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Abstract

The problem of computing a maximum a posteriori (MAP) configuration is a central
computational challenge associated with Markov random fields. A line of work has focused
on “tree-based” linear programming (LP) relaxations for the MAP problem. This paper
develops a family of super-linearly convergent algorithms for solving these LPs, based on
proximal minimization schemes using Bregman divergences. As with standard message-
passing on graphs, the algorithms are distributed and exploit the underlying graphical
structure, and so scale well to large problems. Our algorithms have a double-loop char-
acter, with the outer loop corresponding to the proximal sequence, and an inner loop of
cyclic Bregman divergences used to compute each proximal update. Different choices of
the Bregman divergence lead to conceptually related but distinct LP-solving algorithms.
We establish convergence guarantees for our algorithms, and illustrate their performance
via some simulations. We also develop two classes of graph-structured rounding schemes,
randomized and deterministic, for obtaining integral configurations from the LP solu-
tions. Our deterministic rounding schemes use a “re-parameterization” property of our
algorithms so that when the LP solution is integral, the MAP solution can be obtained
even before the LP-solver converges to the optimum. We also propose a graph-structured
randomized rounding scheme that applies to iterative LP solving algorithms in general.
We analyze the performance of our rounding schemes, giving bounds on the number of
iterations required, when the LP is integral, for the rounding schemes to obtain the MAP
solution. These bounds are expressed in terms of the strength of the potential functions,
and the energy gap, which measures how well the integral MAP solution is separated
from other integral configurations. We also report simulations comparing these rounding
schemes.

1 Introduction

A key computational challenge that arises in applications of discrete graphical models is to
compute the most probable configuration(s), often referred to as the maximum a posteriori
(MAP) problem. Although the MAP problem can be solved exactly in polynomial time on
trees (and more generally, graphs with bounded treewidth) using the max-product algorithm,
it is computationally challenging for general graphs. Indeed, the MAP problem for general
discrete graphical models includes a large number of classical NP-complete problems as special
cases, including MAX-CUT, independent set, and various satisfiability problems.
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This intractability motivates the development and analysis of methods for obtaining ap-
proximate solutions, and there is a long history of approaches to the problem. One class of
methods is based on simulated annealing (Geman and Geman, 1984), but the cooling schedules
required for theoretical guarantees are often prohibitively slow. Besag (1986) proposed the it-
erated conditional modes algorithm, which performs a sequence of greedy local maximizations
to approximate the MAP solution, but may be trapped by local maxima. Greig et al. (1989)
observed that for binary problems with attractive pairwise interactions (the ferromagnetic
Ising model in statistical physics terminology), the MAP configuration can be computed in
polynomial-time by reduction to a max-flow problem. The ordinary max-product algorithm,
a form of non-serial dynamic-programming (Bertele and Brioschi, 1972), computes the MAP
configuration exactly for trees, and is also frequently applied to graphs with cycles. Despite
some local optimality results (Freeman and Weiss, 2001; Wainwright et al., 2004), it has no
general correctness guarantees for graph with cycles, and even worse, it can converge rapidly
to non-MAP configurations (Wainwright et al., 2005), even for problems that are easily solved
in polynomial time (e.g., ferromagnetic Ising models). For certain graphical models arising
in computer vision, Boykov et al. (2001) proposed graph-cut based search algorithms that
compute a local maximum over two classes of moves. A broad class of methods are based on
the principle of convex relaxation, in which the discrete MAP problem is relaxed to a convex
optimization problem over continuous variables. Examples of this convex relaxation problem
include linear programming relaxations (Koval and Schlesinger, 1976; Chekuri et al., 2005;
Wainwright et al., 2005), as well as quadratic, semidefinite and other conic programming re-
laxations (for instance, (Ravikumar and Lafferty, 2006; Kumar et al., 2006; Wainwright and
Jordan, 2004)).

Among the family of conic programming relaxations, linear programming (LP) relaxation
is the least expensive computationally, and also the best understood. The primary focus of
this paper is a well-known LP relaxation of the MAP estimation problem for pairwise Markov
random fields, one which has been independently proposed by several groups (Koval and
Schlesinger, 1976; Chekuri et al., 2005; Wainwright et al., 2005). This LP relaxation is based
on optimizing over a set of locally consistent pseudomarginals on edges and vertices of the
graph. It is an exact method for any tree-structured graph, so that it can be viewed naturally
as a tree-based LP relaxation.1 The first connection between max-product message-passing
and LP relaxation was made by Wainwright et al. (2005), who connected the tree-based LP
relaxation to the class of tree-reweighted max-product (TRW-MP) algorithms, showing that
TRW-MP fixed points satisfying a strong “tree agreement” condition specify optimal solutions
to the LP relaxation.

For general graphs, this first-order LP relaxation could be solved—at least in principle—by
various standard algorithms for linear programming, including the simplex and interior-point
methods (Bertsimas and Tsitsikilis, 1997; Boyd and Vandenberghe, 2004). However, such
generic methods fail to exploit the graph-structured nature of the LP, and hence do not
scale favorably to large-scale problems (Yanover et al., 2006). A body of work has extended
the connection between the LP relaxation and message-passing algorithms in various ways.
Kolmogorov (2005) developed a serial form of TRW-MP updates with certain convergence
guarantees; he also showed that there exist fixed points of the TRW-MP algorithm, not
satisfying strong tree agreement, that do not correspond to optimal solutions of the LP.
This issue has a geometric interpretation, related to the fact that co-ordinate ascent schemes

1In fact, this LP relaxation is the first in a hierarchy of relaxations, based on the treewidth of the
graph (Wainwright et al., 2005).
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(to which TRW-MP is closely related), need not converge to the global optima for convex
programs that are not strictly convex, but can become trapped in corners. Kolmogorov and
Wainwright (2005) showed that this trapping phenomena does not arise for graphical models
with binary variables and pairwise interactions, so that TRW-MP fixed points are always
LP optimal. Globerson and Jaakkola (2007) developed a related but different dual-ascent
algorithm, which is guaranteed to converge but is not guaranteed to solve the LP. Weiss
et al. (2007) established connections between convex forms of the sum-product algorithm,
and exactness of reweighted max-product algorithms; Johnson et al. (2007) also proposed
algorithms related to convex forms of sum-product. Various authors have connected the
ordinary max-product algorithm to the LP relaxation for special classes of combinatorial
problems, including matching (Bayati et al., 2005; Huang and Jebara, 2007; Bayati et al., 2007)
and independent set (Sanghavi et al., 2007). For general problems, max-product does not
solve the LP; Wainwright et al. (2005) describe a instance of the MIN-CUT problem on which
max-product fails, even though LP relaxation is exact. Other authors (Feldman et al., 2002;
Komodakis et al., 2007) have implemented subgradient methods which are guaranteed to solve
the linear program, but such methods typically have sub-linear convergence rates (Bertsimas
and Tsitsikilis, 1997).

This paper makes two contributions to this line of work. Our first contribution is to
develop and analyze a class of message-passing algorithms with the following properties: their
only fixed points are LP-optimal solutions, they are provably convergent with at least a
geometric rate, and they have a distributed nature, respecting the graphical structure of the
problem. All of the algorithms in this paper are based on the well-established idea of proximal
minimization: instead of directly solving the original linear program itself, we solve a sequence
of so-called proximal problems, with the property that the sequence of associated solutions
is guaranteed to converge to the LP solution. We describe different classes of algorithms,
based on different choices of the proximal function: quadratic, entropic, and tree-reweighted
entropies. For all choices, we show how the intermediate proximal problems can be solved
by forms of message-passing on the graph—similar to but distinct from the ordinary max-
product or sum-product updates. An additional desirable feature, given the wide variety of
lifting methods for further constraining LP relaxations (Wainwright and Jordan, 2003), is
that new constraints can be incorporated in a relatively seamless manner, by introducing new
messages to enforce them.

Our second contribution is to develop various types of rounding schemes that allow for early
termination of LP-solving algorithms. There is a substantial body of past work (e.g., (Ragha-
van and Thompson, 1987)) on rounding fractional LP solutions so as to obtain an integral
solutions with approximation guarantees. Our use of rounding is rather different: instead, we
consider rounding schemes applied to problems for which the LP solution is integral, so that
rounding would be unnecessary if the LP were solved to optimality. In this setting, the benefit
of certain rounding procedures (in particular, those that we develop) is allowing an LP-solving
algorithm to be terminated before it has solved the LP, while still returning the MAP configu-
ration, either with a deterministic or high probability guarantee. Our deterministic rounding
schemes apply to a class of algorithms which, like the proximal minimization algorithms that
we propose, maintain a certain invariant of the original problem. We also propose and analyze
a class of graph-structured randomized rounding procedures that apply to any algorithm that
approaches the optimal LP solution from the interior of the relaxed polytope. We analyze
these rounding schemes, and give finite bounds on the number of iterations required for the
rounding schemes to obtain an integral MAP solution.

The remainder of this paper is organized as follows. We begin in Section 2 with background
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on Markov random fields, and the first-order LP relaxation. In Section 3, we introduce the
notions of proximal minimization and Bregman divergences, then derive various of message-
passing algorithms based on these notions, and finally discuss their convergence properties.
Section 4 is devoted to the development and analysis of rounding schemes, both for our
proximal schemes as well as other classes of LP-solving algorithms. We provide experimental
results in Section 5, and conclude with a discussion in Section 6.

