
Copyright © 2014 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics
Vol. 10, 1–19, 2014

Message Passing-Aware Power Management on

Many-Core Systems

Andrea Bartolini1�∗, Can Hankendi2, Ayse Kivilcim Coskun2, and Luca Benini1

1DEI, University of Bologna 40136, Bologna, Italy
2ECE Department, Boston University, Boston, MA, 02215, US

(Received: 1 July 2014; Accepted: 15 October 2014)

Dynamic frequency and voltage scaling (DVFS) techniques have been widely used for meeting

energy constraints. Single-chip many-core systems bring new challenges owing to the large num-

ber of operating points and the shift to message passing from shared memory communication.

DVFS, however, has been mostly studied on single-chip systems with one or few cores, without

considering the impact of the communication among cores. This paper evaluates the impact of

voltage and frequency scaling on the performance and power of many-core systems with message

passing (MP) based communication, and proposes a power management policy that leverages the

communication pattern information to efficiently traverse the search space for finding the optimal

voltage and frequency operating point. We conduct experiments on a 48-core Intel Single-Chip

Cloud Computer (SCC), as our target many-core platform. The paper first introduces the runtime

monitoring infrastructure and the application suite we have designed for an in-depth evaluation

of the SCC. We then quantify the effects of frequency perturbations on performance and energy

efficiency. Experimental results show that runtime communication patterns lead to significant dif-

ferences in power/performance tradeoffs in many-core systems with MP-based communication.

We show that the proposed power management policy achieves up to the 70% energy-delay-

product (EDP) improvements compared to existing DVFS policies, while meeting the performance

constraints.

Keywords: Message Passing, Dynamic Voltage and Frequency Scaling, Many-Core Systems.

1. INTRODUCTION
Building complex, high-performance cores is limited by

the tight power and temperature constraints; thus, the cur-

rent processor design trends have shifted towards integrat-

ing a number of smaller, lower power processing cores

connected by an on-chip network. The number of cores on

a single chip increases rapidly every year toward many-

core systems. The development of run-time management

techniques has been a key element in system design for

dynamically optimizing power and performance tradeoffs

depending on the application characteristics to achieve

energy-efficient operation.1–5

Many-core systems bring additional challenges in run-

time system management, as they offer a vast amount

of operating points, such as various combinations of

voltage and frequency settings across many cores.

In addition, many-core systems are expected to leverage

∗Author to whom correspondence should be addressed.

Email: a.bartolini@unibo.it

message passing (MP) based communication for inter-core

communication, as opposed to the traditional shared mem-

ory communication available on commercial multi-core

systems. As MP provides efficient methods to handle

concurrency (i.e., synchronization) on many-node sys-

tems, MP-based communication has been widely used in

computing clusters.6 However, there are still many open

research problems for single-chip many-core systems that

utilize MP for communication.

A common runtime energy efficiency control knob

in modern processors is dynamic voltage and frequency

scaling (DVFS). Recent research has developed efficient

DVFS techniques based on characterizing on-chip/off-

chip workloads,2 identifying application phases with a

high number of stall cycles,3 or using machine learn-

ing techniques to adapt to changing workload phases.4�5

As DVFS may incur severe performance degradation, the

common goal of these approaches is reducing the nega-

tive performance impact of operating at lower frequencies.

Although these techniques improve the energy efficiency

J. Low Power Electron. 2014, Vol. 10, No. 4 1546-1998/2014/10/001/019 doi:10.1166/jolpe.2014.1359 1

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

for the current single-core or multi-core systems with a

small number of cores, they do not address the unique

performance-power tradeoffs in many-core systems with

MP. For instance, on a many-core system with MP, a local

DVFS change in one or few cores may severely impact

the performance of the entire parallel application running

on the system, due to the potential effects of DVFS on

communication time.7�8

In this paper, we propose a DVFS policy that takes the

communication characteristics into account to improve the

energy efficiency on many-core systems with MP-based

communication. In order to efficiently utilize DVFS on

many-core systems with MP-based communication, it is

essential to capture the communication characteristics of

the applications. Therefore, we first develop a measure-

ment infrastructure that can monitor the communication

characteristics of MP-based applications. We next analyze

and optimize the impact of the core frequency on the per-

formance of many-core systems with MP. We then use

our observations to create a DVFS policy targeted towards

parallel applications running on a many-core system with

MP. We conduct all experiments on the Intel Single-Chip

Cloud Computer �SCC� as a representative many-core sys-

tem, which consists of 48 cores with MP capabilities.9

SCC incorporates a network-on-chip (NoC), DVFS capa-

bilities, and support for MP-based communication.a The

chip resembles a cloud of computers integrated into a

single chip, as each core is capable of booting an OS

instance. While infrastructure to measure real-time per-

formance, power, and temperature exists for commercial

systems,10 the unique features of the SCC require devel-

oping a framework for runtime monitoring of the system.

We provide the details of our comprehensive measure-

ment infrastructure for the SCC, expanding the one pre-

sented in our recent work11 with voltage scaling features.

We leverage this infrastructure to quantify the correlations

among frequency settings, voltage settings, performance

and energy for a diverse set of workloads. Finally, we

compare the proposed DVFS policy with commonly used

policies and we present the benefits of utilizing the com-

munication characteristics while making DVFS decisions.

The paper makes the following specific contributions:
• We revise the benchmark suite presented in our

recent paper11 with a new set of programmable bench-

marks that represent MP-based parallel applications. This

includes corner case applications, as well as NAS Parallel

Benchmarks.12 This allows us to create a training dataset to

evaluate the performance of different strategies for learn-

ing energy consumption models.
• We show that both non-linear and linear model tem-

plates fail to accurately model and predict the effect of

DVFS on the performance of the target applications, which

aStandard SCC Message Passing library namely RCCE supports only

blocking send and receives.

is a significantly limiting factor for model-predictive based
power management solutions.
• To evaluate the impact of both voltage and frequency
decisions on the performance and power of real applica-

tions, we conduct a large set of experiments using the
monitoring infrastructure and the benchmark suite pre-

sented in Ref. [11]. Our analysis demonstrates that the
communication patterns significantly impact the achiev-

able energy savings. We show that applying DVFS policies
without considering the communication characteristics of

the applications can lead to an energy increase up to
130%, whereas considering the communication patterns

while making DVFS decisions can provide up to 50%
energy savings.
• We propose and implement a novel power management
strategy that exploits the benefits of keeping the commu-

nicating cores at the same frequency levels. Our policy
iteratively searches the voltage and frequency setting space

to reach an optimum operating point. Our results high-
light that MP-agnostic power management strategies do

not always save energy and can lead to 1.9× energy-delay
product (EDP) increase for CPU-bound applications.
• We show that MP-aware policies need to account for
not only direct MP communication, but also indirect

communication.b Our results show that considering both
direct and indirect communication patterns significantly

improves the energy and EDP savings and always outper-
forms the performance of the MP-agnostic policy, lead-

ing up to 80% of EDP reduction for applications with 4
threads and up to 70% for applications with higher levels

of parallelism (i.e., 16 threads).

The rest of the paper starts with an overview of related
work. Section 3 provides the details of our measurement

infrastructure and discusses the application suite developed
for the experiments. Section 4 presents a set of prelimi-

nary tests conducted to analyze the sensitivity of the MP
applications to frequency scaling. In Section 5, we present

a novel MP-aware energy saving policy. Section 6 demon-
strates the efficacy of the proposed policy when compare

to standard ones. Section 7 concludes the paper.

2. RELATED WORK

Most of the commercial processors today support sev-
eral voltage-frequency settings, and DVFS is among the

most commonly used power management knobs for reg-
ulating power consumption. Most DVFS solutions focus

on single-core and embedded systems.1�2�4 More recent
methods specifically target multi-core systems.13–16 Kim
et al. investigate how different DVFS granularities such

as chip-wide versus per-core DVFS in multi-core systems

bConsider a case, where core A sends messages to core B and core B

sends messages to core C . We call the communication in between the

core A and core B “direct” and the one in between “core A and core C

“indirect.”

2 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

impact the energy savings and the overhead of power

management. As applications often include phases of asyn-

chronous memory events across the cores, per-core DVFS

brings substantial advantages in energy savings.13 In addi-

tion, applying more aggressive DVFS during application

phases with a high number of stall cycles is an attractive

approach for reducing energy at limited performance cost.3

As the number of cores integrated on a chip increases,

per-core DVFS leads to high complexity, as the optimal

voltage and frequency levels for all the cores need to

be selected among a vast number of operating points.

De-centralized techniques have been proposed to limit the

overhead of per-core DVFS.14�15 These techniques utilize a

hierarchical structure, where a central controller allocates

power budgets to local controllers. Each local controller

then selects the (locally optimal) frequency assignment for

a small set of cores based on the provided power budget.

