
 

Message Text Classifier 

P. Malathi Asst. Prof, Dept of ISE 

Dr. Ambedkar Institute of Technology, 

Outer Ring Road, Near Jnanabharthi Campus, Mallathahalli, 

Bengaluru- 560056  

  

 

 
Abstract— In this work, classification of messages using 

Weka ID3 classifier is proposed. We use feature testing to 

generate ARFF files which act as input for the Weka ID3 to 

build the decision tree. The decision tree thus generated is used 

to predict the results. The results emerged from have quick 

response time in classifying the messages. Message Classifier, 

which aims to assign a Short Message Service (SMS) message to 

two categories based on its contents, is a fundamental task for 

building that allow individuals to construct classifiers that have 

relevance for a variety of domains.   

 

Keywords- Artificial Intelligence, machine learning, Iterative 

Dichotomizer (ID3), Decision tree, entropy, splitting 

attribute,information gain 

I.  INTRODUCTION  

As the mobile phone market is rapidly expanding and the 

modern life is heavily dependent on cell phones, Short 

Message Service (SMS) has become one of the important 

media of communications. This media of communication has 

been considered as one of the fundamental and primitive way 

of connection for its cheapness, more convenient for advanced 

to novice users of cell phone, mobility, individualization and 

documentation. 

 SMS classifying technology has important 

significance to assist people in dealing with SMS messages. 

Although SMS classification can be performed with little or 

no effort by people, it still remains difficult for computers. 

Machine learning offers a promising approach to the design of 

algorithms for training computer programs to efficiently and 

accurately classify short text message data. 

II. PREVIOUS WORK  

A. Text Classification is the process of classifying 

documents into predefined classes based on its content. Text 

classification is important in many web applications like 

document indexing, document organization, spam filtering etc. 

[2]. In text classification, a text messages may partially match 

many categories. We need to find the best matching category 

for the text messages. 

A good text classifier is a classifier that efficiently 

categorizes large sets of text documents in a reasonable time 

frame and with an acceptable accuracy, and that provides 

classification rules that are human readable for possible fine-

tuning. If the training of the classifier is also quick, this could 

become in some application domains a good asset for the 

classifier. Many techniques and algorithms for automatic text 

categorization have been devised. 

 Classification is an important task in both data mining and 

machine learning communities, however, most of the learning 

approaches in text categorization are coming from machine 

learning research. A number of text classification techniques 

have been applied including, Naive Bayes [2,3] k-NN[4], 

Neural Network [5], centroid-based approaches [9,10], 

Decision Tree [12], SVM [13], Rocchio Classifier [7], 

Regression Models [11], Bayesian probabilistic approaches, 

inductive rule learning, and Online learning [14,15]. 

B. Limitations of Existing systems  

Naive-Bayes theorem can’t learn interactions between 

features. Term Frequency-Inverse Document Frequency(TF-

IDF) has several limitations. It computes document similarity 

directly in the word-count space, which may be slow for large 

vocabularies. It assumes that the counts of different words 

provide independent evidence of similarity. It makes no use of 

semantic similarities between words. Neural networks have 

been criticized for their poor interpretability. SVM is a binary 

classifier. To do a multi-class classification, pair-wise 

classifications can be used (one class against all others, for all 

classes). Computationally expensive, thus runs slow. 

III. ALGORITHM 

Very simply, ID3 builds a decision tree from a fixed set of 

examples. The resulting tree is used to classify future 

samples. The example has several attributes and belongs to a 

class (like yes or no). The leaf nodes of the decision tree 

contain the class name whereas a non-leaf node is a decision 

node. The decision node is an attribute test with each branch 

(to another decision tree) being a possible value of the 

attribute. ID3 uses information gain to help it decide which 

attribute goes into a decision node. The advantage of learning 

a decision tree is that a program, rather than a knowledge 

engineer, elicits knowledge from an expert. 