2 Background

We begin by introducing some background on Markov random fields, and the LP relax-
ations that are the focus of this paper. Given a discrete space X = {0, 1, 2, . . . ,m − 1}, let
X = (X1, . . . ,XN ) ∈ XN denote a N -dimensional discrete random vector. We assume that
its distribution P is a Markov random field, meaning that it factors according to the structure
of an undirected graph G = (V,E), with each variable Xs associated with one node s ∈ V ,
in the following way. Letting θs : X → R and θst : X × X → R be singleton and edgewise
potential functions respectively, we assume that the distribution takes the form

P(x; θ) ∝ exp
{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}
.

The problem of maximum a posteriori (MAP) estimation is to compute a configuration
with maximum probability—i.e., an element

x∗ ∈ arg max
x∈XN

{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}
, (1)

where the arg max operator extracts the configurations that achieve the maximal value. This
problem is an integer program, since it involves optimizing over the discrete space XN . For
future reference, we note that the functions θs(·) and θst(·) can always be represented in the
form

θs(xs) =
∑

j∈X

θs;jI[xs = j] (2a)

θst(xs, xt) =
∑

j,k∈X

θst;jkI[xs = j; xt = k], (2b)

where the m-vectors {θs;j, j ∈ X} and m × m matrices {θst;jk, (j, k) ∈ X × X} parameterize
the problem.

The first-order linear programming (LP) relaxation (Koval and Schlesinger, 1976; Chekuri
et al., 2005; Wainwright et al., 2005) of this problem is based on a set of pseudomarginals
µs and µst, associated with the nodes and vertices of the graph. These pseudomarginals are
constrained to be non-negative, as well to normalize and be locally consistent in the following
sense:

∑

xs∈X

µs(xs) = 1, for all s ∈ V , and (3a)

∑

xt∈X

µst(xs, xt) = µs(xs) for all (s, t) ∈ E, xs ∈ X . (3b)
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The polytope defined by the non-negativity constraints µ ≥ 0, the normalization constraints (3a)
and the marginalization constraints (3b), is denoted by L(G). The LP relaxation is based on
maximizing the linear function

〈θ, µ〉 : =
∑

s∈V

∑

xs

θs(xs)µs(xs) +
∑

(s,t)∈E

∑

xs,xt

θst(xs, xt)µst(xs, xt), (4)

subject to the constraint µ ∈ L(G).
In the sequel, we write the linear program (4) more compactly in the form maxµ∈L(G)〈θ, µ〉.

By construction, this relaxation is guaranteed to be exact for any problem on a tree-structured
graph (Wainwright et al., 2005), so that it can be viewed as a tree-based relaxation. The
main goal of this paper is to develop efficient and distributed algorithms for solving this
LP relaxation, as well as strengthenings based on additional constraints. For instance, one
natural strengthening is by “lifting”: view the pairwise MRF as a particular case of a more
general MRF with higher order cliques, define higher-order pseudomarginals on these cliques,
and use them to impose higher-order consistency constraints. This particular progression of
tighter relaxations underlies the Bethe to Kikuchi (sum-product to generalized sum-product)
hierarchy (Yedidia et al., 2005); see Wainwright and Jordan (2003) for further discussion of
such LP hierarchies.

3 Proximal minimization schemes

We begin by defining the notion of a proximal minimization scheme, and various types of
divergences (among them Bregman) that we use to define our proximal sequences. Instead
of dealing with the maximization problem maxµ∈L(G)〈θ, µ〉, it is convenient to consider the
equivalent minimization problem minµ∈L(G) −〈θ, µ〉.

3.1 Proximal minimization

The class of methods that we develop are based on the notion of proximal minimization (Bert-
sekas and Tsitsiklis, 1997). Instead of attempting to solve the LP directly, we solve a sequence
of problems of the form

µn+1 = arg min
µ∈L(G)

{
− 〈θ, µ〉 +

1

ωn
Df (µ ‖µn)

}
, (5)

where for iteration numbers n = 0, 1, 2, . . ., the vector µn denotes current iterate, the quantity
ωn is a positive weight, and Df is a generalized distance function, known as the proximal
function. (Note that we are using superscripts to represent the iteration number, not for the
power operation.)

The purpose of introducing the proximal function is to convert the original LP—which is
convex but not strictly so—into a strictly convex problem. The latter property is desirable for
a number of reasons. First, for strictly convex programs, co-ordinate descent schemes are guar-
anteed to converge to the global optimum; note that they may become trapped for non-strictly
convex problems, such as the piecewise linear surfaces that arise in linear programming. More-
over, the dual of a strictly convex problem is guaranteed to be differentiable (Bertsekas, 1995);
a guarantee which need not hold for non-strictly convex problems. Note that differentiable
dual functions can in general be solved more easily than non-differentiable dual functions. In
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the sequel, we show how for appropriately chosen generalized distances, the proximal sequence
{µn} can be computed using message passing updates derived from cyclic projections.

We note that the proximal scheme (5) is similar to an annealing scheme, in that it involves
perturbing the original cost function, with a choice of weights {ωn}. While the weights
{ωn} can be adjusted for faster convergence, they can also be set to a constant, unlike for
standard annealing procedures in which the annealing weight is taken to 0. The reason is that
Df (µ ‖µ(n)), as a generalized distance, itself converges to zero as the algorithm approaches
the optimum, thus providing an “adaptive” annealing. For appropriate choice of weights and
proximal functions, these proximal minimization schemes converge to the LP optimum with
at least geometric and possibly superlinear rates (Bertsekas and Tsitsiklis, 1997; Iusem and
Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregman divergences (Cen-
sor and Zenios, 1997), a class that includes various well-known divergences, among them the
squared #2-distance and the Kullback-Leibler divergence. We say that f is a Bregman func-
tion if it is continuously differentiable, strictly convex, and has bounded level sets. Any such
function induces a Bregman divergence as follows:

Df (µ′ ‖ ν) := f(µ′) − f(ν) − 〈∇f(ν), µ′ − ν〉 (6)

Figure 1 shows this graphically. This divergence satisfies Df (µ′ ‖ ν) ≥ 0 with equality if and
only if µ′ = ν, but need not be symmetric or satisfy the triangle inequality, so it is only a
generalized distance. We study the sequence {µn} of proximal iterates (5) for the following

f

µ′

ν

µ

Df (µ′ ‖ ν)

f(ν) + 〈∇f(ν), µ′ − ν〉

Figure 1: Graphical illustration of a Bregman divergence.

choices of divergences.

Quadratic divergence: This choice is the simplest, corresponding to the quadratic norm
across nodes and edges

Q(µ ‖ ν) :=
1

2

∑

s∈V

‖µs − νs‖2 +
1

2

∑

(s,t)∈E

‖µst − νst‖2, (7)

where we have used the shorthand ‖µs−νs‖2 =
∑

xs∈X |µs(xs)−νs(xs)|2, with similar notation
for the edges. The underlying function that induces this Bregman divergence is simply the
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quadratic function

q(µ) :=
1

2

{ ∑

s∈V

∑

xs∈X

µ2
s(xs) +

∑

(s,t)∈E

∑

(xs,xt)∈X×X

µ2
st(xs, xt)

}
, (8)

defined over nodes and edges of the graph.

Weighted entropic divergence: Another Bregman divergence can be defined by the
weighted sum of Kullback-Leibler (KL) divergences across the nodes and edges. In par-
ticular, letting αs > 0 and αst > 0 be positive weights associated with node s and edge (s, t)
respectively, we define

Dα(µ ‖ ν) =
∑

s∈V

αsD(µs ‖ νs) +
∑

(s,t)∈E

αstD(µst ‖ νst), (9)

where D(p ‖ q) :=
∑

x

(
p(x) log p(x)

q(x) −
[
p(x) − q(x)

])
is the KL divergence. An advantage of

the KL divergence, relative to the quadratic norm, is that it automatically acts to enforce non-
negativity constraints on the pseudomarginals in the proximal minimization problem. (See
Section 3.4 for a more detailed discussion of this issue.) The associated Bregman function is
weighted sum of entropies

hα(µ) =
∑

s∈V

αsHs(µs) +
∑

(s,t)∈E

αstHst(µst), (10)

where Hs and Hst are defined by

Hs(µs) :=
∑

xs∈X

µs(xs) log µs(xs), and

Hst(µst) :=
∑

(xs,xt)∈X×X

µst(xs, xt) log µst(xs, xt),

corresponding to node-based and edge-based entropies, respectively.

Tree-reweighted entropic divergence: Our last example is a divergence obtained from a
convex combination of tree-structured entropies (Wainwright and Jordan, 2003). In particular,
given a weight ρst ∈ (0, 1] for each edge (s, t) of the graph, we define

fρ(µ) :=
∑

s∈V

Hs(µs) −
∑

(s,t)∈E

ρstIst(µst). (11)

In this definition, the quantity

Ist(µst) :=
∑

(xs,xt)∈X×X

µst(xs, xt) log
µst(xs, xt)

[
∑

x′

t
µst(xs, x′

t)][
∑

x′
s
µst(x′

s, xt)]
(12)

is the mutual information associated with edge (s, t). It can be shown that this function is
strictly convex when restricted to µ ∈ L(G). If µ ∈ L(G), then the divergence induced by the
function (11) is related to weighted entropy family (10), except that the node entropy weights
αs are not always positive.
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3.2 Proximal sequences via Bregman projection

The key in designing an efficient proximal minimization scheme is ensuring that the proximal
sequence {µn} can be computed efficiently. In this section, we first describe how sequences of
proximal minimizations (when the proximal function is a Bregman divergence) can be refor-
mulated as a particular Bregman projection. We then describe how this Bregman projection
can itself be computed iteratively, in terms of a sequence of cyclic Bregman projections (Cen-
sor and Zenios, 1997) based on a decomposition of the constraint set L(G). In the sequel,
we then show how this cyclic Bregman projections reduce to very simple message-passing
updates.

