS , (4)

where Z is just a normalization term to make p(xL, xS) a probability distribution. In
particular,

Z ≡
∑

(xL,xS)∈{0,1}|EL|+|S|

⎡

⎣

n
∏

i=1

fi(x∂fi)

m
∏

j=1

gj(x∂gj
)

∏

ijrs∈VS

hijrs(x∂hijrs
)

⎤

⎦ e
αwTxL+

β
2 1T

|S|
xS .
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Algorithm NetAlignMP

INPUT α, β, the set of squares VS, and the weighted bipartite graph L = (VA ∪ VB, EL),
and a damping parameter γ .

(1) At times t = 0, 1, . . ., each edge ii′ sends two messages of the form m
(t)
ii′→fi

and m
(t)
ii′→gi′

and

also sends one message of the form m
(t)
ii′→hii′jj ′

for any square ii′ � jj ′.

(2) Initialize messages to 0.

(3) For t ≥ 1, the messages in iteration t are obtained from the messages in iteration t − 1. In
particular for all ii′ ∈ EL

m
(t)
ii′→fi

=αwii′ −

(

max
k 	=i

[

m
(t−1)

ki′→gi′

]
)

+

+
∑

jj ′:ii′�jj ′

[ (
β

2
+ m

(t−1)

jj ′→hii′jj ′
)+ − (m

(t−1)

jj ′→hii′jj ′
)+] . (5)

Here, notation (x)+ represents max(0, x). The update rule for m
(t)
ii′→gi′

is similar to the update

rule for m
(t)
ii′→fi

and

m
(t)
ii′→hii′jj ′

=αwii′ +
∑

ii′kk′ 	=ii′jj ′

[ (
β

2
+ m

(t−1)

kk′→hii′kk′
)+ − (m

(t−1)

kk′→hii′kk′
)+]

−

(

max
k 	=i

[

m
(t−1)

ki′→gi′

]
)

+

−

(

max
k′ 	=i′

[

m
(t−1)

ik′→fi

]
)

+

.

(6)

(4) Apply damping on the message updates. (See possibilities in Section 5.4.1.)

(5) Round the solution (see possibilites in Section 6) and compute the objective function on the
rounded messages.

(6) Repeat (3)-(5) for a fixed number of iterations unless the messages stop changing.

OUTPUT the rounded solution with the best objective value.

Note that, there is a 1–1 correspondence between the feasible solutions of NAQP
and support of the probability distribution (4). The following lemma formalizes this
observation.

LEMMA 5.1. For any (xL, xS) ∈ {0, 1}|EL|+|VS| with nonzero probability, the vector xL

satisfies the constraints of the integer program NAQP. Conversely, any feasible solution
xL to NAQP has a unique counterpart (xL, xS) with nonzero probability p(xL, xS) =

e
αwTx+(β/2)1T

|S|
xS .

PROOF. Any (xL, xS) ∈ {0, 1}|EL|+|VS| with nonzero probability should satisfy the con-
ditions dictated by function nodes f , g, h, which translates to xL, xS being a feasible
solution to NAQP. Conversely, for any feasible solution to NAQP the values of function
nodes f , g, h are equal to 1 and hence the probability is nonzero.

Moreover, any pair with maximum probability is an optimum solution to NAQP.

LEMMA 5.2. The vector (x∗
L

, x∗
S
) is equal to arg maxxL,xS

p(xL, xS) if and only if x∗
L

is the optimum solution to NAQP and x∗
S

is the vector of squares generated by it.

PROOF. Proof immediately follows from Lemma 5.1.

Using Lemma 5.2, it is known that a variant of BP algorithm (max-product or min-
sum) can be used to find an approximate solution to NAQP [Mezard and Montanari
2009]. In this article, we use the notion BP to refer to this variant.
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Fig. 4. Dependence of mt
33′→g3′

to messages of time t − 1 for the base example from Figure 2.

5.3. The Message Passing Algorithm

The standard BP messages for finding the optimum solution arg maxxL,xS
p(xL, xS) are

vectors of numbers. However, for our problem, we show that the information contained
in these vector messages can be compressed to a real number. Therefore, we can ob-
tain a simple algorithm with a smaller running time that will be presented next. For
completeness, we provide the derivation of this simplified version from the standard
BP in Appendix 9. However, in Section 5.4, we provide a more intuitive description of
the algorithm.

5.4. The Intuition Behind NetAlignMP

NetAlignMP exploits the fact that the constraints of NAQP are local. Suppose each
edge of the graph L is an agent and each agent can talk to its neighbors. First, observe
that, together, the agents can verify the feasibility of any solution to NAQP. The next
step is to note that they can also calculate the merit of each solution (αwTx+β/2xTSx)
locally.

Based on this intuition, each agent should communicate to the neighboring agents

to control the matching constraints. Messages of the type m
(t)
ii′→fi

and m
(t)
ii′→gi′

serve this

purpose. They also contain the information about the weights of the edges (term αwTx
in the cost function). Similarly, any two agents that form a square should communi-
cate, so that we can calculate the term βxTSx in the cost function. This information is

passed by the messages of type m
(t)
ii′→hii′jj ′

.