 ID3 is a non incremental algorithm, meaning it 

derives its classes from a fixed set of training instances. An 

incremental algorithm revises the current concept definition, 

if necessary, with a new sample. The classes created by ID3 

are inductive, that is, given a small set of training instances, 

the specific classes created by ID3 are expected to work for 

all future instances. The distribution of the unknowns must be 

the same as the test cases. Induction classes cannot be proven 

to work in every case since they may classify an infinite 

number of instances. ID3 uses information gain as its 

attribute selection measure. Let node N represent or hold the 

tuples of partition D. The attribute with the highest 

information gain is chosen as the splitting attribute for node 

N. This attribute minimizes the information needed to 

classify the tuples in the resulting partitions and reflects the 

least randomness or “impurity” in these partitions. The 

expected information needed to classify a tuple in D is given 

by 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS060337
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 06, June-2021

753

www.ijert.org
www.ijert.org
www.ijert.org


 

Info(D) = −∑pi log2 pi

m

i=1

 

Info(D) is also known as the entropy of D. Now, suppose 

the tuples in D are partitioned on some attribute A having v 

distinct values. These partitions would correspond to the 

branches grown from node N. The information needed (after 

the partitioning) to arrive at an exact classification is 

measured by 

InfoA(D) = −∑
|Dj|

|D|
×v

j=1 Info(Dj)  

InfoA(D) is the expected information required to classify a 

tuple from D based on the partitioning by A. The smaller the 

expected information (still) required, the greater the purity of 

the partitions. Information gain is defined as the difference 

between the original information requirement (i.e., based on 

just the proportion of classes) and the new requirement (i.e., 

obtained after partitioning on A).  

In other words, Gain(A) tells us how much would be 

gained by branching on A. It is the expected reduction in the 

information requirement caused by knowing the value of A. 

The attribute A with the highest information gain, Gain(A), is 

chosen as the splitting attribute at node N. This is equivalent 

to saying that it is intended to  partition on the attribute A that 

would do the “best classification,” so that the amount of 

information still required to finish classifying the tuples is 

minimal (i.e., minimum InfoA(D)). 

How does ID3 decide which attribute is the best? A 

statistical property, called information gain, is used. Gain 

measures how well a given attribute separates training 

examples into targeted classes. The one with the highest 

information (information being the most useful for 

classification) is selected. In order to define gain, we first 

borrow an idea from information theory called entropy. 

Entropy measures the amount of information in an attribute. 

Given a collection S of c outcomes 

Entropy(S) = S -p(I) log2 p(I) 
where p(I) is the proportion of S belonging to class I. S is 

over c.  

Note that S is not an attribute but the entire sample set. 

Algorithm: Generate decision tree. Generate a decision 

tree from the training tuples of data partition, D. 

Input:Data partition, D, which is a set of training tuples 

and their associated class labels; attribute list, the set of 

candidate attributes; 

Attribute selection method, a procedure to determine the 

splitting criterion that “best” partitions the data tuples into 

individual classes. This criterion consists of a splitting 

attribute and, possibly, either a split-point or splitting subset. 

Output: A decision tree. 

Method: 

(1) create a node N; 

(2) if tuples in D are all of the same class, C, then 

(3) return N as a leaf node labelled with the class C; 

(4) if attribute list is empty then 

(5) return N as a leaf node labelled with the majority class 

in D; // majority voting 

(6) apply Attribute selection method(D, attribute list) to 

find the “best” splitting criterion; 

(7) label node N with splitting criterion; 

(8) if splitting attribute is discrete-valued and 

Multi way splits allowed then // not restricted to binary 

trees 

(9) attribute list attribute list - splitting attribute; // remove 

splitting attribute 

(10) for each outcome j of splitting criterion 

// partition the tuples and grow sub trees for each partition 

(11) let Dj be the set of data tuples in D satisfying 

outcome j; // a partition 

(12) if Dj is empty then 

(13)  attach a leaf labelled with the majority class in D to 

node N; 

(14)  else attach the node returned by Generate decision 

tree(Dj, attribute list) to node N; 

endfor 

(15) return N;  

IV. IMPLEMENTATION 

 1. Data Set Collection and Preprocessing. 

 A dataset is a collection of data to be used for 

classification. In this work dataset consists of two different 

domain collections: Financial and Non-Financial. Data pre-

processing is an important step in the data mining process. If 

there is much irrelevant and redundant information present or 

noisy and unreliable data, then knowledge discovery during 

the training phase is more difficult. Data preparation and 

filtering steps can take considerable amount of processing 

time. Data pre-processing includes cleaning, normalization, 

transformation, feature extraction and selection, etc. The 

product of data pre-processing is the final training set and 

testing set. Here we have collected the messages and stored in 

excel sheet. We have divided the complete data set into train 

set and test set and tagged both the sets as ‘0’ or ‘1’ 

indicating non-financial and financial as part of the 

preprocessing. 