Given a Bregman divergence D, the Bregman projection of the vector ν onto a convex set
C is given by

µ̂ : = arg min
µ∈C

Df (µ ‖ ν) (13)

By taking derivatives and using standard conditions for optima over convex sets (Bertsekas,
1995), the defining optimality condition for µ̂ is

〈∇f(µ̂) −∇f(ν), µ − µ̂〉 ≥ 0 (14)

for all µ ∈ C. Now consider the proximal minimization problem to be solved at step n, namely
the strictly convex problem

min
µ∈L(G)

{
− 〈θ, µ〉 +

1

ωn
Df (µ ‖µn)

}
. (15)

By taking derivatives and using the same convex optimality, we see that the optimum µn+1

is defined by the conditions

〈∇f(µn+1) −∇f(µn) − ωnθ, µ − µn+1〉 ≥ 0

for all µ ∈ C. Note that these optimality conditions are of the same form as the Bregman
projection conditions (14), with the vector ∇f(µn) + ωnθ taking the role of ∇f(ν); in other
words, with (∇f)−1(∇f(µ)+ωnθ) being substituted for ν. Consequently, efficient algorithms
for computing the Bregman projection (14) can be leveraged to compute the proximal up-
date (15). In particular, our algorithms leverage the fact that Bregman projections can be
computed efficiently in a cyclic manner—that is, by decomposing the constraint set C = ∩iCi

into an intersection of simpler constraint sets, and then performing a sequence of projections
onto these simple constraint sets (Censor and Zenios, 1997).

To simplify notation, for any Bregman function f , induced divergence Df , and convex
set C, let us define the operator Jf (µ, ν) := (∇f)−1(∇f(µ) + ν), as well as the projection
operator

Πf (γ;C) := arg min
µ∈C

Df (µ ‖ γ).

With this notation, we can write the proximal update in a compact manner as the compounded
operation

µn+1 = Πf

(
Jf (µn,ωnθ); L(G)

)
.

Now consider a decomposition of the constraint set as an intersection—say L(G) = ∩T
k=1Lk(G).

By the method of cyclic Bregman projections (Censor and Zenios, 1997), we can compute
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µn+1 in an iterative manner, by performing the sequence of projections onto the simpler
constraint sets, initializing µn,0 = µn and updating from µn,τ ,→ µn,τ+1 by projecting µn,τ

onto constraint set Li(τ)(G), where i(τ) = τ mod T , for instance. This meta-algorithm is
summarized in Algorithm 1.

Algorithm 1 Basic proximal-Bregman LP solver

Given a Bregman distance D, weight sequence {ωn} and problem parameters θ:

• Initialize µ0 to the uniform distribution: µ(0)
s (xs) = 1

m , µ(0)
st (xs, xt) = 1

m2 .

• Outer Loop: For iterations n = 0, 1, 2, . . ., update µn+1 = Πf

(
Jf (µn,ωnθ); L(G)

)
.

– Solve Outer Loop via Inner Loop:

(a) Inner initialization µn,0 = Jf (µn,ωnθ).

(b) For t = 0, 1, 2, . . ., set i(t) = t mod T .

(c) Update µn,t+1 = Πf

(
µn,t; Li(t)(G)

)
.

As shown in the following sections, by using a decomposition of L(G) over the edges of the
graph, the inner loop steps correspond to local message-passing updates, slightly different in
nature depending on the choice of Bregman distance. Iterating the inner and outer loops yields
a provably convergent message-passing algorithm for the LP. Convergence follows from the
convergence properties of proximal minimization (Bertsekas and Tsitsiklis, 1997), combined
with convergence guarantees for cyclic Bregman projections (Censor and Zenios, 1997). In the
following section, we derive the message-passing updates corresponding to various Bregman
functions of interest.

3.3 Quadratic Projections

Consider the proximal sequence with the quadratic distance Q from equation (7); the Bregman
function inducing this distance is the quadratic function q(y) = 1

2y2, with gradient ∇q(y) = y.
A little calculation shows that the operator Jq takes the form

Jq(µ,ωθ) = µ + ωθ, (16)

whence we obtain the initialization in equation (18a).
We now turn to the projections µn,τ+1 = Πq(µn,τ , Li(G)) onto the individual constraints

Li(G). For each such constraint, the local update is based on the solving the problem

µn,τ+1 = arg min
ν∈Li(G)

{
q(ν) − 〈ν, ∇q(µn,τ )〉

}
. (17)

In Appendix A.1, we show how the solution to these inner updates takes the form (19a) given
in Algorithm (2).

3.4 Entropic projections

Consider the proximal sequence with the Kullback-Leibler distance D(µ ‖ ν) defined in equa-
tion (9). The Bregman function hα inducing the distance is a sum of negative entropy functions
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Algorithm 2 Quadratic Messages for µn+1

Initialization:

µ(n,0)
st (xs, xt) = µ(n)

st (xs, xt) + wnθst(xs, xt) (18a)

µ(n,0)
s (xs) = µ(n)

s (xs) + wnθs(xs) (18b)

repeat

for each edge (s, t) ∈ E do

µ(n,τ+1)
st (xs, xt) = max

{

µ(n,τ)
st (xs, xt) +

(
1

L + 1

)(
µ(n,τ)

s (xs) −
∑

xt

µ(n,τ)
st (xs, xt)

)
, 0

}

(19a)

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs) +

(
1

L + 1

)(
− µ(n,τ)

s (xs) +
∑

xt

µ(n,τ)
st (xs, xt)

)
(19b)

end for

for each node s ∈ V do

µ(n,τ+1)
s (xs) = max

{
0, µ(n,τ)

s (xs) +
1

L

(

1 −
∑

xs

µ(n,τ)
s (xs)

)}
(20)

end for

until convergence

f(µ) = µ log µ, and its gradient is given by ∇f(µ) = log(µ)+)1. In this case, some calculation
shows that the map ν = Jf (µ,ωθ) is given by

∇f(ν) = µ exp(ωθ),

whence we obtain the initialization equation (21a). In Appendix A.2, we derive the message-
passing updates summarized in Algorithm (3).
Remark: In the special case of uniformly weighted entropies (i.e., αs = αst = 1), it is worth
noting that the updates of Algorithm (3) are reminiscent of the junction tree algorithm (Lau-
ritzen, 1996), which also update the marginals {µs, µst}, or primal parameters directly.

3.5 Tree-reweighted entropy proximal sequences

In the previous sections, we saw how to solve the proximal sequences using message passing
updates derived from cyclic Bregman projections. In this section, we show that for the
tree-reweighted entropy divergence, we can also use tree-reweighted sum-product or related
methods (Globerson and Jaakkola, 2007; Hazan and Shashua, 2008) to compute the proximal
sequence. We first rewrite the proximal sequence optimization problem (5) as

µn+1 = arg min
ν∈L(G)

{
− 〈ωθ + ∇fρ(µ

n), ν〉 − fρ(ν)

}
. (25)

Computing the gradient of the function fρ, and performing some algebra yields the algorithmic
template of Algorithm 4. With this particular choice of proximal function, the resulting
algorithm can be understood as approaching the zero-temperature limit of the tree-reweighted
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Algorithm 3 Entropic Messages for µn+1

Initialization:

µ(n,0)
st (xs, xt) = µ(n)

st (xs, xt) exp(ωnθst(xs, xt)/αst), and (21a)

µ(n,0)
s (xs) = µ(n)

s (xs) exp(ωn θs(xs)/αs). (21b)

repeat

for each edge (s, t) ∈ E do

µ(n,τ+1)
st (xs, xt) = µ(n,τ)

st (xs, xt)

(
µ(n,τ)

s (xs)
∑

xt
µ(n,τ)

st (xs, xt)

) αs

αs+αst

, and (22)

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)
αs

αs+αst

( ∑

xt

µ(n,τ)
st (xs, xt)

) αst

αs+αst

(23)

end for

for each node s ∈ V do

µ(n,τ+1)
s (xs) =

µ(n,τ)
s (xs)

∑
xs

µ(n,τ)
s (xs)

(24)

end for

until convergence

Bethe problem; by convexity, the optimizers of this sequence are guaranteed to approach the
LP optima (Wainwright and Jordan, 2003). Moreover, as pointed by Weiss et al. (2007),
various other convexified entropies (in addition to the tree-reweighted one) also have this
property.

3.6 Convergence

We now turn to the convergence of the message-passing algorithms that we have proposed.
At a high-level, for any Bregman proximal function, convergence follows from two sets of
known results: (a) convergence of proximal algorithms; and (b) convergence of cyclic Bregman
projections.