Kai et al. introduce a novel layer in the controller struc-

ture to perform group-level partitioning of threads.14 For

parallel applications, the authors show that a frequency

selection policy that considers the threads as indepen-

dent tasks leads to sub-optimal performance. Group-level

partitioning allocates the frequency and power quotas to

improve the performance of critical threads within a par-

allel application. Thread criticality can be identified in

a shared memory system using a weighted cache miss

index.17 Using thread criticality during management avoids

favoring high-IPC threads for assigning high frequencies,

which can potentially result in unbalanced execution.18

While some of these techniques are scalable to many-core

systems, they mainly focus on shared memory architec-

tures and do not consider how DVFS affects the perfor-

mance on MP-based many-core systems.9

Performance of the MP-based systems has been tradi-

tionally studied at the cluster level. Recent studies show

that performance models for MP applications can be ana-

lytically derived, and these models are effective in iden-

tifying groups of threads to be aggregated in the same

shared-memory node to minimize the computing cluster’s

energy consumption.19�20 Springer et al. present a method-

ology based on a combination of performance prediction,

profiling and benchmark re-execution to find the optimal

frequency and task mapping scheduling.7 The results show

that typically less then 15 executions are needed to find

a valid schedule. Rountree et al. instead present a frame-

work, where the target MPI-application is first profiled

for each combination of available DVFS power point and

results are combined on an LP problem to find the optimal

scheduling and mapping.8 Even if this solution provides

significant energy savings, the initial profiling overhead is

not negligible and does not scale with a larger number of

nodes and operating points.

When the MP protocol is implemented within the

cores of the same chip, the performance/energy trade-

offs change significantly owing to the substantial decrease

in the communication latency among different MP nodes

in the NoC.21�22 Therefore, compared to the multi-node

MP-based clusters, per-core frequency scaling decisions on

an MP-based single-chip many-core system have higher

impact on the application runtime, due to the strong cou-

pling of communication characteristics and performance.

Some recent work has used Intel SCC as an experi-

mental platform for developing power management tech-

niques for many-core systems. Ioannou et al. present a

power management scheme that is composed of a set of

local controllers and a supervisor.23 The local controller

identifies and predicts the MP phases by means of a

Super-Maximal Repeat phase Predictor that stores MP call

sequences and finds the current one. Iteratively at each

phase repetition the local controller computes a new fre-

quency setting based on the previous one and the program

phase performance overhead. Whereas MP-phase predic-

tion allows the policy to adapt to the workload phases, the

information of communicating cores is neglected and the

final frequency value is chosen by the supervisor to min-

imize the voltage on a per-voltage island base. Gammel

et al. investigate the power behavior of scientific Parti-

tioned Global Address Space (PGAS) application kernels

on the SCC platform.24 They show that various PGAS

primitives need to be considered in the power management

strategies. David et al. show a power management strategy

on SCC for parallel workloads that uses queues to buffer

the communication in between threads.25 The power man-

ager uses the information on data arrival and queues state

to select the tile frequency at runtime. These results are

tightly coupled with the programming model and commu-

nication abstractions and thus cannot be directly applied

to the MP case. Li et al. combines DVFS and dynamic

concurrency throttling (DCT) to reduce the energy con-

sumption of hybrid MPI/OpenMP applications by identi-

fying the slacks due to inter and intra-node interactions

on a large multi-core cluster.26 The proposed algorithms

heavily relies on code profiling, therefore hard to gener-

alize for a wider set of applications. Chen et al. propose

network monitoring techniques for guiding DVFS policies

to reduce energy consumption.27 Although the proposed

technique is based on monitoring the stress on the network

components, communication aspect has not been consid-

ered. In a recent work, Bogdan et al. propose an opti-

mal control algorithm for power management in MPSoCs

with multiple voltage/frequency islands.28 The proposed

algorithm models the power optimization problem as a

fractal-state equations rather than a linear model to take

into account the NoC aspects, such as queue utilization in

a network.

In this work we focus on single-chip many-core systems

with MP, and demonstrate that the communication patterns

of applications running on such systems strongly influence

the performance and energy tradeoffs of DVFS. We lever-

age this observation to devise an intelligent search algo-

rithm for finding the optimal voltage-frequency settings

J. Low Power Electron. 10, 1–19, 2014 3

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

for each core on many-core systems, while limiting the

search space and overhead. We conduct our experiments

on the SCC as the representative many-core system and

design an MP-aware DVFS policy based our analysis. The

experimental evaluation is conducted on blocking message

passing, as it is supported in SCC and is commonly used

in large scale HPC application.

3. PERFORMANCE, POWER AND
TEMPERATURE MEASUREMENT
INFRASTRUCTURE

Analyzing the impact of voltage and frequency scaling on

the energy efficiency of the SCC requires

(1) monitoring the performance and power of the system

at runtime and

(2) a software framework that connects the monitoring

results with DVFS actions.

The SCC includes unique hardware and software features

compared to off-the-shelf multi-core processors; thus, a

novel infrastructure is required to enable accurate and low-

cost runtime monitoring. This section discusses the rel-

evant features in the SCC architecture and provides the

details of our novel monitoring framework. While the

implementation described in this section is specific to the

Intel SCC, we believe that the core of the components of

the infrastructure would be highly relevant to other many-

core system platforms. In other words, the lessons learned

from designing the measurement infrastructure on the SCC

would provide guidance to researchers, who seek to build

similar measurement infrastructures.

3.1. Hardware and Software Architecture

SCC has 24 dual-core tiles arranged in a 6×4 mesh. Each

core is a P54C CPU and runs an instance of Linux 2.6.38

kernel. Each instance of Linux executes independently and

the cores communicate through a NoC. Frequency setting

of the tiles can be scaled individually, whereas the volt-

age can be scaled for groups of four tiles. Each core has

private L1 and L2 caches. Intra-core cache coherence is

managed through a software protocol as opposed to com-

monly used hardware MESI/MOESI protocols. Each tile

has a message passing buffer (MPB), which facilitates the

message exchanges among the cores. The entire system is

controlled by a board management microcontroller (BMC)

that initializes or shuts down critical system functions.

SCC is connected through a PCI-Express cable to a PC

acting as the Management Console (MCPC).

Each P54C core has two performance counters, which

can be programmed to track various architectural events,

such as number of instructions or cache misses at peri-

odic intervals. Performance counters can be accessed by

reading the dedicated registers that are available on each

SCC core. SCC system also includes reconfigurable exten-

sions. The NoC is connected to an FPGA through a router.

This FPGA chip can be used for adding useful features

that are not available in SCC. Currently the FPGA synthe-

sizes 48 atomic counters, one global time stamp counter

(GTSC), and a set of power measurement registers. All of

these registers are memory-mapped in the address space

of each core. BMC includes a power sensor that is capable

of measuring the full SCC chip power consumption. This

power sensor can be directly accessed from the SCC cores

through an emulated register in the FPGA.

SCC software includes RCCE library, which is a

lightweight message passing library developed by Intel and

optimized for the SCC.21 It uses the hardware MPB to

send and receive messages. In this way, it avoids using the

network layer abstraction and the TCP/IP protocol over-

head for exchanging messages among different physical

cores. RCCE provides message passing functions, which

implements a subset of MPI29 primitives on the SCC

hardware. This paper is not intended to compare RCCE

with MPI standard, but to explore the potential for MP-

aware power management strategies. At the lower layer,

the RCCE library implements two message passing primi-

tives RCCE_put and RCCE_get. These primitives move the

data from a local buffer to the MPB of another core and

move the data back from a remote MPB to local memory,

respectively.

Figure 1 demonstrates the full system setup including

the SCC and the MCPC, and also the monitoring frame-

work we have developed. On the SCC-side, we imple-

mented utilities to track performance counters, collect

power measurements, and log the message traffic. On the

MCPC-side, we developed custom softwares to load the

desired benchmarks and experimental configurations to

SCC and to analyze the collected data.

3.2. Software Modules Developed for Runtime

Monitoring and Analysis

• Monitor KDD: We developed a kernel module with two

kernel timers to sample the performance counters. The

module exports the collected data into the user space.

In comparison to instrumenting the application code, our

kernel module has the main advantage of decoupling

the core activity logging from the application execution.

In addition, the kernel timer ensures low overhead for sam-

pling the counters. We use a sampling interval of 100 ms

in our experiments.

• read_sensor: We wrote a user-space program that gath-

ers the performance counters from the KDD Monitor and

saves them into a log file. It executes in every 100 ms

with a negligible overhead (i.e., 54 �s@533 MHz and

75 �s@166 MHz for collecting each sample). The trace

collection can be triggered and stopped by sending the sig-

nal SIGUSR1 to the read_sensor process. The read_sensor

program also collects the GTSC counter values at the

beginning and at the end of its execution. The GTSC

counter provides a global time reference for all the cores

4 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

C

app-loader WL

stress

apps

RCCE read msg

read_sensor

read_power

#

MSG

policy

Frequency/

voltage load

Data

collector
F F F F change_freq

V change_volt

PI,

Pow

K

D

D

K

D

D

K

D

D

K

D

D

SW

HW

C

0

C

1

C

2

C

47

C

48

kernel

module
Post

processing

Shared file

system

FPGA

SCC

BMC MCPC

Fig. 1. SCC measurement framework. The figure demonstrates the SW components built for the SCC and the MCPC.

and it is not sensitive to frequency scaling. OS timers on

the SCC have known accuracy issues in the presence of

frequency changes. Thus, we use the GTSC value to mea-

sure the benchmark execution time.