From a slightly different perspective, our algorithm can be seen as a form of dy-
namic programming generalized from trees to general graphs. In fact, it is instructive
to consider the special case in which the factor graph (explained in Section 5.2) is in-
deed a forest. In that case, removing an edge (or agent) splits the tree component into
two pieces. This means that the optimization problem NAQP could be solved indepen-

dently on each component. The message of the form m
(t)
ii′→fi

carries the information

about the component that contains i′. Figure 4 shows this type of message update. It
also contains the information about all squares that contain ii′. Ideally, the message

m
(t)
ii′→fi

should show the amount of change in the cost function (excluding the connected

component containing i) by participation of the edge ii′ in a solution. Similarly, each

message of the type m
(t)
jj ′→hii′jj ′

should be the change in the cost function by participa-

tion of jj ′ (restricted to the component the edges jj ′).
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Algorithm NetAlignMP (Matrix-based)

INPUT C =
(

CT
A CT

B

)T
, S, w, damping parameter γ , niter, damping type

1 y(0) = 0, z(0) = 0, S(0) = 0
2 for t = 1 to niter

3 F = bound
0, β

2
(S(t−1)T

+
β
2 S)

4 d(t) = F · e

5 y(t) = αw − bound0,∞[ (CT
ACA − I) ⊡ z(t−1)] +d(t)

6 z(t) = αw − bound0,∞[ (CT
BCB − I) ⊡ y(t−1)] +d(t)

7 S(t) = (Y(t) + Z(t) − αW − D(t)) · S − F
8 if damping type is 1

9 (y(t), z(t), S(t)) ← γ t(y(t), z(t), S(t)) + (1 − γ t)(y(t−1), z(t−1), S(t−1))

10 else if damping type is 2

11 p = y(t−1) + z(t−1) − αw + d(t−1)

12 (y(t), z(t), S(t)) ← (y(t), z(t), S(t)) + (1 − γ t)(p, p, S(t−1) + S(t−1)T
− βS)

13 else if damping type is 3

14 p = y(t−1) + z(t−1) − αw + d(t−1)

15 (y(t), z(t), S(t)) ← γ t(y(t), z(t), S(t)) + (1 − γ t)(p, p, S(t−1) + S(t−1)T
− βS)

16 end

17 x(t) = round messages(y(t), z(t), S(t))

18 obj(t) = objective(x(t))
19 end

20 return x(t) with the largest value of obj(t)

Now we give a rough derivation of Eq. (5) using this discussion. If ii′ is present in
the solution, then αwii′ is added to the cost function. But none of the edges ki′ (k 	= i)
can now be in the matching. Thus, we should subtract their maximum contribution
(

maxk 	=i

[

m
(t−1)

ki′→gi′

])

+
. This explains the first two terms in the right hand side of Eq. (5).

Moreover, we should add the number of squares that will be added by this edge. For
each square ii′jj ′ if the edge jj ′ is not present in the matching, then nothing is added.

Otherwise, a β/2 plus the term m
(t)
jj ′→hii′jj ′

should be added. This roughly explains the

addition of the third term in (5). A similar explanation justifies (6) as well.

5.4.1. Convergence of NetAlignMP. We now elaborate on step (4) of NetAlignMP. Ideally,
at the end of iteration t, each vertex i selects the edge ii′ that sends the maximum

incoming message m
(t)
ii′→fi

to it, and we denote the resulting matching by M(t). We’d

like to terminate the iteration when M(t) converges. Unfortunately, picking edges with
this rule does not always produce a matching, and also M(t) may not converge. We
discuss better approaches to picking a matching from the messages in Section 6. When
M(t) does not converge, it often oscillates between a few states. Therefore, we could
terminate the algorithm when such an oscillation is observed, and use the current
messages to find a matching using the recipe in Section 6. Another approach for re-
solving the oscillation is to use a damping factor γ ∈ [ 0, 1] [Braunstein and Zecchina
2006; Frey and Dueck 2007; Murphy et al. 1999]. Let n(t) be the vector of all mes-
sages at time t. That is n(t) is a fixed ordering of all messages at time t. Then, the
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update Eqs. (5)–(6) can be rewritten as n(t) = F(n(t − 1)) where F is an operator that
is uniquely defined by Eqs. (5)–(6). Now, one can consider a new operator G defined by
G(n(t)) = (1 − γ t)n(t − 1) + γ tF(n(t − 1)) and update the messages using G instead of
F. The new update equations will converge for γ < 1. We make the damping explicit
in the matrix version of this algorithm in Section 5.5.

5.5. A Matrix Formulation

We now restate the NetAlignMP algorithm (from Section 5.3) using matrix notation.
This helps clarify issues of data organization and computation. To begin, we again
need another bit of notation. For A ∈ R

m,n and x ∈ R
n, define

A ⊡ x ≡

⎛

⎜
⎜
⎜
⎝

maxj a1,jxj

maxj a2,jxj

...

maxj am,jxj

⎞

⎟
⎟
⎟
⎠

.