For completeness, we re-state the consequences of these results here. For any positive
sequence ωn > 0, we say that it satisfies the infinite travel condition if

∑∞
n=1(1/ω

n) = +∞.
We let µ∗ ∈ L(G) denote an optimal solution (not necessarily unique) of the LP, and use
f∗ = f(µ∗) = 〈θ, µ∗〉 to denote the LP optimal value. We say that the convergence rate is
superlinear if

lim
n→+∞

|f(µn+1) − f∗|
|f(µn) − f∗| = 0, (29)

and linear if

lim
n→+∞

|f(µn+1) − f∗|
|f(µn) − f∗| ≤ γ, (30)

11



Algorithm 4 TRW proximal solver

• For outer iterations n = 0, 1, 2, . . .,

(a) Update the parameters:

θ̃s(xs) = ωnθs(xs) + log(µn(xs)) + 1 (26)

θ̃st(xs, xt) = ωnθst(xs, xt) + log
µst(xs, xt)∑

x′
s
µst(x′

s, xt)
∑

x′

t
µst(xs, x′

t)
− 1 (27)

(b) Run a convergent TRW-solver to compute

µn+1 = arg min
ν∈L(G)

{
− 〈θ̃n, ν〉 − fρ(ν)

}
. (28)

for some γ ∈ (0, 1).

Proposition 1 (Rate of outer loop convergence). Consider the sequence of iterates produced
by a proximal algorithm (5) for LP-solving.

(a) Using the quadratic proximal function and positive weight sequence ωn → 0 satisfying
infinite travel, the proximal sequence {µn} converges superlinearly.

(b) Using the entropic proximal function and positive weight sequence ωn satisfying infinite
travel, the proximal sequence {µn} converges:

(i) superlinearly if ωn → 0, and

(ii) at least linearly if ωn ≥ c for some constant c > 0.

The quadratic case is covered in Bertsekas and Tsitsiklis (1997), whereas the entropic case
was analyzed by Tseng and Bertsekas (1993), and Iusem and Teboulle (1995).

Our inner loop message updates use cyclic Bregman projections, for which there is also
a substantial literature on convergence. Censor and Zenios (1997) show that with dual fea-
sibility correction, cyclic projections onto general convex sets are convergent. For Euclidean
projections with linear constraints, Deutsch et al. (2006) establish a geometric rate of conver-
gence, dependent on angles between the half-spaces. The intuition is that the more orthogonal
the half-spaces, the faster the convergence; for instance, a single iteration suffices for com-
pletely orthogonal constraints. Our inner updates thus converge geometrically to solution
within each outer proximal step.

We note that the rate-of-convergence results for the outer proximal loops assume that the
proximal update (computed within each inner loop) has been performed exactly. In practice,
the solution to each proximal update might be computed only approximately, up to some
accuracy ε. Some recent theory has addressed whether superlinear convergence can still be
obtained in such a setting; for instance, Solodov (2001) shows that that under mild conditions
superlinear rates still hold for proximal iterates with ε−suboptimal inner-loop solutions. As
we describe in Section 5, empirically, we have observed setting the termination threshold to
ε = 10−6 is small enough to be practically irrelevant, in that superlinear convergence still
occurs.
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4 Rounding with optimality guarantees

Recall that the graph-structured LP (4) is a relaxation of the MAP integer program, so that
there are two possible outcomes to solving the LP: either an integral vertex is obtained, which
is then guaranteed to be a MAP configuration, or a fractional vertex is obtained, in which
case the relaxation is loose. In the latter case, a natural strategy is to “round” the fractional
solution, so as to obtain an integral solution (Raghavan and Thompson, 1987). Such rounding
schemes may either be randomized or deterministic. A natural measure of the quality of the
rounded solution is in terms of its value relative to the optimal (MAP) value. There is now a
substantial literature on performance guarantees of various rounding schemes, when applied
to particular sub-classes of MAP problems (e.g., (Raghavan and Thompson, 1987; Kleinberg
and Tardos, 1999; Chekuri et al., 2005)).

In this section, we show that rounding schemes can be useful even when the LP optimum
is integral, since they may permit an LP-solving algorithm to be finitely terminated—i.e.,
before it has actually solved the LP—while retaining the same optimality guarantees about
the final output. An attractive feature of our proximal Bregman procedures is the existence
of precisely such rounding schemes–namely, that under certain conditions, rounding pseu-
domarginals at intermediate iterations yields the integral LP optimum. In Section 4.1, we
describe deterministic rounding schemes that apply to the proximal Bregman procedures that
we have described; moreover, we provide upper bounds on the number of outer iterations
required for the rounding scheme to obtain the LP optimum. In Section 4.2, we propose and
analyze a graph-structured randomized rounding scheme, which applies not only to proximal
Bregman procedures, but more broadly to any algorithm that generates a sequence of iterates
contained within the local polytope L(G).

4.1 Deterministic rounding schemes

We begin by describing three deterministic rounding schemes that exploit the particular struc-
ture of the Bregman proximal updates.

Node-based rounding: This method is the simplest of the deterministic rounding proce-
dures, and applies to the quadratic and entropic updates. It operates as follows: given the
vector µn of pseudomarginals at iteration n, obtain an integral configuration xn(µn) ∈ XN

by choosing

xn
s ∈ arg max

x′
s∈X

µn(x′
s), for each s ∈ V . (31)

We say that the node-rounded solution xn is edgewise-consistent if

(xn
s , xn

t ) ∈ arg max
(x′

s,x′

t
)∈X×X

µn
st(x

′
s, x

′
t) for all edges (s, t) ∈ E. (32)

Neighborhood-based rounding: This rounding scheme applies to all three proximal
schemes. For each node s ∈ V , denote its star-shaped neighborhood graph by Ns = {(s, t)|t ∈
N(s)}, consisting of edges between node s and its neighbors. Let {QUA,ENT,TRW} refer
to the quadratic, entropic, and tree-reweighted schemes respectively.

13



(a) Define the neighborhood-based energy function

Fs(x;µn) :=






2µn(xs) +
∑

t∈N(s)
µn(xs, xt) for QUA

2αs log µn
s (xs) +

∑

t∈N(s)
αst log µn

st(xs, xt) for ENT

2 log µn(xs) +
∑

t∈N(s)
ρst log µn

st(xs,xt)
µn

s (xs)µn
t
(xt)

for TRW

(33)

(b) Compute a configuration xn(Ns) maximizing the function Fs(x;µn) by running two
rounds of ordinary max-product on the star graph.

Say that such a rounding is neighborhood-consistent if the neighborhood MAP solutions
{xn(Ns), s ∈ V } agree on their overlaps.

Tree-based rounding: This method applies to all three proximal schemes, but most natu-
rally to the TRW proximal method. Let T1, . . . , TK be a set of spanning trees that cover the
graph (meaning that each edge appears in at least one tree), and let {ρ(Ti), i = 1, . . . ,K}
be a probability distribution over the trees. For each edge (s, t), define the edge appearance
probability ρst =

∑K
i=1 ρ(Ti) I[(s, t) ∈ Ti]. Then for each tree i = 1, . . . ,K:

(a) Define the tree-structured energy function

Fi(x;µn) :=






∑

s∈V
log µn(xs) +

∑

(s,t)∈E(Ti)

1
ρst

log µn
st(xs, xt) for QUA

∑

s∈V
αs log µn(xs) +

∑

(s,t)∈E(Ti)

αst

ρst
log µn

st(xs, xt) for ENT

∑

s∈V
log µn(xs) +

∑

(s,t)∈E(Ti)
log µn

st(xs,xt)
µn

s (xs)µn
t
(xt)

for TRW.

(34)

(b) Run the ordinary max-product problem on energy Fi(x;µn) to find a MAP-optimal
configuration xn(Ti).

Say that such a rounding is tree-consistent if the tree MAP solutions {xn(Ti), i = 1, . . . ,M}
are all equal. This notion of tree-consistency is similar to the underlying motivation of the
tree-reweighted max-product algorithm (Wainwright et al., 2005).

4.1.1 Optimality certificates for deterministic rounding

The following result characterizes the optimality guarantees associated with these round-
ing schemes, when they are consistent respectively in the edge-consistency, neighborhood-
consistency and tree-consistency senses defined earlier.

Theorem 1 (Deterministic rounding with MAP certificate). Consider a sequence of iterates
{µn} generated by the quadratic, entropic or TRW proximal schemes. For any n = 1, 2, 3, . . .,
any consistent rounded solution xn obtained from µn via any of the node, neighborhood or
tree-rounding schemes (when applicable) is guaranteed to be a MAP-optimal solution.

We prove this claim in Section 4.1.2. It is important to note that such deterministic round-
ing guarantees do not apply to an arbitrary algorithm for solving the linear program. Rather,
the algorithm must maintain a certain invariance that relates the rounded solution at an in-
termediate stage to the cost function of the original problem. These invariances are closely
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related to the reparameterization condition satisfied by the sum-product algorithm (Wain-
wright et al., 2003).

All of the rounding schemes require relatively little computation. The node-rounding
scheme is trivial to implement. The neighborhood-based scheme requires running two itera-
tions of max-product for each neighborhood of the graph. Finally, the tree-rounding scheme
requires O(KN) iterations of max-product, where K is the number of trees that cover the
graph, and N is the number of nodes. Many graphs with cycles can be covered with a small
number K of trees; for instance, the lattice graph in 2-dimensions can be covered with two
spanning trees, in which case the rounding cost is linear in the number of nodes.