• read_power: We designed a user-space program,

read_power, to gather the power meter measurements for

the cores, the routers, and the memory controllers. These

power values are collected by accessing the dedicated

memory mapped register in the FPGA in every second.

Note that the power meter only provides the power read-

ing for the whole SCC chip, and power measurements at

the tile or core-level are not available.

• change_freq: We designed a user-space program to

change the frequency of the cores. This program executes

on the core, where the frequency change is applied. The

new frequency value is passed as a parameter and written

in the frequency control register of the specific tile, which

directly changes the tile clock divider.

• change_volt: We designed a user-space program to

change the supply voltage of the different voltage islands.

The program executes on one core in two modes. The

first mode finds the minimum voltage that can be applied

to each voltage island. This mode is used after applying

a new set of frequency values to the system. For each

island, our program gathers the frequency of the different

tiles, computes the maximum frequency of these tiles, and

applies the minimum voltage required to sustain this fre-

quency. The second mode of the program is used for deter-

mining and applying the required minimum voltage value

before increasing the frequency of a tile.

• Message Logger: We modified the lower level

RCCE_put and RCCE_get routines in the RCCE library to

log the number of messages sent and the source/destination

of each message. At the end of each parallel thread, library

generates a log containing the communication matrix.

Each element in the matrix �mi� j� corresponds to the num-

ber of messages that corei has sent to corej . In addition, we

instrumented the RCCE library to trigger the read_sensor

daemon to start logging the performance counters at the

beginning of each parallel thread and to save the trace at

the end of the thread.

3.3. Software Modules Developed for MCPC

• Stress files: These files contain the frequency vector

and the benchmark sequence for the experiments. For

each benchmark, the stress file provides the name of the

benchmark, the number of threads, and the specific cores

to allocate the benchmark. The app-loader and the volt-

age/frequency loader load the files on the SCC to start the

experiments.

J. Low Power Electron. 10, 1–19, 2014 5

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

• App-loader: We wrote a set of Python scripts that run

on the MCPC to load the stress configuration files and to

start the execution of RCCE benchmarks on SCC.

• Policy: This script implements the energy-aware DVFS

policy. The script iteratively executes the target applica-

tion while changing the frequency and voltage settings

with the goal of increasing the energy efficiency. This is

done by triggering the App-loader and controlling the Volt-

age/Frequency loader. The specific policy we implemented

is discussed in Section 5.

• Voltage/Frequency loader: This script first loads the

stress file that contains the frequency setting for each core

in the SCC. The stress file can be defined offline or gen-

erated at run-time by the Policy. Next, it executes the

change_freq daemon remotely on each SCC core to apply

the new frequency setting and the change_volt to minimize

the energy consumption.

• Post-processing SW: We designed a software module

for processing the collected data. This module interfaces

with the app-loader and the frequency loader to receive

the experimental configuration. It also collects the logs and

parses them to extract useful statistics. The post-processing

software contains a front-end component written in Python

and a back-end part written in Matlab, which allows the

implementation of complex analysis functions. The post-

processing software also enables extracting empirical mod-

els that correlate frequency changes with performance,

energy, and temperature through mining a vast amount

of data, while enabling the performance evaluation of the

Policy.

4. DVFS ANALYSIS FOR PARALLEL

WORKLOADS RUNNING ON

MANY-CORE SYSTEMS

As many-core systems have distinct characteristics when

compared to multi-core systems, it is essential to choose

and design applications that can exploit the many-core

characteristics. Most of the multi-core benchmark suites,

such as PARSEC, SPLASH, are designed to evaluate

shared-memory architectures. Therefore, these application

suites are not suitable for assessing many-core systems

with MP. Furthermore, previous work already showed that

the communication density of these benchmark suites is

very limited to evaluate an MP-system.30 Thus, we use

both the existing many-core benchmarks and also custom-

designed micro benchmarks that can be programmed to

generate variety of communication densities on a many-

core system, which provides us a broader application

space. In this section, we provide details and analysis of

the benchmarks used in this work.

4.1. Application Space

We utilize a set of benchmarks to assess the performance

of the SCC under various operating conditions. These

benchmarks are derived from the ones presented in our

recent paper.11 In addition, we design programmable cus-

tom micro-benchmarks to stress different parts of the sys-

tem. We select the following applications and synthetic

benchmarks to evaluate various DVFS policies under var-

ious conditions:

Intel Many-Core Benchmarks:

• Share: Tests the off-chip shared memory access.

• Shift: Passes messages around a logical ring of cores.

• Stencil: Solves a simple PDE with a basic stencil code.

• Pingpong: Bounces messages between a pair of cores.

• NPB: NAS Parallel Benchmarks, LU and BT.

Programmable Custom-Designed Microbenchmarks:

• bcast: Broadcasts messages from one core to all other

cores.

• PairMP: This synthetic benchmark is derived from the

pingpong benchmark and allows us to generate various

message traffic densities across two different cores.

Table I categorizes the Intel benchmarks based on IPC,

L1 instruction misses, number of messages, and execu-

tion time. We normalize all measurements with respect to

the number of instructions executed. Each benchmark in

Table I runs on two neighbor cores on the SCC (i.e., only

2 cores active). We observe that share does not exhibit any

communication, therefore it is an example of a memory-

bound application. shift represents a message intensive

application and stencil represents a high-IPC application.

Finally, pingpong is a low-IPC application that generates

a high number of L1 cache misses. Note that stencil,

shift, share and pingpong benchmarks rely on the blocking

send/receive calls from the RCCE library.

We design the bcast benchmark based on pingpong,

which sends messages across cores, which enables us to

evaluate the message passing latencies. Instead of having a

source and a single destination as in pingpong, bcast sends

messages from a single core to multiple cores. PairMP

benchmark is a custom-designed application that combines

computationally intensive phases together with message

exchange phases. The messages are sent between the active

cores. This micro-benchmark can be configured to have

each corei sending Ni number of messages with differ-

ent sizes/densities (MDi� in each of the iterations (Ii� of

an arithmetic loop on the dataset with the dimension of

DDi. By configuring these parameters, it is possible to

Table I. Benchmark categorization.

Benchmark L1CM Time Msgs IPC

Share High High Low Low

Shift High Low High Medium

Stencil Low Low Low High

Pingpong High Medium Medium Low

BT Medium Medium Low Medium

LU Medium Medium Medium Medium

6 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

generate a large variety of message, memory and compu-
tation patterns. We can modulate the communication-to-
computation ratio by tuning Ni and Ii, while tuning the
DDi parameter allows us to change the memory access
locality, which modulating the IPC of the application. If
Ii is selected to be equal to zero, we can have a bench-
mark that only exchanges messages and we can maximize
its message density by increasing MDi parameter.

The programmable custom micro-benchmarks allow us
to test a wide range of communication patterns and com-
munication intensity scenarios. By leveraging both the
Intel benchmarks, NAS and the custom benchmarks, our
goal is to achieve an assessment over real-life workload
scenarios, as well as the significant corner cases. In the rest
of this section, we analyze the performance of the target
applications under various execution conditions. We uti-
lize the measurement framework presented in the previous
section (i.e., Section 3) to obtain the results.

4.2. Sensitivity on On-Chip Network Traffic

We analyze the sensitivity of the MP benchmarks to the
on-chip network traffic. We evaluate the sensitivity by con-
figuring the PairMP to maximize the message exchange
rate across two cores. We map the PairMP benchmark
threads in two central tiles with one link and two routers
in between and we measure the execution time. We then
iterate on the experiments by generating additional traf-
fic through the routers and link through executing addi-
tional PairMP applications around them. Since the routers
of SCC use a static x–y routing, allocating additional
PairMP applications on different tiles between the target
routers and link allows us to increase the message traffic.
Figure 2(a) shows the number of additional PairMP traffic
generator application pairs and the target PairMP bench-
marks (T). We perform the experiment by increasing the
number of PairMP traffic generator applications and each
of experiment is repeated N times, where N = 7.

Figure 2(b) shows the number of additional traffic gen-
erator applications on the x-axis, and the average, maxi-
mum and minimum execution time of the target PairMP
application for the different traffic congestions on the
y-axis. We notice that even though the mean execution
time for the target application is perturbed by the addi-
tional traffic, this perturbation is within the error range of
the execution time measurements. This shows that mes-
sage exchange in SCC using the RCCE library does not
saturate the link and router bandwidth and thus multiple
MP applications can be scheduled on distinct cores of SCC
without perturbing each other. Thus, we can neglect the
cross-interference across applications that are running on
the same chip. In the following analyses, we execute only
a single parallel application at any time.