This operator is just the regular matrix-vector product but with the summation
(Ax)i =

∑

j ai,jxj replaced by maximization. (This is the matrix-vector product from the

max-product algebra and is related to the max-plus algebra via logarithm/exponential

transforms.) We also need to split the constraint matrix C into
(

CT
A CT

B

)T
correspond-

ing to the matching constraints from graph A → B and graph B → A, respectively.

5.6. Improved NetAlignMP

Recall that Klau’s algorithm [Klau 2009] is obtained by tightening the linear program
NALLP using combinatorial properties of the problem. Similarly, we can modify the
factor graph representation of Section 5.2 to improve the solutions of NetAlignMP
at the expense of increasing the running time. Here is a rough explanation of this
modification. For each variable node ii′ add function nodes dii′,j and dii,j′ for all jj ′ with
ii′ � jj ′. These function nodes are defined by:

dii′,j([ xjk′ ]k′:jk′�ii′ ) =

{

1
∑

k′:jk′�ii′ xjk′ ≤ 1

0 otherwise

dii′,j′([ xkj′ ]k:kj′�ii′ ) =

{

1
∑

k:kj′�ii′ xkj′ ≤ 1

0 otherwise.

After a similarly-lengthy-but-straightforward derivation like in Appendix 9, we arrive
at the following extension of NetAlignMP.

6. ROUNDING STRATEGIES

All algorithms, except for Klau’s matching relaxation, introduced so far rely on formu-
lating the problem as a mathematical program, with the integer constraint relaxed.
As a consequence, the computed solution is fractional for most instances. For IsoRank
and SpaIsoRank, the fractional values are associated with edges in L and for NetAl-
ignMP and NetAlignMP++, the values are on both edges and squares. The last step
of each algorithm is to round this fractional solution to an integral solution, that is, a
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matching. There are many ways of rounding, and as always, the best rounding scheme
depends on the actual problem and the type of relaxation.

Algorithm NetAlignMP++

INPUT α, β, the set of squares VS, and the weighted bipartite graph L = (VA ∪ VB, EL),
and a damping parameter γ .

(1) At times t = 0, 1, . . ., each edge ii′ sends two messages of the form m
(t)
ii′→fi

and m
(t)
ii′→gi′

and also sends one message of the form m
(t)
ii′→hii′jj ′

for any square ii′jj ′ ∈ VS. Each square

ii′jj ′ sends a message of the form m
(t)
ii′jj ′→hii′jj ′

and four messages of the type m
(t)
ii′jj ′→dii′ ,j′

to

dii′,j, dii′,j′ , djj ′,i and djj ′,i′ .

(2) Messages are initialized by an arbitrary number (let us say 0).

(3) For t ≥ 1, the messages in iteration t are obtained from the messages in iteration t − 1
recursively. In particular for all ii′ ∈ EL

m
(t)
ii′→fi

= αwii′ −

(

max
k 	=i

[

m
(t−1)

ki′→gi′

]
)

+

+
∑

ii′jj ′∈VS

[(

m
(t−1)

ii′jj ′→hii′jj ′
+ m

(t−1)

jj ′→hii′jj ′

)

+

−

(

m
(t−1)

jj ′→hii′jj ′

)

+

]

. (7)

The update rule for m
(t)
ii′→g′

i

is similar to the update rule for m
(t)
ii′→fi

and

m
(t)
ii′→hii′jj ′

= αwii′ +
∑

kk′ 	=jj ′

ii′jj ′∈VS

[
(

m
(t−1)

ii′kk′→hii′kk′
+ m

(t−1)

kk′→hii′kk′

)

+
− (m

(t−1)

kk′→hii′kk′
)+

]

−

(

max
k 	=i

[

m
(t−1)

ki′→gi′

]
)

+

−

(

max
k′ 	=i′

[

m
(t−1)

ik′→fi

]
)

+

. (8)

and

m
(t)
ii′jj ′→hii′jj ′

=
β

2
−

(

max
k 	=i

[

m
(t−1)

ki′jj ′→djj ′ ,i′

]
)

+

−

(

max
k′ 	=i′

[

m
(t−1)

ik′jj ′→djj ′ ,i

]
)

+

−

(

max
k 	=j

[

m
(t−1)

ii′kj′→dii′ ,j′

]
)

+

−

(

max
k′ 	=j′

[

m
(t−1)

ii′jk′→dii′,j

]
)

+

(9)

and

m
(t)
ii′jj ′→dii′ ,j

=
β

2
−

(

max
k 	=i

[

m
(t−1)

ki′jj ′→djj ′ ,i′

]
)

+

−

(

max
k′ 	=i′

[

m
(t−1)

ik′jj ′→djj ′ ,i

]
)

+

−

(

max
k 	=j

[

m
(t−1)

ii′kj′→dii′ ,j′

]
)

+

+ min

(

m
(t−1)

ii′→hii′jj ′
+ m

(t−1)

jj ′→hii′jj ′
, m

(t−1)

ii′→hii′jj ′
, m

(t−1)

jj ′→hii′jj ′

)

(10)

Equations for m
(t)
ii′jj ′→dii′,j′

, m
(t)
ii′jj ′→djj ′ ,i

and m
(t)
ii′jj ′→djj ′,i′

are similar to (10).