Of course, the natural question is how many iterations n suffice for a given rounding
scheme to succeed. The following result provides an upper bound on the number of iterations
required for rounding success:

Corollary 1. Suppose that the LP optimum is uniquely attained at an integral vertex µ∗,
and that the sequence {µn} converges linearly—i.e., |f(µn) − f(µ∗)| ≤ |f(µ0) − f(µ∗)|γn

for some γ ∈ (0, 1). Then there exists a constant C such for all iterations larger than

n∗ : = log C|f(µ0)−f(µ∗)|
log(1/γ) :

(a) for quadratic and entropic schemes: all three types of rounding recover the MAP solution.

(b) for the TRW-based proximal method, tree-based rounding recovers the MAP solution.

Proof. We first claim that if the #∞-bound ‖µn −µ∗‖∞ < 1
2 is satisfied, then the node-based

rounding returns the (unique) MAP configuration, and moreover this MAP configuration x∗

is edge-consistent with respect to µn. To see these facts, note that the #∞ bound implies, in
particular, that at every node s ∈ V , we have

|µn
s (x∗

s) − µ∗
s(x

∗
s)| = |µn

s (x∗
s) − 1| <

1

2
,

which implies that µn
s (x∗

s) > 1/2 as µ∗
s(x

∗
s) = 1. Due to the non-negativity constraints and

marginalization constraint
∑

xs∈X µn(xs) = 1, at most one configuration can have mass above
1/2. Thus, node-based rounding returns x∗

s at each node s, and hence overall, it returns the
MAP configuration x∗. The same argument also shows that the inequality µn

st(x
∗
s, x

∗
t ) > 1

2
holds, which implies that (x∗

s, x
∗
t ) = arg maxxs,xt

µn(xs, xt) for all (s, t) ∈ E. Thus, we have
shown x∗ is edge-consistent for µn

st, according to the definition (32).
We now bound the number of iterations required to achieve the #∞-bound. It suffices to

show that ‖µn − µ∗‖2 < 1/2. There exists some constant C > 0 such that ‖µn − µ∗‖2 ≤
1

2C |f(µn) − f(µ∗)|(cf. Prop. 8, Iusem and Teboulle (1995)). Consequently, we have

‖µn − µ∗‖2 ≤ |f(µ0) − f(µ∗)|
2C

γn.

Consequently, the choice of n∗ given in the corollary statement shows that the #∞-bound is
satisfied for all iterations n ≥ n∗.

Next we turn to the performance of neighborhood rounding for the quadratic and entropic
updates. For n ≥ n∗, we know that x∗ achieves the unique maximum of µn

s (xs) at each
node, and µn

st(xs, xt) on each edge. From the form of the neighborhood energy (33), this
node- and edge-wise optimality implies that x∗(N(s)) := {x∗

t , t ∈ s ∪ N(s)} maximizes the
neighborhood-based cost function as well, which implies success of neighborhood rounding.
(Note that the positivity of the weights αs and αst is required to make this assertion.)

The proof of correctness for tree-rounding requires some elements from the proof of The-
orem 1, so that we defer it to the end of Section 4.1.2.

15



Note that we proved correctness of the neighborhood and tree-based rounding schemes by
leveraging the correctness of the node-based rounding scheme. In practice, it is possible for
neighborhood- or tree-based rounding to succeed even if node-based rounding fails; however,
we currently do not have any sharper sufficient conditions for these rounding schemes.

4.1.2 Proof of Theorem 1

We now turn to the proof of Theorem 1. At a high level, the proof consists of two main steps.
First, we show that each proximal algorithm maintains a certain invariant of the original MAP
cost function F (x; θ); in particular, the iterate µn induces a reparameterization F (x;µn) of
the cost function such that the set of maximizers is preserved—viz:

arg max
x∈XN

F (x; θ) := arg max
x∈XN

∑

s∈V,xs∈X

θs(xs) +
∑

(s,t)∈E,xs,xt∈X

θst(xs, xt) = arg max
x∈XN

F (x;µn).

(35)

Second, we show that the consistency conditions (edge, neighborhood or tree, respectively)
guarantee that the rounded solution belongs to arg maxx∈XN F (x;µn)

We begin with a lemma on the invariance property:

Lemma 1 (Invariance of maximizers). Define the function

F (x;µ) :=






∑

s∈V
µs(xs) +

∑

(s,t)∈E
µst(xs, xt) for QUA

∑

s∈V
αs log µs(xs) +

∑

(s,t)∈E
αst log µst(xs, xt) for ENT

∑

s∈V
log µs(xs) +

∑

(s,t)∈E
ρst log µst(xs,xt)

µs(xs)µt(xt)
for TRW

(36)

At each iteration n = 1, 2, 3, . . . for which µn > 0, the function F (x;µn) preserves the set of
maximizers (35).

The proof of this claim, provided in Appendix B, is based on exploiting the necessary (La-
grangian) conditions defined by the optimization problems characterizing the sequence of
iterations {µn}.

For the second part of the proof, we show that how a solution x∗, obtained by a rounding
procedure, is guaranteed to maximize the function F (x;µn), and hence (by Lemma 1) the
original cost function F (x; θ). In particular, we state the following simple lemma:

Lemma 2. The rounding procedures have the following guarantees:

(a) Any edge-consistent configuration from node rounding maximizes F (x;µn) for the quadratic
and entropic schemes.

(b) Any neighborhood-consistent configuration from neighborhood rounding maximizes
F (x;µn) for the quadratic and entropic schemes.

(c) Any tree-consistent configuration from tree rounding maximizes F (x;µn) for all three
schemes.
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Proof. We begin by proving statement (a). Consider an edge-consistent integral configuration
x∗ obtained from node rounding. By definition, it maximizes µn(xs) for all s ∈ V , and
µn

st(xs, xt) for all (s, t) ∈ E, and so by inspection, also maximizes F (x;µn) for the quadratic
and proximal cases.

We next prove statement (b) on neighborhood rounding. Suppose that neighborhood
rounding outputs a single neighborhood-consistent integral configuration x∗. Since x∗

N(s)

maximizes the neighborhood energy (33) at each node s ∈ V , it must also maximize the sum∑
s∈V Fs(x;µn). A little calculation shows that this sum is equal to 2F (x;µn), the factor of

two arising since the term on edge (s, t) arises twice, one for neighborhood rooted at s, and
once for t.

Turning to claim (c), let x∗ be a tree-consistent configuration obtained from tree round-
ing. Then for each i = 1, . . . ,K, the configuration x∗ maximizes the tree-structured function
Fi(x;µn), and hence also maximizes the convex combination

∑K
i=1 ρ(Ti)Fi(x;µn). By defini-

tion of the edge appearance probabilities ρst, this convex combination is equal to the function
F (x;µn).

4.2 Randomized rounding

The schemes considered in the previous section were all deterministic, since (disregarding any
possible ties), the output of the rounding procedure was a deterministic function of the given
pseudomarginals {µn

s , µn
st}. In this section, we consider randomized rounding procedures, in

which the output is a random variable.

Perhaps the most naive randomized rounding scheme is the following: for each node r ∈ V ,
assign it value xr ∈ X with probability µn

v (xr). We propose a graph-structured generalization
of this naive randomized rounding scheme, in which we perform the rounding in a dependent
way across sub-groups of nodes, and establish guarantees for its success. In particular, we
show that when the LP relaxation has a unique integral optimum that is well-separated from
the second best configuration, then the rounding scheme succeeds with high probability after
a pre-specified number of iterations.

4.2.1 The randomized rounding scheme

Our randomized rounding scheme is based on any given subset E′ of the edge set E. Consider
the subgraph G(E\E′), with vertex set V , and edge set E\E′. We assume that E′ is chosen
such that the subgraph G(E\E′) is a forest. That is, we can decompose G(E\E′) into a
union of disjoint trees, {T1, . . . , TK}, where Ti = (Vi, Ei), such that the vertex subsets Vi

are all disjoint and V = V1 ∪ V2 ∪ . . . ∪ VK . We refer to the edge subset as forest-inducing
when it has this property. Note that such a subset always exists, since E′ = E is trivially
forest-inducing. In this case, the “trees” simply correspond to individual nodes, without any
edges; Vi = {i}, Ei = ∅, i = 1, . . . ,N .

For any forest-inducing subset E′ ⊆ E, Algorithm 5 defines our randomized rounding
scheme.

To be clear, the randomized solution X is a function of both the pseudomarginals µ, and
the choice of forest-inducing subset E′, so that we occasionally use the notation X(µ;E′) to
reflect explicitly this dependence. Note that the simplest rounding scheme of this type is
obtained by setting E′ = E. Then the “trees” simply correspond to individual nodes without
any edges, and the rounding scheme is the trivial node-based scheme.
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Algorithm 5 Randomized rounding scheme

for subtree indices i = 1, . . . ,K do

Sample a sub-configuration XVi
from the probability distribution

p(xVi
;µ(Ti)) =

∏

s∈Vi

µn(xs)
∏

(s,t)∈Ei

µ(xs, xt)

µ(xs)µ(xt)
. (37)

end for

Form the global configuration X ∈ XN by concatenating all the local random samples:

X : =

(
XV1

, . . . ,XVK

)
.

The randomized rounding scheme can be “derandomized” so that we obtain a deterministic
solution xd(µn;E′) that does at least well as the randomized scheme does in expectation.
This derandomization scheme is shown in Algorithm 6, and its correctness is guaranteed in
the following theorem, proved in Appendix C.