4.3. Sensitivity on DVFS Scaling

In this section, we perform experiments to investigate how
different benchmarks behave under voltage and frequency

(a)

A
v
er

ag
e

ex
ec

u
ti

o
n
 t

im
e

[s
] 8.4

8.2

8

Average execution time

Max
Average
Min

7.8

7.6

7.4

7.2

7

6.8

(b)

0 1 2 3 4

of traffic generating pairs

Fig. 2. (a) Network topology for the traffic generation, (b) MP applica-

tion sensitivity on NoC router/link congestion.

perturbation. For this experiment, we execute each of the

Intel many-core benchmarks on two cores of the SCC. One

of the cores (coreA) is always Core 0 (i.e., corner core),

while the second one (coreB� moves step by step towards

the opposite corner from 1-hop distance to 8-hop distance

in the SCC floorplan. Then, for each of these configura-

tions we perturb frequency of the tiles of the running cores

to generate the following frequency patterns: {tileA, tileB}:

{fmin� fmin}, {fmax� fmin}, {fmin� fmax}, �fmax� fmax�. In our

experiments, fmax is 800 MHz and fmin is 166 MHz. We

execute two runs of the entire test, one without voltage

scaling and the other with voltage scaling.

In both the 1-hop and 8-hop settings, two cores are in

different voltage islands, thus the voltage can be scaled

independently for both of the cores (coreA, coreB).

In Figure 3, we report the execution time overhead

(rows 1 and 4), the full chip power savings (rows 2

and 5) and the energy saving for both the frequency scal-

ing and the voltage and frequency scaling (rows 3 and 6).

In addition, we probe the instructions per second (IPS)

(row 7), message density (row 8) and memory access den-

sity (row 9). For the first three metrics, the baseline has

the �fmax� fmax� setting and coreA tile is adjacent to coreB

tile. The message density is computed as the number of

messages sent and received by a given core divided by the

total number of instructions, whereas the memory access

density is computed as the ratio of the non-cacheable

J. Low Power Electron. 10, 1–19, 2014 7

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

400

300

200

100

0

Near Far

Benchmark parameter measurements

Exectution time overhead [%]

DFS

50 Power saving [%]

25

0
0

–50
–100
–150
–200
–250
–300

400

DVFS

300

200

100

0

100

75

50

25

0

100
50
0

–50
–100
–150
–200

4.08 × 108

10 × 105

Energy saving [%]

Exectution time overhead [%]

Power saving [%]

Energy saving [%]

3.06

2.04

1.02

0

7.5

2.5

5

0
0.06

0.045

0.030

0.015

0

Instruction per second

Message density

Memory read access

density
A:fmin B:fmin
A:fmin B:fmax
A:fmax B:fmin

Broadcast BT LU Share StencilShiftPingpong

A:fmax B:fmax

Fig. 3. Sensitivity of Intel many-core benchmarks to voltage and frequency scaling.

memory read performance counter over the total number

of instructions.c

In Figure 3, we show the results of the stress patterns for

nearest and farthest position of core
B
(denoted as “near”

and “far”). On the top, we report the metrics computed for

the frequency scaling test (DFS), whereas on the center

plots we report the results for the voltage and frequency

scaling case (DVFS). bcast is an asymmetric benchmark,

meaning that the communication direction is always from

a source core to a destination, and has a high message den-

sity. In contrast to the other benchmarks, the performance

loss for bcast when only one core has lower frequency

is significantly lower when core
B
(the destination core) is

slowed down. This is not the case for the other bench-

marks, as other benchmarks include bi-directional commu-

nication among cores. In addition, bcast strongly benefits

from running both cores at the same frequency, as the exe-

cution time overhead and the energy are lower compared

to running cores at different frequencies.

Pingpong and share show similar trends even though

they are significantly different applications. Their execu-

tion times have lower sensitivity to frequency changes

compared to other benchmarks. For share, this effect can

be explained by its low IPS. Also, the memory read access

cNote that SCC does not include a performance counter to track the

L2 miss rate. We tested the memory read performance counter with

microbenchmarks and verified that there is a strong correlation with off-

chip memory access.

statistics show that share is memory-bound. On the other

hand, shift has high message density and its execution time

strongly depends on the core frequency, which is similar to

bcast stencil has low memory access density and high IPS.

Therefore, stencil’s throughput decreases significantly, as

we scale down the frequency of one core. In addition, sten-

cil’s execution time increases when running on cores far

from each other, which is similar to share. This increase

is mainly due to the usage of the shared memory buffers

allocated off-chip (for share) or in the MPB (for stencil).

For stencil, increasing the distance reduces the through-

put (IPS) considerably. The slow-down saturates when just

one core runs at low frequency. In this case, scaling down

the other core does not affect the execution time, as stencil

uses barrier synchronization. BT and LU exhibit similar

behavior, even though they are characterized by a signifi-

cantly lower IPS that translates into a lower execution time

overhead when running at lower frequency.

Furthermore, DFS always increases the energy con-

sumption compared to DVFS, as the execution time over-

head is higher than the power saving. We can also note

that all the benchmarks benefit from matching the core

frequencies. In fact, for most of the benchmarks we see

significant energy savings, when moving from only one

core operating at low frequency to both cores operating at

low frequency. An unbalanced frequency configuration can

lead up to 2× energy efficiency loss for the DFS case. The

same consideration holds for the DVFS case. We notice

that operating only one core at low-voltage and frequency

8 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

often translates to a energy loss up to 150%, whereas

equally scaling the voltage and frequency of the cores

leads to a significant power saving up to 30% for stencil.

From the same plots, we also notice that the higher energy

savings are achieved by the applications that have lower

IPS, as the impact of DVFS on m. In addition, employ-

ing DVFS causes variation on the power consumption of

coreA and coreB at lower frequencies. As this effect was

not present in the DFS case, it suggests that even if the tiles

are configured with the same voltage setting the two cores

might have a mismatch in the power consumption. This

can be due to either a mismatch in the voltage regulator

performance or process variation that becomes more sig-

nificant at lower voltages. By looking at the energy saving

plots for the DVFS case, we notice the energy savings is

a non-linear and non-convex function on the cores voltage

and frequency scaling. Indeed, if only one core is scaled

the energy increases, whereas if both the cores are scaled

together energy consumption is significantly reduced.

These analyses highlight the importance of predicting

the impact of a generic frequency perturbation on the

execution time of a parallel benchmark. In addition, our

observations suggest that the message density, IPS, and

frequency selections are the major factors determining the

execution time.

4.4. Modeling of Many-Core Applications with MP

In this section we present the results of our modeling anal-

ysis to verify the feasibility of capturing the relationship

between the energy savings, the voltage-frequency settings

and the application characteristics by an empirical model.

If this model exists and has good accuracy, it is possible

to predict the energy saving for given a frequency pattern,

which then can be exploited by an optimization step to

find the optimal DVFS settings for a given application. On

the contrary, if this empirical model cannot be learned, the

M
e
m

o
ry

d
e
n
s
it
y

Random span test

10–2

10–3

10–4

10–2

10–1

100 10–6
10–5

10–4
10–3

10–2

Core 0
Core 1
BT LU
Ping pong
Shift
Stencil
Bcast
Share

Message densityIPC

Fig. 4. PairMP-based dataset versus Intel many-core benchmarks—CPI, message density and memory access density—log space.

energy saving policy can only be reactive (i.e., based on a
feedback loop) and optimized through heuristics.

For this purpose, we randomly generated 310 instances

of the PairMP benchmark and executed on the 1-hop con-
figuration. Then, for each application instance, we per-

turbed the frequency of the tiles of the running cores to

generate the following frequency patterns: {tileA, tileB}:
�fmin� fmin�, �fmax� fmin�, �fmin� fmax�, �fmax� fmax�. In our

experiments, fmax is 800 MHz and fmin is 166 MHz.
Figure 4 shows the IPC (Instruction per Cycle), mes-

sage density (# messages/# instruction retired) and mem-

ory access density (# of memory access/# instruction
retired) space for each PairMP instance, when compared

to the Intel many-core benchmarks. This indicates that

we obtained a good coverage of all the Intel many-core
benchmarks.

Figure 5(a) shows for each dataset instance on the
x-axis the execution time slowdown and on the y-axis it

shows the energy savings. Different colors/markers refer

to different {tileA, tileB} frequency and voltage settings.
Figure 5(a) shows that for given a frequency/voltage set-

ting, the energy savings are linearly proportional to the

execution time slowdown. This allows us to simplify the
task of modeling the energy saving by translating it into

modeling the execution time slowdown. Figure 5(b) shows
the sum of the frequency of the two cores (frequency

accumulation) (x-axis) and the power savings (y-axis) for

each instance of the dataset. Figure 5(b) shows, the power
consumption is dominated by the DVFS level and it is

robust to different application characteristics, as for each

frequency level the values are clustered. As highlighted in
previous section, we see that the power consumption of

the two cores (coreA, coreB) is not symmetric, and TileA is
less efficient than TileB at low voltages.