(4) Damp the messages using one of the schemes from NetAlignMP.

(5) Round the messages to an integer solution (see possibilities in Section 6) and compute the
objective function on the rounded messages

OUTPUT the rounded solution with the best objective value.
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The primary type of rounding used is based on using the fractional solution or the BP
messages to construct a max-weight matching problem. Solving it produces a solution
that then obeys the matching constraints. Specifically, we utilize the function:

Algorithm round messages

INPUT messages from A to B y(t), messages from B to A z(t), messages on the squares

S(t)

1 x
(k)

A
= bipartite match(L, y(k))

2 obj
(k)

A
= objective(x

(k)

A
)

3 x
(k)

B
= bipartite match(L, z(k))

4 obj
(k)

B
= objective(x

(k)

B
}

5 return x
(k)
· with the highest value of obj

(k)
·

This function rounds both types of messages and returns the best solution. Another
alternative is to use a greedy matching scheme, where M starts as an empty matching,

and we greedily add edges to M based on the largest values of y
(k)

ii′
or z

(k)

ii′
such that it

stays a matching. Though computationally more expensive, MWM rounding yields the
best result in most of our experiments. Therefore, results in Section 7 and 8 are all ob-
tained using MWM rounding. For the BP algorithm, greedy rounding using messages

on squares—using S(t) above—yields similar performance as the MWM rounding. Note
that Klau’s algorithm explicitly generates an integer solution by solving a max-weight
matching problem on each iteration.

7. SYNTHETIC EXPERIMENTS

We first compare the belief propagation (BP) algorithm to existing algorithms on two
synthetic matching problems. The first problem aligns two perturbed grids and the
second aligns two perturbed power-law graphs.

Let A and B be independent realizations of a perturbed k×k grid. The perturbation is
a set of random edges generated with probability q/d(u, v)2 where d(u, v) is the graph
distance between u and v. In these problems, the ideal alignment is known: match each
vertex to its image in the other grid. Note that this ideal alignment does not necessarily
maximize the objective function. Now we generate L by matching each grid vertex to
its image and then add additional edges to L with probability p. This noise globally
corrupts the alignment. We further disturb L by adding random edges within graph
distance d of the end points of ideal alignment, sampled with probability proportional
to the maximum number of paths. This step locally corrupts the alignment.

For the power-law graph test, we construct a reference graph from a power-law de-
gree sequence with exponent θ and n vertices using the algorithm from Bayati et al.
[2007b]. Again, let A and B be independent realizations of the power-law graph per-
turbed with the same noise as the grid in this article. Generate L in the same manner,
but without additional distance based edges.

In our results, we compare all outputs to the reference matching between the graphs
A and B. Figure 5 shows the average fraction of the reference matching obtained by
each algorithm over 48 trials. The objective function is pure overlap and the dark lines
in the figure show the ratio of the algorithm’s overlap to the overlap of the reference
solution. Each algorithm should be computing a good objective, and thus larger values
are better. Indeed, the reference solution may not be the best solution when L is highly
corrupted with a large expected degree. When this happens with the power-law graphs,
we observe that the BP algorithm finds a matching with a higher overlap and thus the
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Fig. 5. Upper bounds and correct solutions to synthetic problems on grid-graphs (a) and power-law graphs
(b). The MR label is for the NetAlignMR algorithm and IsoRank refers to the SpaIsoRank procedure. The
x-axis corresponds to expected degree that increases with p, the fraction of global mismatched edges in L,
which we measure in the expected degree of the noise. Once the noise is large, the two message passing
approaches show the best results. Section 7 for more information.

fraction is larger than 1. Similarly, the light lines show the fraction of correct matches
from the the algorithms. These values track the objective values showing that the
network alignment objective is a good surrogate for the number of correct matches
objective.

When the amount of random noise in L exceeds an expected degree of 10 for the grid
graphs and 8 for the power-law graphs, many of the algorithms are no longer able to
obtain good solutions. In this regime, the MP and MP++ algorithms performs better
than the MR algorithm.

We used the MP and MP++ algorithms with α = 1, β = 2, the SpaIsoRank algorithm
with γ = 0.95, and the MR algorithm with α = 0, β = 1 for these experiments. These
parameters are natural for the various algorithms. For example, MR requires α =
0, β = 1 to produce an upper-bound on overlap. In the next section, we study the
behavior of the algorithms for a wider variety of parameters.

8. REAL DATASETS

While we saw that the BP algorithm performed well on noisy synthetic problems
in the previous section, in this section we investigate alignment problems from
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Table II. Properties of the Real-World Test Problems

Problem |VA| |EA| |VB| |EB| |EL|

dmela-scere 9459 25636 5696 31261 34582

Mus M.-Homo S. 3247 2793 9695 32890 15810

lcsh2wiki-small 1919 1565 2000 3904 16952

lcsh2wiki-full 297266 248230 205948 382353 4971629

bioinformatics and ontology matching. For each algorithm, we explore a range of
choices for all of the parameter values and summarize the results from the best choice
in Table III. Note that Klau’s algorithm uses two parameters γ and st to control the
subgradient method.