 

2. Feature Selection. 

In machine learning and statistics, feature selection, also 

known as variable selection, attribute selection or variable 

subset selection, is the process of selecting a subset of 

relevant features (variables, predictors) for use in model 

construction. Feature selection is itself useful, but it mostly 

acts as a filter, muting out features that aren’t useful in 

addition to your existing features. The objective of variable 

selection is three-fold: improving the prediction performance 

of the predictors, providing faster and more cost-effective 

predictors, and providing a better understanding of the 

underlying process that generated the data. 

There are three general classes of feature selection 

algorithms- Filter methods, Wrapper methods & Embedded 

methods. 

 The table in fig 4.1 contains the examples of features 

selected for our classification. 
Variable  Description 

Credited  Key word in  financial messages 

Currency Indicator Rs , INR , $ etc 

Account Number 3756XXXX125 , ***********768, etc 

Debited Keyword in financial messages 

Free Keyword in ads messages 

Credit Card No. 5768xxxxx1894, etc 

Bonus Keyword in ads keyword 

 

Fig 4.1: Table with examples of selected features 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS060337
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 06, June-2021

754

www.ijert.org
www.ijert.org
www.ijert.org


 

 

3. Feature Testing. 

This step is very important for creating ARFF files. We check 

for the existence of each feature for each message in the data 

set collected. The example for checking if the feature credited 

exists in the message or not. If it exists then it will return 

‘yes’ else ‘no’. Feature testing is mainly used to prediction in 

the test ARFF. 

 

4. Attribute-Relation File Format (ARFF). 

An ARFF (Attribute-Relation File Format) file is an ASCII 

text file that describes a list of instances sharing a set of 

attributes. ARFF files have two distinct sections- header  

followed by data. Sparse ARFF files are very similar to 

ARFF files, but data with value 0 are not be explicitly 

represented.  

 

5. Generating Train and Test ARFF files. 

Steps to generate Train ARFF - Add the header into ARFF 

File, read the excel sheet where Training Set is stored, 

perform Feature Test,  write the results of  feature test  into 

ARFF file. 

Steps to generate Test ARFF - Add the header into ARFF 

File, read the excel sheet where Test Set is stored, perform 

Feature Test, write the results of feature test into ARFF file 

 

 6. Message Classification  

Message classification process is shown in the Fig 4.2 below. 

The decision tree thus obtained for the financial example 

taken is shown in the Fig 4.3 

 
Fig 4.2 Message Classifier 

 

 
Fig 4.3 Decision Tree of Message Classifier 

 

V. CONCLUSION & FUTURE WORK 

The proposed system offers another approach to 

classification of Short Message Service(SMS) messages in 

addition to the existing systems. It provides an accurate, 

efficient method with real time analysis support. The proposed 

system creates understandable prediction rules from the 

training data. It also builds the tree fast and short. It only 

needs to test enough attributes until all data is classified. 

Finding leaf nodes enables test data to be pruned, reducing 

number of tests and whole dataset is searched to create tree. 

 Based on our findings the proposed system is capable 

of classifying an incoming message with great accuracy that 

can be extended for future use.The system uses tool with Free 

availability and Portability. Since it is implemented in the Java 

programming language it runs on almost any modern 

computing platforms like  Windows, Mac OS X and Linux. 

The results are also confirmed using weka GUI for accurate 

results. The features used for training is easy to understand 

and modifiable. Many classification algorithms limit the broad 

area of domains for validating text data. In proposed system, a 

classifier extends the number of domains to text data. At its 

simplest, system provides a quick and easy way to explore and 

analyze data. In addition the response time for classifying 

messages gets drastically reduced.  

 To be enhanced and implemented in real time in further 

classifying the financial messages into categories such as 

income, expense, informational and so on. To be enhanced 

and implemented in real time in estimating the expenses and 

current financial status of an individual over a specific period 

of time using the Short Message Service (SMS) messages the 

individual has received. To extend this classification to 

electronic-mail and online messaging services. 