We combine these results in a dataset composed of

310× 4× 2 instances. Each instance (i) of the dataset
is a tuple composed of (yi� xi

0� � � � � x
i
k), where y is the

J. Low Power Electron. 10, 1–19, 2014 9

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

E
n

e
rg

y
 S

a
v
in

g
P

o
w

e
r

s
a

v
in

g

(b)

1

Entire dataset−energy saving vs. slow down

0

−1

−2

−3

−4

−5

−6
−2 0 2 4 6 8 10

(a)

Slow down

0.9

0.8

0.7

Entire dataset−power saving vs. frequency settings

0.6

0.5

0.4

0.3

0.2

0.1

0
200 400 600 800 1000 1200 1400 1600 1800

Frequency accumulation

800−800 MHz
800−160 MHz
160−160 MHz
160−800 MHz

800−800 MHz
800−160 MHz
160−160 MHz
160−800 MHz

Fig. 5. Energy savings versus execution time slowdown/power con-

sumption versus frequency.

execution time slowdown with respect to the case when

both the cores have maximum frequency and xk is the k-th

application parameter. We use this dataset to perform a

modeling exploration with the goal of identifying an exe-

cution time model that is capable of estimating the perfor-

mance loss given the workload/application parameters and

the frequency scaling factor for the communicating cores.

We post-process a set of xk application parameters/metrics

from the original traces to be used as the input to the

model learning phase. These parameters/metrics are:

• CpiT, CpiC are respectively the clock per instruction of

the target core and the communicating core;

• CpiAVG is the average of the CPI computed in between

the target core and the communicating core;

• CpiDIFF is the module of the difference in between the

CPI of the target core and the communicating core;

• MSGSZ×IST is total number of bytes received by the tar-

get core divided by the total number of instruction retired

by the target core;

• MEMACC×IST is the total memory access over the total

instruction retired by the target core;

• MSGSENT×RCV is the ratio between the messages sent and

the messages received by the target core;

• FreqSF�T, FreqSF�C is respectively the frequency scaling

factor for the target core and the communicating core.

We then select three different model templates, namely

(1) a linear model (LIN),

(2) an artificial neural network (ANN), and

(3) an analytical model (AM).

All the three models are in the form of ŷ = f �x̄�, where

x̄ is a set of the metrics defined above and the ŷ is the

predicted execution time slowdown of the target core (y).

The linear model is a linear combination of the input

x̄ parameter ŷ = a0+
∑N

i=1 ai ∗xi where N is the number

of input parameters. The coefficients ai are computed by

solving a linear least square problem. The artificial neural

network is composed by one hidden layer, with a tansig,

sigmoid, tansig activation functions respectively for the

input layer, hidden layer and output layer. The input layer

has 2N neurons, the hidden layer has N neurons, while

the output layer has only one neuron. We split the dataset

into a training and validation one that respectively are the

80% and 20% of the original dataset obtained by random

sampling. We select the optimal set of input parameters

by performing a feature selection pre-processing step in

Matlab and use the relative error computed in the train-

ing dataset as the performance metric. We show the final

input parameter generated as output of the feature selec-

tion step in Table II. The analytical model is chosen in

between different model templates following the intuition

that the slowdown of MP benchmark execution time will

be a composition of the independent slowdown induced by

the frequency scaling on the target core and the commu-

nicating core. The model template is described in Eq. (1)

ŷ = yT · yC (1)

yT = 1−

(

a1

CPIT

)a2

−

(

a1/FreqSF�T

CPIT

)a2

(2)

yC = 1−

(

a3

CPIC

)a4

−

(

a3/FreqSF�C

CPIC

)a4

(3)

Both the yT and yC are equal to one when no DVFS is

applied (FreqSF�T, FreqSF�C = 1). Then it produces a slow-

down inversely proportional to the CPI of the frequency

scaled thread. We then compute the model parameters ai

by solving a non linear least-square problem in Matlab

using the Levenberg-Marquardt algorithm.

Table II shows the model accuracy in predicting the

execution time slowdown for the validation dataset. The

model accuracy is evaluated as the average relative error in

between the predicted execution time and the real one. Our

first observation is that the non-linear models (ANN,AM)

achieve a better fitting than the linear model (LIN). Even

if the NN has the best accuracy, its relative error is sig-

nificant, which is almost 15%. As we will discuss in next

Table II. Model fitting results on the validation dataset.

Average relative

Model type error (%) Input metrics

Linear 30.5 FreqSF�T, MEMACC×IST, CpiAVG , FreqSF�C
Analytic 26.7 FreqSF�T, CpiC , FreqSF�C, CpiT
Neural 14.9 CpiC , CpiAVG , CpiDIFF , MSGSZ×IST ,

network MEMACC×IST, MSGSENT ×RCV ,

FreqSF�T, FreqSF�C

10 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

section, this low accuracy prevents the usage of predictive

resource management policies. In addition, all the models

depend on both the cores (i.e., target and communicating)

frequency (FreqSF�T, FreqSF�C). This demonstrates that the

communicating cores’ operating points have a large impact

on the final execution time. In the next section, we explain

our proposed reactive MP-aware power management algo-

rithm that takes advantage of this information to find the

optimal energy frequency scaling for the active cores.

5. PROPOSED POWER MANAGEMENT

POLICY FOR MANY-CORE SYSTEMS

WITH MP

The previous section highlights the difficulties in gathering

an accurate predictive model that estimates the energy sav-

ings and performance overhead given the characteristics of

an MP parallel application and the cores’ frequencies. This

clearly limits the applicability of a predictive and model-

based power management strategies to parallel benchmarks

based on MP. On the other hand, application domains

for which the same application is executed repetitively on

the same device can take advantages from iterative power

management strategies that tunes at every execution of the

same application, by adjusting the frequency of each core

with the goal of minimizing the energy consumption of the

application, while ensuring target performance goal.7 SCC

HW can be exploited to evaluate the efficacy of feedback

loops based on the direct measurement of power consump-

tion and execution time of each application run. Based on

these information, the frequencies of the cores are modu-

lated to minimize the full system energy consumption.

A parallel application with N threads that is mapped

on N cores placed in M frequency islands (N ≥M) can

be configured to L different frequency levels. If we con-

sider a fixed mapping, the search space has the dimension

of M ×L. For parallel applications composed by inde-

pendent threads, the total energy consumption decreases

linearly with the energy consumption reduction of each

single thread. In other words, the minimum energy can be

found by independently scaling the frequency of each fre-

quency island and applying the minimum voltage allowed

in each voltage island. These properties do not hold for MP

parallel applications, for which the energy consumption

is shown to be a non-linear and non-convex function of

the tiles voltage and frequency, as depicted in Section 4.3.

Therefore, the minimum energy point cannot be found by

scaling the cores individually, which lead to energy loss in

most of the cases.

In this section, we present a novel MP-aware power

management technique that extracts the communication

map of the parallel benchmark and reduces the DVFS

search space by forcing the communicating threads to

scale the frequency simultaneously. We evaluate the bene-

fits of this solution against the techniques that neglect the

communication information.

If specific information on the application is not avail-

able, the simplest policy is scaling the frequency of the

multicore, first individually in each tiles, then in larger

groups of tiles with increasing dimensions. This basic pol-

icy (i.e., baseline) is presented in Section 5.1. Due to the

large number of voltage and frequency islands in SCC, the

dimensions of the search space is too large to be exhaus-

tively searched by this algorithm in finite time and this

may lead to sub-optimal solutions. A smarter approach is

to randomly select the search direction. This policy is pre-

sented in Section 5.2 and we call it random policy. Finally,

in Sections 5.3 and 5.4 we take advantage of the MP mid-

dleware to extract the message exchange map and using it

to force the communicating cores to scale their frequency

homogeneously. We present two different implementations

for the message passing aware policy: (1) one considers

the communicating cores to be the one with direct mes-

sage exchange only (Section 5.4) and (2) the other that

considers as communicating cores also the ones that are

indirectly connected (Section 5.5).

Figure 6 depicts the general flow of the presented energy

management policies highlighting their common parts.
• Configuration: Configuration module is composed of a

set of configuration files that define the application to be

executed and its running parameters (i.e., the number of

threads), the mapping of the threads to the active cores and

the initial frequency map (active tiles at fmax and idle tiles

at fmin, where fmax = 800 MHz and fmin = 160 MHz).d

• Initialization: First the freq/volt. loader applies the fre-

quency pattern defined in the config file.

To avoid voltage/frequency inconsistencies, at each fre-

quency change first the voltage is set to the maximum

level for each voltage island and then the frequencies are

changed. Consequently for each voltage island, the voltage

is lowered to support the maximum frequency of the tiles

in the voltage island. Then, the app. loader launches the

application specified in the config files. When finished the

data collector accesses the logging traces of each active

core (i.e., the power traces, the CPI traces, execution time

data, number of messages sent and received) and com-

putes different metrics according to the policy require-

ments (i.e., energy consumption, EDP, MP communication

matrix, application execution time). These metrics are then

saved as the reference one and will be used later by the

policy to make decisions.
• Policy initialization: The policy initialization, as will be

described later for the different policies, selects the first

group of tiles to start scaling the frequency and creates a

new frequency config file accordingly.
• Main loop: This loop executes until the number of iter-

ation is below the maximum value (IMAX).

Internally the loop first applies, by means of the

freq/volt. loader, the new frequency configuration then in

dActive tiles/cores execute an application thread and the idle tile/cores

are on but do not run any application.

J. Low Power Electron. 10, 1–19, 2014 11

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

Core

Mapping
APP.