Theorem 2. Let (G = (V,E), θ) be the given MAP problem instance, and let µn ∈ L(G) be
any set of pseudomarginals in the local polytope L(G). Then, for any subset E′ ⊆ E of the
graph G, the (E′, µn)-randomized rounding scheme in Algorithm 5, when derandomized as in
Algorithm 6 satisfies,

F (xd(µn;E′); θ) ≥ E

(
F (X(µn;E′); θ)

)
,

where X(µn;E′) and xd(µn;E′) denote the outputs of the randomized and derandomized
schemes respectively.

4.2.2 Oscillation and gaps

In order to state some theoretical guarantees on our randomized rounding schemes, we require
some notation. For any edge (s, t) ∈ E, we define the edge-based oscillation

δst(θ) := max
xs,xt

[θst(xs, xt)] − min
xs,xt

[θst(xs, xt)] (38)

We define the node-based oscillation δs(θ) in the analogous manner. The quantities δs(θ) and
δst(θ) are measures of the strength of the potential functions.

We extend these measures of interaction strength to the full graph in the natural way

δG(θ) := max

{
max

(s,t)∈E
δst(θ), max

s∈V
δs(θ)

}
. (39)

Using this oscillation function, we now define a measure of the quality of a unique MAP
optimum, based on its separation from the second most probable configuration. In particular,
letting x∗ ∈ XN denote a MAP configuration, and recalling the notation F (x; θ) for the LP
objective, we define the graph-based gap

∆(θ;G) :=

min
x (=x∗

[
F (x∗; θ) − F (x; θ)

]

δG(θ)
. (40)
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Algorithm 6 Derandomized rounding scheme

Initialize: µ̄ = µn.

for subtree indices i = 1, . . . ,K do

Solve

xd
Vi

= arg max
xVi

∑

s∈Vi

{
θs(xs) +

∑

t: (s,t)∈E′

∑

xt

µ̄t(xt)θst(xs, xt)

}
+

∑

(s,t)∈Ei

θst(xs, xt).

Update µ̄:

µ̄s(xs) =

{ µ̄s(xs) if s /∈ Vi

0 if s ∈ Vi, xd
s 2= xs

1 if s ∈ Vi, xd
s = xs

µ̄st(xs, xt) =

{
µ̄st(xs, xt) if (s, t) /∈ Ei

µ̄(xs)µ̄t(xt) if (s, t) ∈ Ei

end for

Form the global configuration xd ∈ XN by concatenating all the subtree configurations:

xd : =

(
xd

V1
, . . . , xd

VK

)
.

This gap function is a measure of how well-separated the MAP optimum x∗ is from the
remaining integral configurations. By definition, the gap ∆(θ;G) is always non-negative,
and it is strictly positive whenever the MAP configuration x∗ is unique. Finally, note that
the gap is invariant to the translations (θ ,→ θ′ = θ + C) and rescalings (θ ,→ θ′ = cθ)
of the parameter vector θ. These invariances are appropriate for the MAP problem since
the optima of the energy function F (x; θ) are not affected by either transformation (i.e.,
arg maxx F (x; θ) = arg maxx F (x; θ′) for both θ′ = θ + C and θ′ = cθ).

Finally, for any forest-inducing subset, we let d(E′) be the maximum degree of any node
with respect to edges in E′—namely,

d(E′) := max
s∈V

|t ∈ V | (s, t) ∈ E′|.

4.2.3 Optimality Guarantees

We show, in this section, that when the pseudomarginals µn are within a specified #1 norm
ball around the unique MAP optimum µ∗, the randomized rounding scheme outputs the MAP
configuration with high probability.

Theorem 3. Consider a problem instance (G, θ) for which the MAP optimum x∗ is unique,
and let µ∗ be the associated vertex of the polytope L(G). For any ε ∈ (0, 1), if at some iteration
n, we have µn ∈ L(G), and

‖µn − µ∗‖1 ≤ ε ∆(θ;G)

1 + d(E′)
, (41)

then (E′, µn)-randomized rounding succeeds with probability greater than 1 − ε,

P[X(µn;E′) = x∗] ≥ 1 − ε
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We provide the proof of this claim in Appendix D. It is worthwhile observing that the
theorem applies to any algorithm that generates a sequence {µn} of iterates contained within
the local polytope L(G). In addition to the proximal Bregman updates discussed in this
paper, it also applies to interior-point methods (Boyd and Vandenberghe, 2004) for solving
LPs. For the naive rounding based on E′ = E, the sequence {µn} need not belong to L(G),
but instead need only satisfy the milder conditions µn

s (xs) ≥ 0 for all s ∈ V and xs ∈ X , and∑
xs

µn
s (xs) = 1 for all s ∈ V .

The derandomized rounding scheme enjoys a similar guarantee, as shown in the following
theorem, proved in Appendix E.

Theorem 4. Consider a problem instance (G, θ) for which the MAP optimum x∗ is unique,
and let µ∗ be the associated vertex of the polytope L(G). If at some iteration n, we have
µn ∈ L(G), and

‖µn − µ∗‖1 ≤ ∆(θ;G)

1 + d(E′)
,

then the (E′, µn)-derandomized rounding scheme in Algorithm 6 outputs the MAP solution,

xd(µn;E′) = x∗.

4.2.4 Bounds on iterations

Although Theorems 3 and 4 apply even for sequences {µn} that need not converge to µ∗, it
is most interesting when the LP relaxation is tight, so that the sequence {µn} generated by
any LP-solver satisfies the condition µn → µ∗. In this case, we are guaranteed that for any
fixed ε ∈ (0, 1), the bound (41) will hold for an iteration number n that is “large enough”. Of
course, making this intuition precise requires control of convergence rates. Recall that N is
the number of nodes in the graph, and m is cardinality of the set X from which all variables
takes their values. With this notation, we have the following.

Corollary 2. Under the conditions of Theorem 3, suppose that the sequence of iterates {µn}
converge to the LP (and MAP) optimum at a linear rate: ‖µn −µ∗‖2 ≤ γn‖µ0 − µ∗‖2. Then:

(a) The randomized rounding in Algorithm 5 succeeds with probability at least 1 − ε for all
iterations greater than

n∗ : =

1
2 log

(
Nm + N2m2

)
+ log

(
‖µ0 − µ∗‖2

)
+ log

(1+d(E′)
∆(θ;G)

)
+ log(1/ε)

log(1/γ)
.

(b) The derandomized rounding in Algorithm 6 yields the MAP solution for all iterations
greater than

n∗ : =

1
2 log

(
Nm + N2m2

)
+ log

(
‖µ0 − µ∗‖2

)
+ log

(1+d(E′)
∆(θ;G)

)

log(1/γ)
.

This corollary follows by observing that the vector (µn − µ∗) has less than Nm + N2m2

elements, so that ‖µn − µ∗‖1 ≤
√

Nm + N2m2 ‖µn − µ∗‖2. Moreover, Theorems 3 and 4
provide an #1-ball radius such that the rounding schemes succeed (either with probability
greater than 1− ε, or deterministically) for all pseudomarginal vectors within these balls.

20



0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

Iteration

Lo
g 

di
st

an
ce

 to
 fi

xe
d 

po
in

t

Distance versus iteration

 

 

p=100
p=400
p=900

Figure 2. Plot of distance log10 ‖µn − µ∗‖2 between the current entropic proximal iter-
ate µn and the LP optimum µ∗ versus iteration number for Potts models on grids with
p ∈ {100, 400, 900} vertices, m = 5 labels and SNR = 1. Note the superlinear rate of con-
vergence.

5 Experiments

We performed experiments on a 4-nearest neighbor grid graphs with sizes varying from N =
100 to p = 900, using models with either m = 3 or m = 5 labels. The edge potentials were set
to Potts functions, θst(xs, xt) = βst I[xs = xt], which penalize disagreement of labels by βst.
The Potts weights on edges βst were chosen randomly as Uniform(−1,+1), while the node
potentials θs(xs) were set as Uniform(− SNR,SNR), where the parameter SNR ≥ 0 controls
the ratio of node to edge strengths, and thus corresponds roughly to a signal-to-noise ratio.

5.1 Rates of convergence

Figure 2 plots the logarithmic distance between the iterates µn of the entropic proximal
method and the LP optimum µ∗, against the number of iterations for grids of different sizes. In
all cases, note how the curves have an inverted quadratic shape, corresponding to superlinear
convergence. Define the suboptimality factor of an iterate as the fraction of the energy of
the iterate to the energy of the MAP optimum. Figure 3 plots the suboptimality factor of
the entropic proximal iterates when rounded by the node-based randomized rounding scheme,
against the number of iterations. Note again, the small number of iterations required for
convergence.

5.2 Comparison of convergence rates

In Figure 4, we compare two of our proximal schemes—the entropic and the quadratic
schemes—with a subgradient descent method (Feldman et al., 2002; Komodakis et al., 2007)
and the max-product message passing algorithm. In particular, Komodakis et al. (2007) de-
compose the LP into a sum of tractable, e.g. tree-based, objective functions by duplicating
the parameters. They then perform (sub)gradient ascent on the dual of this decomposed LP
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Figure 3. Plots of the fraction of the energy of the entropic proximal iterate µn when rounded
by the node-based randomized rounding scheme to the energy of the MAP optimum µ∗; versus
iteration number for Potts models on grids with p ∈ {100, 400, 900} vertices, m = 5 labels and
SNR = 1. Note the small number of iterations for convergence.
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Figure 4. Plots comparing the convergence of the LP energy (that is, the negated LP objective)
of the fractional solutions with the number of iterations for a Potts model with N = 400 vertices,
m = 3 labels and SNR = 2. The methods of Komodakis et al. (2007), our entropic proximal
method (Ent. Prox.), our quadratic proximal method (Quad. Prox.) and max product updates
(Max. Prod.) are compared.