8.1. Bioinformatics

The alignment of protein-protein interaction (PPI) networks of different species is an
important problem in bioinformatics [Singh et al. 2007]. We consider aligning the PPI
network of Drosophila melanogaster (fly) and Saccharomyces cerevisiae (yeast), and
Homo sapiens (human) and Mus musculus (mouse). These PPI networks are available
in several open databases and they are used in Singh et al. [2008] and Klau [2009],
respectively. For each problem, we utilize the value of w from the original publication.
While the results of the experiment are rich in biological information, we focus solely
on the optimization problem.

Figure 6 shows the performance of the four algorithms—NetAlignMP, NetAl-
ignMP++, NetAlignMR, SpaIsoRank—on these two alignments. For each algorithm,
we perform a parameter sweep over the following parameters

SpaIsoRank Damping γ ∈ {0.3, 0.5, 0.85, 0.95}

Rounding type ∈ {1, 2}

NetAlignMP Objective (α, β) ∈ {(10, 1), (2, 1), (1, 1), (1, 2), (1, 10)}

Damping γ ∈ {0.9, 0.99, 0.995, 0.999}

type ∈ {2, 3}

NetAlignMP++ same as NetAlignMP

NetAlignMR Objective (α, β) ∈ {(10, 1), (2, 1), (1, 1), (1, 2), (1, 10)}

Damping γ ∈ {0.1, 0.4}

mstep ∈ {5, 25, 50}

We run SpaIsoRank until convergence, and run the other approaches for a total of
500 iterations. On these instances, we record the best iterate ever generated and plot
the overlap and weight of the alignments in the figure.

In both problems NetAlignMP, NetAlignMP++ and NetAlignMR manage to obtain
near-optimal solutions. In terms of the largest overlap, our NetAlignMP does the best
on the Mus M.-Homo S. alignment, whereas NetAlignMP++ does the best of the dmele-
scere alignment. (See Table III for the parameters that produced the best overlap.)

8.2. Ontology

Our original motivation for investigating network alignment is aligning the net-
work of subject headings from the Library of Congress with the categories from
Wikipedia [Wikipedia 2007]. Each node in these networks has a small text label, and
we use a Lucene search index [Hatcher and Gospodnetic 2004] (Version 2.2.0 from
2007) to quickly find potential matches between nodes based on the text. To score the
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Fig. 6. Results of the three algorithms SpaIsoRank (IsoRank), NetAlignMP, NetAlignMP++, and Net-
AlignMR (MR) on the Mus. M.-Homo S. alignment (top) and dmela-scere alignment (bottom).
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Table III. The Parameters Used to Produce the Results with the Highest Overlap from Figures 6 and 7

Alg. Data Overlap Sol. Time Total Time Parameters

MWM musm-homo 393 36.2% — —

dmela-scere 135 35.4% — —

lcsh-small 119 36.8% — —

lcsh2wiki 2346 13.3% — —

Iso musm-homo 1027 94.5% 0.0 0.4 γ = 0.50; r = 2

dmela-scere 301 79.0% 3.7 10.7 γ = 0.95; r = 2

lcsh-small 257 79.6% 0.0 0.7 γ = 0.50; r = 2

lcsh2wiki 11732 66.6% 11.7 587.3 γ = 0.95; r = 2

MP musm-homo 1076 99.0% 2.6 13.2 α = 2; β = 1; γ = 0.995; d = 3

dmela-scere 369 96.9% 26.7 34.9 α = 1; β = 2; γ = 0.999; d = 3

lcsh-small 316 97.8% 7.6 12.6 α = 1; β = 1; γ = 0.999; d = 3

lcsh2wiki 15974 90.7% 3795.3 4198.4 α = 1; β = 2; γ = 0.999; d = 2

MP++ musm-homo 1062 97.7% 14.4 17.3 α = 1; β = 1; γ = 0.999; d = 3

dmela-scere 376 98.7% 28.7 33.3 α = 1; β = 10; γ = 0.999; d = 3

lcsh-small 318 98.5% 11.8 15.2 α = 1; β = 2; γ = 0.999; d = 3

lcsh2wiki 15771 89.6% 4103.8 4990.2 α = 1; β = 1; γ = 0.999; d = 3

MR musm-homo 1070 98.4% 12.5 12.6 α = 1; β = 10; γ = 0.400; st = 5

dmela-scere 375 98.4% 22.7 79.4 α = 1; β = 2; γ = 0.400; st = 5

lcsh-small 318 98.5% 4.1 16.8 α = 1; β = 2; γ = 0.400; st = 5

lcsh2wiki 16836 95.6% 4878.2 4988.0 α = 1; β = 2; γ = 0.400; st = 5

We abbreviated lcsh2wiki-small as lcsh-small. The overlap score shows the highest overlap produced
by that method on the problem and the percentage of the best upper-bound on the solution objective.
All times are reported in seconds, and the Sol. Time column indicates the time taken to compute the
best solution whereas the Total Time column indicates the total time for all iterations of the method.
(Recall that all methods return the iterate with the best solution, which may not be the final iterate.) We
organized the table to indicate the most successful parameter choices.

matches, we use the SoftTF-IDF scoring routine [Cohen et al. 2003]. These scores be-
come the weights in w. Our real problem is to match the entire graphs. From this
problem we extract a small instance that should capture the most important nodes in
the problem. (Node importance is either reference count (subject headings) or Page-
Rank (Wikipedia categories).) The results are shown in Figure 7.