Initial

frequency I = 0

Freq/volt loader

App-loader

Data collector

Freq,Vdd settings

Threads

Reference

values
Extime Energy

Policy Init

Time, Pow,

CPI, Msg, Mem

Time, Pow,

CPI, Msg, Mem

I = 1

New

frequency

EXIT I < IMAX

NO

YES

Freq/volt loader

App-loader

Data collector

Freq, Vdd settings

Threads

Iteration

values
Extime Energy

Policy

I += 1

Fig. 6. Flow graph of the proposed energy management policies.

sequence executes the application through the app. loader,

collects the results with the data collector and computes

the new performance metrics (i.e., application execution

time and energy consumption) for the current iteration I .

These current metrics are then used by the policy together

with the reference one to decide the new frequency config-

uration for the next iteration. Once the IMAX iterations is

reached, the best run in terms of energy savings is selected

for the following re-execution of the application.

5.1. Baseline Policy

If no information on the internal synchronization and

communication of a parallel application is available, the

simplest policy is to sequentially scale the frequency of

an increasing set of active tiles. As the number of core

increases, the effectiveness of the policy is reduced by the

dimension of the search space. Figure 7 depicts the work-

ing principles of the policy by describing the initialization

phase (policy_init) and the main loop (policy) components

of the policy.

During the initialization phase, as depicted in Figure 7,

the iteration counter I is set to zero and the policy com-

putes the reference energy En(0) and stores its value.

Then the list of active cores is extracted and stored as

a list of active tiles (ATILE) from the core mapping file.e

eFrequency can be scaled only at tile’s granularity on our experimental

platform.

12 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

Init

Compute first-run energy

Extract the set

of active tiles:

YES! If NO!Compute the first

simple combination of
Compute a random

combination of

Compute a random

combination

New

frequency

New

frequency

New

frequency

(a) Policy lnit (b) Policy

Fig. 7. Baseline and random flow graph.

The baseline policy (i.e., dashed red line in Fig. 7) uses

this information to compute a list of simple combination

of the ATILE elements with an increasing number of ele-

ments (C�·�). The number of combination tuples is equal

to the number of maximum iteration specified in the pol-

icy (IMAX). The initialization phase will then select the

first combination present in C and for each tile present

in it will scale down the frequency of one step. This is

implemented by writing the new frequency values in the

new frequency config file. The policy will use an internal

index ATILEIDX to refer to the last combination used. The

initialization policy will then store as output the combi-

nation set C�·�, the last combination index ATILEIDX, the

energy consumption of the reference execution En(0) and

the new frequency configuration file.

As shown in Figure 7(b), inside the main loop during

the I -th iteration, the policy receives the application exe-

cution time for the current iteration (ExTime(I)) and for

the reference one (ExTime(ref)), the new frequency, the

combination set (C�·�), last combination index ATILEIDX

and the energy consumption of the previous execution

En(I − 1) as inputs. Starting from the application execu-

tion time the policy computes the performance overhead

ExTimeOVER with respect to the reference application exe-

cution time. This value measures the slowdown of the

application due to the frequency scaling configuration that

has been applied during the last iteration (I). The slow-

down is compared with respect to the maximum frequency

run. If this value is lower than a maximum tolerated slow-

down for the application execution time (MAXET) and

there has been an energy saving w.r.t. previous iteration

En(I� < En�I−1�, the frequency of the tiles present in the

previous combination tuple (C�ATILEIDX�) are scaled down

by another step. The new frequency configuration is saved

as a new frequency configuration for the next iteration.

If the latest frequency configuration have produced

an execution time overhead (ExTimeOVER� that is bigger

than the maximum allowed one (MAXET) or an energy

loss, the policy will roll back the frequency configura-

tion by increasing the frequency of the last combina-

tion tuple (C�ATILEIDX�), increasing the last combination

index ATILEIDX and select a new tile combination tuple

C�ATILEIDX�. Then for each tiles in the tuple, the frequency

is decreased by one step and the new values are updated

in the new frequency configuration file.

5.2. Random Policy

As previously introduced, while the number of active tiles

increases the efficacy of the baseline policy to explore

the optimization search space decreases, as it moves lin-

early in between all the possible combinations. To have

a better comparison for our MP-aware proposed solu-

tion, we implement a second baseline policy that ran-

domly generates the active tile combination tuple to scale

their frequency. The main building blocks of this policy

are reported in Figure 7 with the purple dashed line. As

Figure 7 shows, the main difference with the previous pol-

icy is in the initialization part, during which the combi-

nation of the active tiles are randomly computed CRND.

J. Low Power Electron. 10, 1–19, 2014 13

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

The random combination is composed by a random num-

ber of elements, each one containing a random active tile

index. Then only unique values are used. These values are

then stored for future use. This computation is repeated

along the false path of the policy main loop, when after

the previous frequency configuration is restored the policy

computes a new random tile combination CRND and scale

down the frequency for each tile present in the set.

5.3. Proposed MP-Aware Policy

The two baseline policies presented in the previous subsec-

tions neglect the parallel nature of the MP applications and

the interdependency of the threads generated by its com-

munication exchange as described in Section 4.3. For this

reason, we present a novel policy that exploits the commu-

nication patterns during the frequency selection. Figure 6

describes the main components of our policy.

Figure 8(a) shows that during the initialization phase

the MP-aware policy computes the reference energy En(0),

and the list of active tiles (ATILE). From each message

exchange log of each active tile, the policy computes the

communication matrix MMSG in which each elements mi� j

contains the number of messages sent by the core i to

the core j . The policy then initializes the internal index

ATILEIDX to point to the last active tile selected by the pol-

icy. The policy initialization phase concludes by accessing

the first row of the communication matrix MMSG and gen-

erating the new frequency configuration by scaling down

of one step the frequency of tiles corresponding to each

Compute first-run energy

Extract the set

of active tiles:

From #msg of extracts the
communication matrix:

Compute the fully connected

communication matrix

New

frequency

Policy lnit(a)

New

frequency

YES!
If

NO!

New

frequency

Policy

Policy(b)

Fig. 8. MP-aware and fully connected MP-aware policy flow graph.

non zero element in the selected row MMSG �i = ATILEIDX,

j = x). In the main loop, at the I -th iteration the MP-aware

policy as shown in Figure 8(b) uses the precomputedMMSG

matrix and the current active tile index ATILEIDX to update

the frequency accordingly to the condition on the energy

consumption En(I� <En(I1) and execution time overhead

ExTimeOVER <MAXET as described in Section 5.1.

5.4. Proposed Fully Connected

MP-Aware Policy (MP-FC)

The presented MP-aware policy considers only the direct

communication relation and neglects the interference of

threads that are indirectly communicating. Indeed it may

be the case that coreA sends messages to coreB and coreB
sends messages to coreC . We call the communication

in between the coreA and coreC indirect. The presented

MP-aware policy simultaneously scales the frequency of

coresA�B and in a different iteration the frequency of

coresB�C . This is sub-optimal as the coreC is indirectly

influenced by the coreA frequency scaling. To account

for this situation, we propose a variant of the MP-aware

policy called fully connected (MP-FC policy) that takes

advantage of the properties of the adjacency matrices to

derive from the connection matrix the fully connected tiles.

Indeed, the i-th power of M i
MSG represent the i-th indi-

rect level of communication. By summing the first ATILE

powers of the communicating matrix, we can derive a new

communicating matrix that has the mi� j element differ-

ent from zero where there is a direct or indirect link in

14 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

N
o
rm

a
liz

e
d
 e

n
e
rg

y

1.0

0.8

Energy comparison-50% performance constraint

Baseline
Random
MPI-aware
MPI-aware (FC)

0.6

0.4

0.2

0

bt share shift stencillu

N
o
rm

a
liz

e
d

E

D
P

EDP comparison-50% performance constraint

1.0
Baseline
Random
MPI-aware
MPI-aware (FC)

0.5

0
bt share shift stencillu

Fig. 9. Energy and EDP comparison of various policies with 50% maximum performance degradation constraints, running on 4 cores on different

voltage and frequency island.

between the i-th and j-th core. This step is described with

a dashed line in Figure 8(a). The rest of the policy behaves

identical to the MP-aware policy.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed MP-aware tech-

niques (i.e., MP-aware and MP-aware fully connected

(MP-FC)) against the baseline and random DVFS policies

that are explained in Section 5. We run all the experi-

ments on the Intel SCC platform and compare the energy

and energy-delay products (EDP) of various policies for

all the Intel many-core benchmarks presented in Section 4,

namely BT, LU, share, shift, stencil. We iterate the pol-

icy for a maximum of ten iterations IMAX and the result

shows the average of the different performance metrics on

these ten iterations.

First, we evaluate the policies under various per-

formance constraints (i.e., maximum performance

degradation-MAXET—of 20% and 50%). Second set

of experiments evaluate the policies, when threads are

mapped onto the cores that are on the same voltage island.