22



0 2 4 6 8 10 12 14
−515

−510

−505

−500

−495

−490

−485

−480

Iteration

Ro
un

de
d 

En
er

gy

Rounded Energy versus iteration

 

 
Node Rand.
Chain Rand.
Node Det.
Star Det.
Tree Det.

Figure 5. Plots comparing the convergence of the LP energy (that is, the negated LP ob-
jective) of the rounded entropic proximal solutions with the number of iterations. The node-
based (Node Rand.) and chain-based (Chain Rand.) randomized rounding schemes, and the
node-based (Node. Det.), neighborhood-based (Star Det.) and the tree-based (Tree Det.)
deterministic rounding schemes are compared.

objective. For the comparison, we used a Potts model on a grid of 400 nodes, with each node
taking 3 labels. The Potts weights were set as earlier, with SNR = 2. As Figure 4 shows, the
entropic proximal scheme converges almost immediately, in six iterations, while the quadratic
proximal converges quite a bit slower. The convergence rate of the subgradient ascent method
lies between those of the entropic and the quadratic proximal schemes. As the figure shows,
the max-product algorithm is stuck at a fixed point away from the LP optimum.

5.3 Comparison of rounding schemes

In Figure 5, we compare five of our rounding schemes on a Potts model on grid graphs with
N = 400, m = 3 labels and SNR = 2. For the graph-structured randomized rounding schemes,
we used the node-based rounding scheme (so that E\E′ = ∅), and the chain-based rounding
scheme (so that E\E′ is the set of horizontal chains in the grid). For the deterministic rounding
schemes, we used the node-based, neighborhood-based and the tree-based rounding schemes.
As the figure shows, the node-based randomized rounding scheme converges to an almost
optimal solution almost immediately, in four iterations, closely followed by the node-based
and tree-based deterministic rounding schemes.

6 Discussion

In this paper, we have developed distributed algorithms, based on the notion of proximal
sequences, for solving graph-structured linear programming (LP) relaxations. Our methods
respect the graph structure, and so can be scaled to large problems, and they exhibit a su-
perlinear rate of convergence. We have also developed a series of graph-structured rounding
schemes that can be used to generate integral solutions along with a certificate of optimal-
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ity. These optimality certificates allow the algorithm to be terminated in a finite number of
iterations.

The structure of our algorithms naturally lends itself to incorporating additional con-
straints, both linear and other types of conic constraints. It would be interesting to develop
an adaptive version of our algorithm, which selectively incorporated new constraints as nec-
essary, and then used the same proximal schemes to minimize the new conic program.
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A Detailed derivation of message-passing updates

In this appendix, we provided detailed derivation of the message-passing updates for the inner
loops of the algorithms.

A.1 Derivation of Algorithm (2)

Consider the edge marginalization constraint for edge (s, t), Li(G) ≡
∑

xt
µst(xs, xt) = µs(xs).

Denoting the dual (Lagrange) parameter corresponding to the constraint by λst(xs), the
Karush-Kuhn-Tucker conditions for the quadratic update (17) are given by

∇q(µn,τ+1
st (xs, xt)) = ∇q(µn,τ

st (xs, xt)) + λst(xs)

∇q(µn,τ+1
s (xs)) = ∇q(µn,τ

s (xs)) − λst(xs)

µn,τ+1
st (xs, xt) = µn,τ

st (xs, xt) + λst(xs)

µn,τ+1
s (xs) = µn,τ

s (xs) − λst(xs),

while the constraint itself gives

∑

xt

µn,τ+1
st (xs, xt) = µn,τ

s (xs) (43)

Solving for λst(xs) yields equation (19a). The node marginalization follows similarly, so that
overall, we obtain message-passing Algorithm (2) for the inner loop.

A.2 Derivation of Algorithm (3)

The projection µn,τ+1 = Πh(µn,τ , Li(G)) onto the individual constraint Li(G) is defined by
the optimization problem:

µn,τ+1 = min
Li(G)

{h(µ) − µ)∇h(µn,τ )}.

Consider the subset Li(G) defined by the marginalization constraint along edge (s, t), namely∑
x′

t
∈X µst(xs, x′

t) = µs(xs) for each xs ∈ X . Denoting the dual (Lagrange) parameters

corresponding to these constraint by λst(xs), the KKT conditions are given by

∇h(µn,τ+1
st (xs, xt)) = ∇h(µn,τ

st (xs, xt)) + λst(xs), and (44a)

∇h(µn,τ+1
s (xs)) = ∇h(µn,τ

s (xs)) − λst(xs). (44b)
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Computing the gradient ∇h and performing some algebra yields the relations

µ(n,τ+1)
st (xs, xt) = µ(n,τ)

st (xs, xt) exp(λ(n,τ+1)
st (xs)), (45a)

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs) exp(−λ(n,τ+1)
st (xs)), and (45b)

exp(2λ(n,τ+1)
st (xs)) =

µ(n,τ)
s (xs)

∑
xt

µ(n,τ)
st (xs, xt)

, (45c)

from which the updates (22) follow.

Similarly, for the constraint set defined by the node marginalization constraint∑
xs∈X µs(xs) = 1, we have ∇h(µ(n,τ+1)

s (xs)) = ∇h(µ(n,τ)
s (xs)) + λ(n,τ+1)

s , from which

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs) exp(λ(n,τ+1)
s ), and (46a)

exp(λ(n,τ+1)
s ) = 1/

∑

xs∈X

µ(n,τ)
s (xs). (46b)

The updates in equation (24) follow.

B Proof of Lemma 1

We provide a detailed proof for the entropic scheme; the arguments for other proximal algo-
rithms are analogous. The key point is the following: regardless of how the proximal updates
are computed, they must necessary the necessary Lagrangian conditions for optimal points
over the set L(G). Accordingly, we define the following sets of Lagrange multipliers:

λss for the normalization constraint Css(µs) =
∑

x′
s
µs(x′

s) − 1 = 0

λst(xs) for the marginalization constraint Cts(xs) =
∑

x′

t
µst(xs, x′

t) − µs(xs) = 0

γst(xs, xt) for the non-negativity constraint µst(xs, xt) ≥ 0.

(There is no need to enforce the non-negativity constraint µs(xs) ≥ 0 directly, since it is im-
plied by the non-negativity of the joint pseudo-marginals and the marginalization constraints.)

With this notation, consider the Lagrangian associated with the entropic proximal update
at step n:

L(x;λ, γ) = C(µ; θ, µn) + 〈γ, µ〉 +
∑

s∈V

λssCss(xs) +
∑

(s,t)∈E

[
λts(xs)Cts(xs) + λst(xt)Cst(xt)

]
,

where C(µ; θ, µn) is shorthand for the cost component −〈θ, µ〉 + 1
ωn Dα(µ ‖µn). Using C,C ′

to denote constants (whose value can change from line to line), we now take derivatives to
find the necessary Lagrangian conditions:

∂L

∂µs(xs)
= −θs(xs) +

2αs

ωn
log

µs(xs)

µn
s (xs)

+ C + λss +
∑

t∈N(s)

λts(xs), and

∂L

∂µst(xs, xt)
= −θst(xs, xt) +

2αst

ωn
log

µst(xs, xt)

µn
st(xs, xt)

+ C ′ + γst(xs, xt) − λts(xs) − λst(xt).
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Solving for the optimum µ = µn+1 yields

2αs

ωn
log µn+1

s (xs) = θs(xs) +
2αs

ωn
log µn

s (xs) −
∑

t∈N(s)

λts(xs) + C

2αst

ωn
log µn+1

st (xs, xt) = θst(xs, xt) +
2αst

ωn
log µn

st(xs, xt) − γst(xs, xt)

+λts(xs) + λst(xt) + C ′.

From these conditions, we can compute the energy invariant (36):

2

ωn
F (x;µn+1) =

∑

s∈V

2αs

ωn
log µn+1

s (xs) +
∑

(s,t)∈E

2αst

ωn
log µn+1

st (xs, xt) + C

= F (x; θ) +
2

ωn

{ ∑

s∈V

αs log µn(xs) +
∑

(s,t)∈E

αst log µn
st(xs, xt)

}

−
∑

(s,t)∈E

γst(xs, xt) + C

= F (x; θ) +
2

ωn
F (x;µn) −

∑

(s,t)∈E

γst(xs, xt) + C.

Now since µn > 0, by complementary slackness, we must have γst(xs, xt) = 0, which implies
that

2

ωn
F (x;µn+1) = F (x; θ) +

2

ωn
F (x;µn) + C. (47)

From this equation, it is a simple induction to show for some constants γn > 0 and Cn ∈ R,
we have F (x;µn) = γnF (x; θ)+Cn for all iterations n = 1, 2, 3, . . ., which implies preservation
of the maximizers. If at iteration n = 0, we initialize µ0 = 0 to the all-uniform distribution,
then we have 2

ω1 F (x;µ1) = F (x; θ) + C ′, so the statement follows for n = 1. Suppose that it

holds at step n; then 2
ωn F (x;µn) = 2

ωn γnF (x; θ)+ 2Cn

ωn
, and hence from the induction step (47),

we have F (x;µn+1) = γn+1F (x; θ) + Cn+1, where γn+1 = ωn

2 γn.