We repeated the parameter sweep from the previous section on these two problems
as well. The best algorithm on these two problems is NetAlignMR, with NetAlignMP
and NetAlignMP++ alternating for second place. In lcsh2wiki-small, the upper bound
computed by NetAlignMR is 323. NetAlignMP achieves a lower bound of 318 and Net-
AlignMR achieves 321. In lcsh2wiki, we compute an upper bound of 17608 using a
linear programming solver on NATLP with the full symmetry constraints instead of
the Lagrange multipliers. Though not shown in the figure, NetAlignMP obtains a lower
bound of 16204 with γ = 0.9995, α = 0.2 and β = 1.

In all our real datasets L is quite sparse, making NetAlignMR more favorable. Still,
NetAlignMP is closely following and has an advantage on running time – see the sum-
mary in Table III for information about runtime.

8.3. Multilingual Ontologies

For a final test, we evaluate automatically aligning two large networks where a cor-
rect alignment exists. The networks are the Library of Congress Subject Headings and
its French analogue, Rameau. Both are similar ontologies and we expect a non-trivial
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Fig. 7. Results of the four algorithms SpaIsoRank (IsoRank), NetAlignMP, NetAlignMP++, NetAlignMR
(MR) on lcsh2wiki-small (top) and lcsh2wiki (bottom).
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Table IV. The Alignment Results for LCSH and Rameau

Obj. Alg. Weight Overlap Time (s) Correct Rec. Prec. Triangles

Sol. 36332.42 39847 — 57645 100% 100% 2073

MWM 93279.0 16990 29.6 29098 50.5% 23.3% 350

α = 1, β = 1 MP 84622.0 46400 23522.0 32585 56.5% 27.6% 1515

MP++ 85810.1 46942 27115.6 32857 57.0% 27.4% 1548

MR 87588.6 48367 33366.9 33225 57.6% 27.0% 1617

α = 1, β = 2 MP 81752.6 46569 23427.1 31724 55.0% 27.6% 1483

MP++ 84615.7 46656 26673.1 31952 55.4% 26.7% 1531

MR 85438.4 48934 56961.6 32303 56.0% 26.3% 1604

α = 0, β = 1 MP 60617.9 45247 14284.8 24794 43.0% 23.2% 1467

MP++ 60502.8 41592 13979.5 24498 42.5% 23.0% 1484

MR 65994.2 46163 10384.4 25455 44.2% 21.5% 1602

The first set of results shows the statistics of the known alignment and the results from the max-
weight matching algorithm. Next we show results from our algorithms for three objective parameters.
The columns are: objective parameters, algorithms, matching weight, matching edge overlap, time, total
correct, recall, precision, and matching triangle overlap.

alignment between the networks. The correct alignment between the networks is avail-
able from http://www.cs.vu.nl/STITCH/rameau/dump/. It contains 57, 645 matches be-
tween the 154, 974 nodes of Rameau and the 342, 684 nodes of LCSH. (This experiment
used a newer version of LCSH than the previous experiments, which is why the num-
ber of nodes changed).

To build the set of potential matches, we translate the French subject headings
to English using Google Translate (translate.google.com), and translate the English
headings to French also using Google Translate. Then, we use Lucene to compute a
pairwise match between the strings and keep the top 25 matches. This produces up to
100 potential matches per node, 25 from LCSH → Rameau in English, 25 from Rameau
→ LCSH in English, and another 50 for the same sets in French. The weights are com-
puted in the same way as in the previous section. In total, we had 20, 883, 500 possible
edges between the graphs. Of these, only 42, 215 of the correct matches appeared. The
overlap induced by the correct set of matches is 39, 749.

The results and running time from our algorithms are presented in Table IV. In
summary, NetAlignMR computes the best results in terms of the optimization objec-
tive, but it also takes the most time. NetAlignMP++ is the runner-up and fills the gap
in results and run-time between NetAlignMP and NetAlignMR. With respect to recall
and precision, NetAlignMR has the highest recall (57.6%) with good precision (27.0%),
but NetAlignMP and NetAlignMP++ always have slightly higher precision. Note that
we performed no specific tuning to account for the differences in French and English.
We did not test SpaIsoRank given its performance in the previous studies.

In the table, we also showed the number of triangles overlapped by a matching. This
number appears to be indicative of the true matching performance. We believe these
results demonstrate that including overlapped triangles into the objective may im-
prove matching algorithms. In this article, we considered alignments where each node
maps to at most one node in the other graph. In certain applications this constraint
can be relaxed (each node can be matched to at most b nodes). It is not difficult to see
that the factor graph representation of NetAlignMP can be extended to those settings
as well, this can be done by updating the definition of function nodes fi and gi′ . In fact
when β = 0 this extension has been studied by Huang and Jebara [2007], Bayati et al.
[2007a], and Sanghavi et al. [2011]. We plan to investigate these ideas in the future.
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9. DISCUSSION

Let us recap. Network alignment is an important tool in a variety of applications in-
cluding systems biology, computer vision and ontology matching. It is especially use-
ful for comparing large datasets with inherent and related graph structures. Here,
we explored matching protein-protein interaction networks and ontologies. In the fu-
ture, we envision applications of these techniques in mapping large social network
structure.