Finally, we evaluate our technique for a higher level

of parallelism, in which we run the workloads with 16

threads. In all experiments, we normalize the energy and

EDP with respect to the reference case. In this reference

case, we run the workloads at the maximum frequency

N
o
rm

a
liz

e
d
 e

n
e
rg

y

1.5

1.0

Energy comparison-20% performance constraint

Baseline

Random

MPI-aware

MPI-aware (FC)

0.5

0

bt shiftlu share stencil

N
o
rm

a
liz

e
d

E

D
P

EDP comparison-20% performance constraint

2.0

1.5

Baseline

Random

MPI-aware

MPI-aware (FC)

1.0

0.5

0

bt shiftlu share stencil

Fig. 10. Energy and EDP comparison of various policies with 20% maximum performance degradation constraints.

setting, while keeping the inactive cores at the minimum

one. We compare all cases with respect to a baseline

experiment, in which we run the applications with 4

threads running on different voltage islands under 50%

performance constraint.

6.1. Reference Case

Figure 9 compares the policy for the reference case, where

all the applications are parallelized on 4 threads and allo-

cated to different voltage islands. We report the average

energy savings (left plot) and the EDP savings (right plot)

for each application and policy. As Figure 9 shows, all the

policies lead to an energy and EDP saving and the degree

of savings depend on the application characteristics. The

baseline and the random policies behave similarly due to

the fact that the reduced number of active tiles does not

stress the scalability limits of the baseline policy. Same

observation applies to the MP-aware policy, which outper-

forms the baseline and random policy and achieves up to

10% energy and EDP savings on average. Furthermore,

MP-aware policy and the fully connected (MP-FC) policy

exhibit similar behavior for BT and LU. This behavior can

be explained by the fact that all the threads are directly

connected in BT and LU. However, this is not the case for

share, shift and stencil. Figure 9 also shows that the purely

MP-aware policy is less effective then the baseline policy

in some cases.

J. Low Power Electron. 10, 1–19, 2014 15

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

N
o
rm

a
liz

e
d
 e

n
e
rg

y

1.5

1.0

Energy comparison-50% performance constraint-same

voltage island

Baseline
Random
MPI-aware
MPI-aware (FC)

0.5

0

bt stencillu share shift

N
o
rm

a
liz

e
d

E

D
P

EDP comparison-50% performance constraint-same

voltage island

2.0

1.5

Baseline
Random
MPI-aware
MPI-aware(FC)

1.0

0.5

0

bt stencillu share shift

Fig. 11. Energy and EDP comparison of various policies with 50% maximum performance degradation constraints, when threads are scheduled on

the same voltage island.

6.2. Low Performance Constraints

As the energy savings and EDP improvements vary under

performance constraints, we evaluate the policies under a

lower performance constraints. We evaluate the maximum

performance degradation (MAXET) of 20% in Figure 10.

When comparing them with the results of (MAXET) of

50% (see Fig. 9), we notice that all the policies lead to

lower energy and EDP savings under lower performance

constraints.

For both the baseline and the random policies, the aver-

age energy is increased up to 1�2× and 1�4× for BT and

stencil respectively. This energy increase is due to the fact

that these policies provide intermediate voltage and fre-

quency patterns, which lead an increase of overall energy

consumption that is not compensated by the energy sav-

ings achieved by the optimum configurations. In terms of

EDP, the baseline and random policy provides improve-

ment only for share that is memory bound. For the other

applications, these policies lead almost up to 2x perfor-

mance degradation for stencil, which is a CPU bound

application. For the same performance constraint, the pro-

posed MP-aware policies consistently lead to energy sav-

ings. EDP plot also shows that the pure MP-aware policy

does not bring any benefits for the applications that exhibit

complex commutation patterns (i.e., share, shift, stencil),

therefore increase the EDP for shift and stencil, which are

N
o
rm

a
liz

e
d
 e

n
e
rg

y

1.0

Energy comparison-50% performance constraint-16 cores

Baseline
Random
MPI-aware
MPI-aware (FC)

0.5

0

bt shiftlu share stencil

EDP comparison-50% performance constraint-16 cores

N
o
rm

a
liz

e
d

E

D
P

2.0

1.5

Baseline
Random
MPI-aware
MPI-aware (FC)

1.0

0.5

0

bt shiftlu share stencil

Fig. 12. Energy and EDP comparison of various policies with 50% maximum performance degradation constraints, running on 16 cores.

not memory bound. On the other hand, the fully connected

MP-aware policy outperforms the pure MP-aware policy

and consistently leads to increased energy and EDP sav-

ings. Energy consumption and the EDP is reduced by 20%

for share, whereas energy is reduced by 30% and EDP by

10% for stencil.

6.3. Mapping on the Same Voltage Island

Mapping the threads on separate voltage islands enables

us to set v–f independent pairs for each individual thread.

However, in a real-life scenario, there might be con-

straints that prevent mapping the threads on separate volt-

age islands, such as security or availability of the cores.

Furthermore, the underlying hardware might not support

changing the frequency and voltage settings of the indi-

vidual cores. Therefore, in the following experiments, we

evaluate our technique on a configuration, where we sched-

ule the threads on the same voltage islands.

Figure 11 shows the experiments, for which the four

threads are scheduled on the same voltage island and on

two tiles/frequency island. As Figure 11 shows, the base-

line policy does not provide any energy or EDP savings.

This is due to the fact that the frequency scaling on a sin-

gle tile prevents the voltage island to run at lower voltages.

Furthermore, the random policy causes performance loss.

On the contrary, both of the MP-aware policies exhibit

16 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

benefits from this mapping and provide similar energy and

EDP benefits. This is due to the fact that the each tile

have more direct connections by grouping all the cores in

a lower number of tiles. This leads to similar trends for

both the energy and EDP savings. In this case, the average

energy consumption for both the MP-aware policies and

for all the applications is decreased by 25% and the EDP

saving is higher than 50% on average.

6.4. Higher Levels of Parallelism

In these set of experiments, we evaluate the impact of

the proposed techniques for a higher level of parallelism,

where we run the workloads with 16 threads running on

16 cores. For higher number of threads, baseline and ran-

dom policy perform worse than the reference case, except

for share that is memory bound. As baseline and ran-

dom policies scale down the frequency setting of each

core separately, reaching to the minimum energy/EDP for

higher number of cores requires significant amount of

iterations to converge to a minimum energy/EDP setting.

However, MP-awareness allows us to reach to a min-

imum energy/EDP point much faster by scaling down

the frequency settings simultaneously for the cores that

are communicating. The fully connected MP-aware policy

provides up to 65% lower energy for the benchmarks that

have indirect communications. For these cases, the pure

MP-aware policy does not always lead to energy and EDP

savings, whereas the MP-aware (FC) consistently provides

energy savings (between 50% and 70%) and significantly

reduces the EDP for the applications that are not CPU

bound and provides up to 30% EDP savings for strongly

memory bound applications.

7. CONCLUSION
In this paper, we explored the dynamic voltage and fre-

quency scaling implications on a many-core system run-

ning MP applications using blocking communication. We

first analyzed the performance and main characteristics

of MP applications, when subject to a voltage and fre-

quency changes. We demonstrate that the energy savings

through DVFS is significantly higher for MP applications,

when the communicating cores are scaled simultaneously,

which implies that designing communication-aware poli-

cies is essential for achieving energy efficiency on many-

core systems. We show that the achievable energy savings

at a given DFVS setting cannot be easily modeled with

standard learning strategies, which prevents the use of

advanced predictive power management techniques. To

overcome this limitation, we present novel MP-aware

power management policies that extract the communi-

cations patterns and use this information to guide the

voltage and frequency scaling decisions. We show that

the MP-aware policies consistently lead to energy-delay-

product reductions while achieving the same performance,

when compared to power management strategies that are

not communication-aware. When threads are grouped in

the same voltage island, MP-awareness leads to an aver-

age EDP savings of 50% for lower levels of paral-

lelism (4-thread execution), and up to 70% EDP savings

for applications with higher levels parallelism (16-thread

execution).

Acknowledgments: This work was supported, in parts,

by the EU FP7 ERC Project MULTITHERMAN (GA n.

291125) and the EU FP7 Project Phidias (GA n. 318013).

References
1. K. Flautner and T. Mudge, Vertigo: Automatic performance-setting

for linux, Proceedings of the 5th symposium on Operating systems

design and implementation, OSDI’02, ACM, New York, NY, USA

(2002), pp. 105–116.

2. K. Choi, R. Soma, and M. Pedram, Dynamic voltage and frequency

scaling based on workload decomposition, Proceedings of the 2004

International Symposium on Low Power Electronics and Design,

ISLPED’04, ACM, New York, NY, USA (2004), pp. 174–179.

3. C. Isci, G. Contreras, and M. Martonosi, Live, runtime phase mon-

itoring and prediction on real systems with application to dynamic

power management, Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO 39, IEEE

Computer Society, Washington, DC, USA (2006), pp. 359–370.

4. G. Dhiman and T. S. Rosing, Dynamic voltage frequency scaling for

multi-tasking systems using online learning, Proceedings of the 2007

International Symposium on Low Power Electronics and Design,

ISLPED’07, ACM, New York, NY, USA (2007), pp. 207–212.

5. H. Jung and M. Pedram, Supervised learning based power manage-

ment for multicore processors. Trans. Comp.-Aided Des. Integ. Cir.