C Proof of Theorem 2

Consider the expected cost of the configuration X(µn;E′) obtained from the randomized
rounding procedure of Algorithm 5. A simple computation shows that

E[F (X(µn;E′); θ)] = G(µ̄) :=
K∑

i=1

H(µn;Ti) + H(µn;E′)

where

H(µn;Ti) :=
∑

s∈Vi

∑

xs

µn
s (xs)θs(xs) +

∑

(s,t)∈Ei

∑

xs,xt

µn
st(xs, xt)θst(xs, xt), (48a)

H(µn;E′) :=
∑

(u,v)∈E′

∑

xs,xt

µn
u(xu)µn

v (xv)θst(xu, xv). (48b)
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We now show by induction that the derandomized rounding scheme achieves cost at least as
large as this expected value. Let µ̄(i) denote the updated pseudomarginals at the end of the i-th
iteration. Since we initialize with µ̄(0) = µn, we have G(µ̄(0)) = E[F (X(µn;E′); θ)]. Consider
the i-th step of the algorithm; the algorithm computes the portion of the derandomized
solution xd

Vi
over the i−th tree. It will be convenient to use the decomposition G = Gi + G\i,

where

Gi(µ̄) :=
∑

s∈Vi

∑

xs

µ̄s(xs)

{
θs(xs) +

∑

{t | (s,t)∈E′}

∑

xt

µ̄t(xt)θst(xs, xt)

}
+

∑

(s,t)∈Ei

∑

xs,xt

µ̄st(xs, xt) θst(xs, xt),

and G\i = G − Gi. If we define

Fi(xVi
) :=

∑

s∈Vi

{
θs(xs) +

∑

t: (s,t)∈E′

∑

xt

µ̄(i−1)
t (xt)θst(xs, xt)

}
+

∑

(s,t)∈Ei

θst(xs, xt),

it can be seen that Gi(µ̄(i−1)) = E[Fi(xVi
)] where the expectation is under the tree-structured

distribution over XVi
given by

p(xVi
; µ̄(i−1)(Ti)) =

∏

s∈Vi

µ̄(i−1)(xs)
∏

(s,t)∈Ei

µ̄(i−1)(xs, xt)

µ̄(i−1)(xs)µ̄(i−1)(xt)
.

Thus when the algorithm makes the choice xd
Vi

= arg maxxVi
Fi(xVi

), it holds that

Gi(µ̄
(i−1)) = E[Fi(xVi

)] ≤ Fi(x
d
Vi

).

The updated pseudomarginals µ̄(i) at the end the i-th step of the algorithm are given by,

µ̄(i)
s (xs) =

{ µ̄(i−1)
s (xs) if s /∈ Vi

0 if s ∈ Vi,Xd,s 2= xs

1 if s ∈ Vi,Xd,s = xs

µ̄(i)
st (xs, xt) =

{
µ̄(i−1)

st (xs, xt) if (s, t) /∈ Ei

µ̄(i)
s (xs)µ̄

(i)
t (xt) if (s, t) ∈ Ei

In other words, µ̄(i)(Ti) is the indicator vector of the maximum energy subconfiguration xd
Vi

.
Consequently, we have

Gi(µ̄
(i)) = Fi(x

d
Vi

) ≥ Gi(µ̄
(i−1)),

and G\i(µ̄
(i)) = G\i(µ̄

(i−1)), so that at the end of the i-th step, G(µ̄(i)) ≥ G(µ̄(i−1)). By

induction, we conclude that G(µ̄(K)) ≥ G(µ̄(0)), where K is the total number of trees in the
rounding scheme.

At the end of K steps, the quantity µ̄(K) is the indicator vector for xd(µn;E′) so that
G(µ̄(K)) = F (Xd(µn;E′); θ). We have also shown that G(µ̄(0)) = E[F (X(µn;E′); θ)]. Combin-
ing these pieces, we conclude that F (xd(µn;E′); θ) ≥ E[F (X(µn;E′); θ)], thereby completing
the proof.
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D Proof of Theorem 3

Let psucc = P[X(µn;E′) = x∗], and let R(µn;E′) denote the (random) integral vertex of L(G)
that is specified by the random integral solution X(µn;E′). (Since E′ is some fixed forest-
inducing subset, we frequently shorten this notation to R(µn).) We begin by computing
the expected cost of the random solution, where the expectation is taken over the rounding
procedure. A simple computation shows that E[〈θ, R(µn)〉] : =

∑K
i=1 H(µn;Ti) + H(µn;E′),

where H(µn;Ti) and H(µn;E′) were defined previously (48).
We now upper bound the difference 〈θ, µ∗〉−E[〈θ, R(µn)〉]. For each subtree i = 1, . . . ,K,

the quantity Di : = H(µ∗;Ti) − H(µn;Ti) is upper bounded as

Di =
∑

s∈Vi

∑

xs

[
µ∗

s(xs) − µn
s (xs)

]
θs(xs) +

∑

(s,t)∈Ei

∑

xs,xt

[
µ∗

s(xs)µ
∗
t (xt) − µn

st(xs, xt)

]
θst(xs, xt)

≤
∑

s∈Vi

δs(θ)
∑

xs

|µ∗
s(xs) − µn

s (xs)| +
∑

(s,t)∈Ei

δst(θ)
∑

xs,xt

|µ∗
st(xs, xt) − µn(xs, xt)|.

In asserting this inequality, we have used the fact that that the matrix with entries given
by µ∗

s(xs)µ∗
t (xt) − µn

st(xs, xt) is a difference of probability distributions, meaning that all its
entries are between −1 and 1, and their sum is zero.

Similarly, we can upper bound the difference D(E′) = H(µ∗;E′) − H(µn;E′) associated
with E′:

D(E′) =
∑

(u,v)∈E′

∑

xu,xv

[
µ∗

u(xu)µ∗
v(xv) − µn

u(xu)µn
v (xv)

]
θuv(xu, xv)

≤
∑

(u,v)∈E′

δuv(θ)
∑

xu,xv

∣∣∣∣µ
∗
u(xu)µ∗

v(xv) − µn
u(xu)µn

v (xv)

∣∣∣∣

≤
∑

(u,v)∈E′

δuv(θ)
∑

xu,xv

{∣∣∣∣µ
∗
u(xu)[µ∗

v(xv) − µn
v (xv)]

∣∣∣∣+
∣∣∣∣µ

n
v (xv)[µ

∗
u(xu) − µn

u(xu)]

∣∣∣∣

}

≤
∑

(u,v)∈E′

δuv(θ)

{∑

xu

|µn
u(xu) − µ∗

u(xu)| +
∑

xu

|µn
v (xv) − µ∗

v(xv)|
}

.

Combining the pieces, we obtain

〈θ, µ∗〉 − E[〈θ, R(µn)〉] ≤ δG(θ)

{
‖µn − µ∗‖1 +

∑

s∈V

d(s;E′)
∑

xs

|µn
s (xs) − µ∗

s(xs)|
}

≤ (1 + d(E′))δG(θ)‖µn − µ∗‖1. (49)

In the other direction, we note that when the rounding fails, then we have

〈θ, µ∗〉 − 〈θ, R(µn)〉 ≥ max
x (=x∗

[F (x∗; θ) − F (x; θ)].

Consequently, conditioning on whether the rounding succeeds or fails, we have

〈θ, µ∗〉 − E[〈θ, R(µn)〉] ≥ psucc
[
〈θ, µ∗〉 − 〈θ, µ∗〉

]
+ (1 − psucc) max

x (=x∗

[F (x∗; θ) − F (x; θ)]

= (1 − psucc) max
x (=x∗

[F (x∗; θ) − F (x; θ)].
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Combining this lower bound with the upper bound (49), performing some algebra, and using
the definition of the gap ∆(θ;G) yields that the probability of successful rounding is at least

psucc ≥ 1 − (1 + d(E′))

∆(θ;G)
‖µn − µ∗‖1.

If the condition (41) holds, then this probability is at least 1 − ε, as claimed.

E Proof of Theorem 4

The proof follows that of Theorem 3 until equation (49), which gives

〈θ, µ∗〉 − E[〈θ, R(µn)〉] ≤ (1 + d(E′)) δG(θ) ‖µn − µ∗‖1.

Let vd(µn;E′) denote the integral vertex of L(G) that is specified by the derandomized integral
solution xd(µn;E′). Since E′ is some fixed forest-inducing subset, we frequently shorten this
notation to vd(µn). Theorem 2 shows that

E[〈θ, R(µn)〉] ≤ 〈θ, vd(µn)〉.

Suppose the derandomized solution is not optimal so that vd(µn) 2= µ∗. Then, from the
definition of the graph-based gap ∆(θ;G), we obtain

〈θ, µ∗〉 − 〈θ, vd(µn)〉 ≥ δG(θ)∆(θ;G)

Combining the pieces, we obtain

δG(θ)∆(θ;G) ≤ 〈θ, µ∗〉 − 〈θ, vd(µn)〉
≤ 〈θ, µ∗〉 − E[〈θ, R(µn)〉]
≤ (1 + d(E′))δG(θ)‖µn − µ∗‖1,

which implies ‖µn − µ∗‖1 ≥ ∆(θ;G)
1+d(E′) . However, this conclusion is a contradiction under the

given assumption on ‖µn −µ∗‖1 in the theorem. It thus holds that the derandomized solution
vd(µn) is equal to the MAP optimum µ∗, thereby completing the proof.
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