Of course, finding the best alignment between two networks is NP-hard. Thus far, we
are limited to attacking the problem heuristically as there is no known approximation
algorithm. Many different heuristics for the problem fit nicely within our quadratic
programming framework for the problem. We studied several existing algorithms this
framework and compared their performance on both synthetic and real data.

We find that the NetAlignMR from Klau [2009] produces the best results when a
sparse set of potential matches between two graphs exist. Our two new message-
passing algorithms, NetAlignMP and NetAlignMP++, were designed based on belief
propagation ideas for solving the integer optimization problem directly. They are
mildly faster than NetAlignMR (roughly 1.3% in our experiments) and their results
nearly tie with NetAlignMR. Additionally, our algorithms produce better solutions
when the set of potential matches is dense.

There are a number of avenues for future work we plan to investigate. First, be-
cause our algorithms use message passing, they should allow simple parallel im-
plementations, including on MapReduce style architectures. Second, in each of the
real data sets we used, the nodes of the two graphs had an informative label, which
helped us to apply preprocessing to produce a sparse graph of potential matches be-
tween the two graphs. All of the previously discussed algorithms utilize this fact, ex-
cept for IsoRank. We also plan to investigate aligning graphs without these initial
“hints.”

APPENDIX

A. DERIVATION OF NetAlignMP EQUATIONS

The belief propagation algorithm (and its max-product version) is an iterative proce-
dure for passing messages along the edges of a factor graph [Pearl 1988]. We use the
notation t = 0, 1, . . . to denote the messages after t message passing steps. The BP al-
gorithm specifies the messages to pass for a general factor graph. For our factor-graph
representation we obtain two types of real-valued BP messages. We denote these two
types by ν and λ respectively.

(1) Messages from variable nodes to function nodes. Each variable node ii′ sends the
following messages

ν
(t+1)

ii′→fi
(xii′) = λ

(t)
gi′→ii′

(xii′)
∏

ii′jj ′

λ
(t)
hii′jj ′→ii′

(xii′), (11)

ν
(t+1)

ii′→gi′
(xii′) = λ

(t)
fi→ii′

(xii′)
∏

ii′jj ′

λ
(t)
hii′jj ′→ii′

(xii′), (12)

ν
(t+1)

ii′→hii′jj ′
(xii′) = λ

(t)
fi→ii′

(xii′)λ
(t)
gi′→ii′

(xii′)
∏

ii′kk′ 	=ii′jj ′

λ
(t)
hii′kk′→ii′

(xii′). (13)
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Note that each variable node ii′jj ′ has only one neighbor. Hence, its message is

always defined by ν
(t+1)

ii′jj ′→hii′jj ′
(xii′jj ′) = 1.

(2) The messages from function nodes to variable nodes are:

λ
(t)
fi→ii′

(xii′) = max
x∂fi\{ii

′}

⎧

⎨

⎩
e[α

∑

j′ wij′xij′ ]fi(x∂fi)
∏

j′ 	=i′

ν
(t)
ij′→fi

(xij′)

⎫

⎬

⎭
,

λ
(t)
gi′→ii′

(xii′) = max
x∂gi′ \{ii

′}

⎧

⎨

⎩
e[α

∑

j wji′xji′ ]gi′(x∂gi′
)
∏

j 	=i

ν
(t)
ji′→gi′

(xji′)

⎫

⎬

⎭
,

λ
(t)
hii′jj ′→ii′

(xii′) = max
xjj ′ ,xii′jj ′

{

e
β
2 xii′jj ′ hii′jj ′(x∂hii′jj ′

)ν
(t)
jj ′→hii′jj ′

(xjj ′)

}

,

λ
(t)
hii′jj ′→jj ′(xjj ′) = max

xii′ ,xii′jj ′

{

e
β
2 xii′jj ′ hii′jj ′(x∂hii′jj ′

)ν
(t)
ii′→hii′jj ′

(xii′)

}

,

λ
(t)
hii′jj ′→ii′jj ′(xii′jj ′) = max

xii′ ,xjj ′

{

e
β
2 xii′jj ′ hii′jj ′(x∂hii′jj ′

)ν
(t)
ii′→hii′jj ′

(xii′)ν
(t)
jj ′→hii′jj ′

(xjj ′)

}

.

(14)

At the end of each iteration t, each variable node xii′ (xii′jj ′ ) is assigned a binary value
as follows:

x
(t)
ii′

= arg max
xii′

⎧

⎨

⎩
λ

(t)
fi→ii′

(xii′)λ
(t)
gi′→ii′

(xii′)
∏

ii′jj ′

λ
(t)
hii′jj ′→ii′

(xii′)

⎫

⎬

⎭
,

x
(t)
ii′jj ′ = arg max

xii′jj ′

⎧

⎨

⎩

∏

ii′jj ′

λ
(t)
hii′jj ′→ii′jj ′(xii′jj ′)

⎫

⎬

⎭
.