Sys. 29, 1395 (2010).

6. H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, Message pass-

ing versus distributed shared memory on networks of workstations,

Proceedings of the IEEE/ACM SC95 Conference, Supercomputing

1995, IEEE (1995), p. 37.

7. R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh, Min-

imizing execution time in mpi programs on an energy- constrained,

power-scalable cluster, Proceedings of the Eleventh ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

PPoPP’06, ACM, New York, NY, USA (2006), pp. 230–238.

8. B. Rountree, D. Lowenthal, S. Funk, V. W. Freeh, B. De Supinski,

and M. Schulz, Bounding energy consumption in large-scale mpi

programs, Proceedings of the 2007 ACM/IEEE Conference on Super-

computing 2007, SC’07 (2007), pp. 1–9.

9. J. Howard, S. Dighe, S. Vangal, G. Ruhl, N. Borkar, S. Jain,

V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,

T. Lund-Larsen, S. Steibl, S. Borkar, V. De, and R. Van Der

Wijngaart, A 48-core ia-32 processor in 45 nm cmos using on-die

message-passing and dvfs for performance and power scaling. IEEE

Journal of Solid-State Circuits 46, 173 (2011).

10. J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, and

J. Lee, Modeling and managing thermal profiles of rack- mounted

servers with thermostat, IEEE 13th International Symposium on

High Performance Computer Architecture 2007, HPCA 2007 (2007),

pp. 205–215.

11. A. Bartolini, M. Sadri, J. Furst, A. Coskun, and L. Benini, Quan-

tifying the impact of frequency scaling on the energy efficiency of

the single-chip cloud computer, Design, Automation Test in Europe

Conference Exhibition (DATE), 2012 (2012), pp. 181–186.

12. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, et al., The nas parallel benchmarks. International Journal

of High Performance Computing Applications 5, 63 (1991).

J. Low Power Electron. 10, 1–19, 2014 17

Message Passing-Aware Power Management on Many-Core Systems Bartolini et al.

13. W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, System level analysis

of fast, per-core dvfs using on-chip switching regulators, IEEE 14th

International Symposium on High Performance Computer Architec-

ture 2008, HPCA 2008 (2008), pp. 123–134.

14. K. Ma, X. Li, M. Chen, and X. Wang, Scalable power control

for many-core architectures running multi-threaded applications.

SIGARCH Comput. Archit. News 39, 449 (2011).

15. A. Mishra, S. Srikantaiah, M. Kandemir, and C. Das, Cpm in cmps:

Coordinated power management in chip-multiprocessors, 2010 Inter-

national Conference for High Performance Computing, Networking,

Storage and Analysis (SC) (2010), pp. 1–12.

16. G. Keramidas, V. Spiliopoulos, and S. Kaxiras, Interval-based mod-

els for run-time dvfs orchestration in superscalar processors, Pro-

ceedings of the 7th ACM International Conference on Computing

Frontiers, CF’10, ACM, New York, NY, USA (2010), pp. 287–296.

17. A. Bhattacharjee and M. Martonosi, Thread criticality predictors

for dynamic performance, power, and resource management in

chip multiprocessors. SIGARCH Comput. Archit. News 37, 290

(2009).

18. A. Alameldeen and D. Wood, Ipc considered harmful for multipro-

cessor workloads. Micro, IEEE 26, 8 (2006).

19. D. Li, D. Nikolopoulos, K. Cameron, B. De Supinski, and M. Schulz,

Power-aware mpi task aggregation prediction for high-end comput-

ing systems, 2010 IEEE International Symposium on Parallel Dis-

tributed Processing (IPDPS) (2010), pp. 1–12.

20. N. Kappiah, V. W. Freeh, and D. Lowenthal, Just in time dynamic

voltage scaling: Exploiting inter-node slack to save energy in mpi

programs, Proceedings of the ACM/IEEE SC 2005 Conference

Supercomputing 2005 (2005), p. 33.

21. R. F. van der Wijngaart, T. G. Mattson, and W. Haas, Light-weight

communications on intel’s single-chip cloud computer processor.

SIGOPS Oper. Syst. Rev. 45, 73 (2011).

22. P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla,

Y. Hoskote, S. Vangal, G. Ruhl, and N. Borkar, A 2 tbs 6 4 mesh

Andrea Bartolini

Andrea Bartolini received a Ph.D. degree in Electrical Engineering from the University of Bologna, Italy, in 2011. He is currently

a postdoc researcher in the Department of Electrical, Electronic and Information Engineering Guglielmo Marconi (DEI) at the

University of Bologna. He also holds a postdoc position in the Integrated Systems Laboratory at ETH Zurich. His research interests

concern dynamic resource management of embedded systems and multi-core systems with special emphasis on software-level thermal

and power-aware techniques. His research interest also includes ultra-low power design strategies for bio-sensors nodes operating in

near-threshold.

Can Hankendi

Can Hankendi received his M.S. degree in Electrical Engineering from University of Southern California, Los Angeles, in 2010. He

is currently a Ph.D. candidate in Electrical and Computer Engineering Department at Boston University. His research interests are

resource and power management techniques on multi-core servers specializing in adaptive resource and power management techniques

for multi-threaded workloads.

network for a single-chip cloud computer with dvfs in 45 nm cmos.

IEEE Journal of Solid-State Circuits 46, 757 (2011).

23. N. Ioannou, M. Kauschke, M. Gries, and M. Cintra, Phase-based

application-driven hierarchical power management on the single-chip

cloud computer, 2011 International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT) (2011), pp. 131–142.

24. M. Gamell, I. Rodero, M. Parashar, and R. Muralidhar, Exploring

cross-layer power management for pgas applications on the scc plat-

form, Proceedings of the 21st International Symposium on High-

Performance Parallel and Distributed Computing, HPDC’12, ACM,

New York, NY, USA (2012), pp. 235–246.

25. R. David, P. Bogdan, and R. Marculescu, Dynamic power manage-

ment for multicores: Case study using the intel scc, 2012 IEEE/IFIP

20th International Conference on VLSI and System-on-Chip (VLSI-

SoC) (2012), pp. 147–152.

26. D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S.

Nikolopoulos, Hybrid mpi/openmp power-aware computing, 2010

IEEE International Symposium on Parallel and Distributed Process-

ing (IPDPS), IEEE (2010), pp. 1–12.

27. X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and

U. Ogras, In-network monitoring and control policy for dvfs of cmp

networks-on-chip and last level caches. ACM Transactions on Design

Automation of Electronic Systems (TODAES) 18, 47:1 (2013).

28. P. Bogdan, R. Marculescu, and S. Jain, Dynamic power manage-

ment for multidomain system-on-chip platforms: An optimal control

approach. ACM TODAES 18, 46:1 (2013).

29. I. A. Ureña, M. Riepen, M. Konow, and M. Gerndt, Invasive mpi on

intel’s single-chip cloud computer, Proceedings of the 25th Interna-

tional Conference on Architecture of Computing Systems, Springer-

Verlag (2012), pp. 74–85.

30. J. Demme and S. Sethumadhavan, Rapid identification of archi-

tectural bottlenecks via precise event counting, Proceedings of the

38th Annual International Symposium on Computer Architecture,

ISCA’11 (2011), pp. 353–364.

18 J. Low Power Electron. 10, 1–19, 2014

Bartolini et al. Message Passing-Aware Power Management on Many-Core Systems

Ayse Kivilcim Coskun

Ayse Kivilcim Coskun (M06) received the M.S. and Ph.D. degrees in Computer Science and Engineering from the University of

California, San Diego. She is currently an Assistant Professor at the Department of Electrical and Computer Engineering, Boston

University (BU), Boston, MA. She was with Sun Microsystems (now Oracle), San Diego, prior to her current position at BU. Her

current research interests include energy-efficient computing, multicore systems, 3-D stack architectures, computer architecture, and

embedded systems and software. Dr. Coskun received the Best Paper Award at IFIP/IEEE VLSI-SoC Conference in 2009 and in HPEC

Workshop in 2011. She currently serves on the program committees of many design automation conferences including DAC, DATE,

GLSVLSI, and VLSI-SoC. She has served as a guest editor in ACM TODAES journal and currently is an associate editor of IEEE

Embedded Systems Letters. She is a member of the IEEE and ACM.

Luca Benini

Luca Benini is Full Professor at the Department of Electrical Engineering and Computer Science (DEIS) of the University of Bologna.

He also holds a visiting faculty position at the Ecole Polytechnique Federale de Lausanne (EPFL) and he is currently serving as Chief

Architect for the Platform 2012 project in STmicroelectronics, Grenoble. He received a Ph.D. degree in electrical engineering from

Stanford University in 1997. Dr. Benini’s research interests are in energy-efficient system design and Multi-Core SoC design. He is

also active in the area of energy-efficient smart sensors and sensor networks for biomedical and ambient intelligence applications. He

has published more than 600 papers in peer-reviewed international journals and conferences, four books and several book chapters.

He is a member of the Academia Europaea.

J. Low Power Electron. 10, 1–19, 2014 19