REFERENCES 
[1] A.Selamat, 2003. Studies on Mobile Agents for Query Retrieval and 

Web Page Categorization Using Neural Networks, in Division of 
Computer and Systems Sciences, Gradute School of Engineering, vol. 

Doctoral. Osaka: Osaka Prefecture University , pp. 94. 

[2] R.A. Calvo, M. Partridge, and M. A. Jabri, 1998. A Comparative Study 
of Principal Component Analysis Techniques, presented at In Proc. 

Ninth Australian Conf. on Neural Networks, Brisbane P. Frasconi, G. 

Soda and A. Vullo. “Text categorization for multi page document: a 
hybrid naive Bayes HMM approach”, In proceeding of 1st ACM/IEEE-

CS joint conference on Digital libraries; ACM Press New York, NY, 

USA, pages 11-20. 2001  
[3] A.M. Kibriya, E. Frank, B. Pfahringer and G. Holmes. “Multinomial 

naive bayes for Text categorization” revisited. AI 2004: Advances in 

Artificial Intelligence, 3339, pp. 488–499, 2004.  
[4] G. D. Guo, H. Wang, D. Bell, Y. X. Bi, and K. Greer.”Using kNN 

model for automatic text categorization”. Soft Computing, 10(5), pp. 

423–430, 2006.  
[5] R. N. Chau, C. S. Yeh, and K. A. Smith. :”A neural network model for 

hierarchical multilingual text categorization”. Advances in Neural 

Networks, LNCS, 3497, pp. 238–245, 2005.  
[6] S. Gao, W. Wu, C. H. Lee, and T. S. Chua. “A maximal .gure-of-merit 

(MFoM)-learning approach robust classifier design for text 

categorization”. ACM Transactions on Information Systems, 24(2), pp. 
190–218, 2006.  

[7] R. Schapire, Y. Singer, and A. Singhal. “Boosting and Rocchio applied 

to text clustering”. In Proceedings of the 21st International ACM 
SIGIR Conference on Research and Development in Information 

Retrieval, Melbourne, Australia, pp. 215–223, 1998.  

[8] Broder, M. Fontoura, E. Gabrilovich, A. Joshi,V. Josifovski, and T. 
Zhang. “Robust classi.cation of rare queries using web knowledge”. In 

Proceedings of the 30th Annual International ACM SIGIR Conference 

on Research and Development in Information Retrieval, Amsterdam, 
The Netherlands, pp. 231–238, 2007. 

[9] Z. Cataltepe and E. Aygun. “An improvement of centroid-based 

classi.cation algorithm for text classification”. IEEE 23rd International 
Conference on Data Engineering Workshop, 1-2 pp. 952–956, 2007. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS060337
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 06, June-2021

755

www.ijert.org
www.ijert.org
www.ijert.org


 

[10] D. Lewis and J. Catlett. “Heterogeneous uncertainty sampling for 

supervised learning”. In Proceedings of the Eleventh International 

Conference on Machine   Learning, pp. 148–156, 1994. 

[11] Dumais and H. Chen. “Hierarchical classification of Web content”. In 
Proceedings of the 23rd Annual International ACM SIGIR conference 

on Research and Development in Information Retrieval, Athens, 

Greece, pp. 256–263, 2000.  
[12] David D.Lewis, Robert E. Schapire, James P. Callan, nad Ron Papka. 

“Training algorithms for linear text classifiers”. IN SIGIR’96: 

Proceeding of the 19th Annual   International AGM SIGIR Conference 
on Research and Development in Information Retrieval, pp.298-

306,1996. 

[13] Makato Iwayama and Takenobu Tokunaga. “Cluster based text 

categorization:a comparison of category search strategies”. In 

proceedings of the 18th Ann Int ACM    SIGIR Conference on 

Research and Development in Information Retrieval (SIGIR’95), pp. 
273-281,1995.  

[14] D.D. Lewis, “Naive (bayes) at forty: The independence assumption in 

information retrieval”. In 10th European Conference on Machine 
Learning (ECML-98), pp. 415, 1998.  

[15] A.McCallum and K. Nigam. “A comparison of event models for naive 

bayes text  classification”. In AAAI-98 Workshop on Learning for Text 
Categorization, 1998.  

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV10IS060337
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 10 Issue 06, June-2021

756

www.ijert.org
www.ijert.org
www.ijert.org