In many applications as t → ∞, the assigned values x
(t)
ii′

, x
(t)
ii′jj ′ converge to good approx-

imate solutions.
It is possible to simplify the equations above by eliminating redundancies—for ex-

ample, we already mentioned that the message ν
(t+1)

ii′jj ′→hii′jj ′
(xii′jj ′) = 1 always. We

now simplify the above set of equations. Since the variables xij and xijrs are bi-
nary valued, we compress the messages by sending just the log-likelihood values

m
(t)
ij→fi

= log
(

ν
(t)
ij→fi

(1)/ν
(t)
ij→fi

(0)
)

. Similarly, we define messages m
(t)
ij→gj

, m
(t)
ij→hijrs

, and

m
(t)
ijrs→hijrs

.

Next, we will carry out these calculations for m
(t)
ij→fi

.

m
(t+1)

ii′→fi
= log

⎛

⎝

λ
(t)
gi′→ii′

(1)

λ
(t)
gi′→ii′

(0)

⎞

⎠ +
∑

ii′jj ′

log

⎛

⎝

λ
(t)
hii′jj ′→ii′

(1)

λ
(t)
hii′jj ′→ii′

(0)

⎞

⎠ .
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Each log term here can be simplified because log is a monotone function, and hence, it
commutes with max. For example,

log(λ
(t)
gi′→ii′

(1)) = max
x
∂gi′ \{ii

′}

xii′=1

⎧

⎨

⎩
αwii′ + α

∑

j 	=i

wji′xji′ + log gi′(x∂gi′
) +

∑

j 	=i

log ν
(t)
ji′→gi′

(xji′)

⎫

⎬

⎭

= αwii′ +
∑

j 	=i

log ν
(t)
ji′→gi′

(0)

where the last equality uses the matching constraint imposed by gi′ . Similarly,

log(λ
(t)
gi′→ii′

(0)) = max

⎧

⎨

⎩

∑

j 	=i

ν
(t)
ji′→gi′

(0), max
k 	=i

⎡

⎣αwki′ +
∑

j 	=i

log ν
(t)
ji′→gi′

(0) + log(
ν
(t)
ki′→gi′

(1)

ν
(t)
ki′→gi′

(0)
)

⎤

⎦

⎫

⎬

⎭
.

Therefore, we have

log

⎛

⎝

λ
(t)
gi′→ii′

(1)

λ
(t)
gi′→ii′

(0)

⎞

⎠ = αwii′ −

{

max
k 	=i

(αwki′ + m
(t)
ki′→gi′

)

}

+

where (a)+ means max(a, 0). Similar calculations for λ
(t)
hii′jj ′→ii′

yield

log

⎛

⎝

λ
(t)
hii′jj ′→ii′

(1)

λ
(t)
hii′jj ′→ii′

(0)

⎞

⎠ = max

(
β

2
+ log ν

(t)
jj ′→hii′jj ′

(1), log ν
(t)
jj ′→hii′jj ′

(0)

)

− max
(

log ν
(t)
jj ′→hii′jj ′

(1), log ν
(t)
jj ′→hii′jj ′

(0)

)

=

(
β

2
+ m

(t)
jj ′→hii′jj ′

)

+

−
(

m
(t)
jj ′→hii′jj ′

)

+
.

Summarizing, we obtain

m
(t+1)

ii′→fi
= αwii′ −

{

max
k 	=i

(αwki′ + m
(t)
ki′→gi′

)

}

+

+
∑

ii′jj ′

(

(
β

2
+ mt

jj ′→hii′jj ′
)+−(m

(t)
jj ′→hii′jj ′

)+

)

.

By symmetry we obtain

m
(t+1)

ii′→gi′
= αwii′ −

{

max
k′ 	=i′

(αwik′ + m
(t)
ik′→fi

)

}

+

+
∑

ii′jj ′

(

(
β

2
+ m

(t)
jj ′→hii′jj ′

)+ − (m
(t)
jj ′→hii′jj ′

)+

)

.

and

m
(t+1)

ii′→hii′jj ′
= 2αwii′ −

{

max
k 	=i

(αwki′ + m
(t)
ki′→gi′

)

}

+

−

{

max
k′ 	=i′

(αwik′ + m
(t)
ik′→fi

)

}

+

+
∑

ii′kk′ 	=ii′jj ′

(

(
β

2
+ m

(t)
kk′→hii′kk′

)+ − (m
(t)
kk′→hii′kk′

)+

)

.

We can simplify these equations further to prove Lemma A.1. This is achieved by defin-

ing m
(t)
ii′→fi

≡ wii′ + m
(t)
ii′→fi

and m
(t)
ii′→gi′

≡ αwii′ + m
(t)
ii′→gi′

and replacing β̃ with β/2.
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LEMMA A.1. The max-product Eqs. (11)–(14) are equivalent to the simplified BP
Eqs. (5)–(6).
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