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Abstract 

 

We present the first observation of fast plasma flows in Mercury’s magnetotail. Mercury 

experiences substorm activity phenomenologically similar to Earth’s, however, field of view 

limitations of the Fast Imaging Plasma Spectrometer (FIPS) prevent the instrument from 

detecting fast flows in the plasma sheet. Although FIPS measures incomplete plasma 

distributions, subsonic flows impart an asymmetry on the partial plasma distribution, even if the 

flow directions are outside the field of view. We combine FIPS observations from 387 intervals 

containing magnetic field dipolarizations to mitigate these instrument limitations. By taking 

advantage of variations in spacecraft pointing during these intervals, we construct composite 

plasma distributions from which mean flows are determined. We find that dipolarizations at 

Mercury are embedded within fast sunward flows with an averaged speed of ~300 km/s 

compared to a typical background flow of ~50 km/s.  

 

Plain Language Summary 

 

Similar to Earth, Mercury has a global magnetic field that forms a protective cavity, known as 

the magnetosphere, within the solar wind. The solar wind compresses the dayside 

magnetosphere, while stretching the nightside magnetosphere behind the planet. Variations 

within the solar wind cause dynamic activity within Mercury’s magnetosphere, with a process 

known as magnetic reconnection mediating the interaction. Magnetic reconnection changes the 

topology of magnetic field lines and transfers energy and momentum from the magnetic field to 

the plasma within it. At Earth, magnetic reconnection in the nightside magnetosphere drives fast 

flows of plasma towards the planet, which when nearing the planet are slowed and diverted. 

These flows cannot be identified directly at Mercury because of limitations of the MESSENGER 

spacecraft measurements collected there. This research paper develops a new statistical 

technique to identify and characterize these fast flows at Mercury. 
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1. Introduction 

 

The MESSENGER spacecraft has observed that Mercury’s magnetosphere experiences brief, yet 

intense, substorm activity characteristically similar to Earth’s. Mercury’s magnetotail exhibits 

loading/unloading (Slavin et al., 2010), dipolarization (Sundberg et al., 2012), plasmoid release 

(Slavin et al., 2009), energetic particle injection (Dewey et al., 2017), auroral-like precipitation 

(Lindsday et al., 2016), and current wedge formation (Poh et al., 2017). Mercury’s substorms are 

significantly shorter and relatively stronger than Earth’s, a result of the differences between the 

two magnetospheres (Siscoe et al., 1975). Mercury has a weak global magnetic field and lacks an 

ionosphere, but experiences stronger solar wind forcing that results in shorter temporal scales 

and higher magnetic reconnection rates than at Earth (e.g., Slavin et al., 2009; DiBraccio et al., 

2013). The typical substorm cycle, for example, lasts ~3 min at Mercury compared to the ~1–3 h 

at Earth during which Mercury’s lobe magnetic field strength increases on average by ~23% 

compared to the ~10% at Earth (Imber & Slavin, 2017; Forsyth et al., 2015; Hsu & McPherron, 

2000). While many features of Mercury’s substorms have been identified and investigated, one 

major substorm signature has yet to be identified at Mercury – the presence of fast plasma flows 

in the magnetotail. 

 

At Earth, bursty bulk flows (BBFs) are fast plasma flows within the plasma sheet, often traveling 

sunward with speeds > 400 km/s (e.g., Angelopoulos et al., 1992) and typically accompanying 

magnetic field dipolarization (Ohtani et al., 2004). BBFs and dipolarizations follow the rapid 

reconfiguration of mid-tail region, –30 < XGSM < –15 RE (where RE ~ 6371 km is Earth’s radius), 

where x-lines drive explosive nightside energy release (e.g., Runov et al., 2012). The intense 

reconnection drives fast plasma flows that carry newly-reconnected dipolar field lines 

(dipolarizing flux bundle; e.g., Liu et al., 2013) toward the inner magnetosphere. As the 

dipolarizing flux bundle is carried planetward, the leading edge of the flux tube steepens to form 

This article is protected by copyright. All rights reserved.
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the dipolarization front (e.g., Runov et al., 2009). Force balance (e.g., Karlsson et al., 2015) and 

specific entropy content (e.g., Wolf et al., 2009) determine the dynamics of the BBF as it moves 

planetward, resulting in rapid braking of the flow between –15 < XGSM < –10 RE (e.g., Shiokawa 

et al., 1997; Fu et al., 2010) and in the generation of the substorm current wedge (e.g., Birn et al., 

1999; Yao et al., 2012; Liu et al., 2013; Sun et al., 2013; Sergeev et al., 2014). During substorm 

intervals, BBFs contribute significantly to the mass, energy, and magnetic flux transport in the 

magnetotail (e.g., Angelopoulos et al., 1992; Liu et al., 2014; Schmid et al., 2016). Similar to 

Earth, fast plasma flows are expected in Mercury’s magnetotail (e.g., Slavin et al., 2009; Sun et 

al., 2015a; Poh et al., 2017) in coincidence with dipolarizations (e.g., Sunberg et al., 2012; 

Dewey et al., 2017), which are a consistent signature of substorm activity at Mercury (e.g., Sun 

et al., 2015b). 

 

Due to limitations imposed on the plasma instrument, MESSENGER cannot directly resolve 

plasma flows at Mercury. The spacecraft is 3-axis stabilized so the thermal ion sensor, the Fast 

Imaging Plasma Spectrometer (FIPS; Andrews et al., 2007), cannot measure complete plasma 

distributions from which to determine flows. Furthermore, the FIPS sensor never observes the 

sunward or antisunward directions since the spacecraft’s sunshade must continuously point 

sunward. Although bulk flow cannot be determined unambiguously from an incomplete plasma 

distribution, a subsonic flow would impart asymmetry on the distribution even with the flow 

direction outside the field of view. In this study, we apply statistical techniques to identify flows 

in Mercury’s magnetotail by combining multiple intervals to construct more complete plasma 

distributions. We find that similar to Earth, dipolarizations at Mercury are typically embedded in 

fast sunward flows. These are the first plasma flows measured at Mercury and illustrate the new 

capability of measuring statistical flows with FIPS. 

 

2. Data sources & methodology 
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FIPS measures thermal and low-energy ions with energy per charge ratio (E/q) between 46 eV/e 

and 13 keV/e with a nominal energy scan time of 10 s. FIPS is comprised of an electrostatic 

analyzer and a time-of-flight chamber, in the latter of which ions stop by encountering a 

position-sensing micro-channel plate (MCP). The stop MCP consists of an array of 64 by 64 

pixels, each of which map to a location in the FIPS field of view (FOV), enabling the ions’ 

incident direction to be determined. Combined, the MCP pixels allow for an instantaneous FOV 

imaging of ~1.4π sr about FIPS’s boresight direction (the central axis of the FOV cone), 

although spacecraft obstructions reduce this to an effective ~1.15π sr. We also use magnetic field 

vector measurements collected by the Magnetometer (Anderson et al., 2007) at 20 Hz resolution. 

We display all MESSENGER observations in the Mercury solar magnetospheric (MSM) 

coordinate system, which is centered at Mercury’s dipole center with XMSM pointing sunward, 

ZMSM pointing northward, and YMSM completing the right-handed system. 

 

To identify fast flows, we analyze intervals containing dipolarizations selected by Dewey et al. 

(2017). Dewey et al. (2017) identified 538 dipolarizations coincident with energetic electron 

injections in Mercury’s magnetotail from March 2013 to April 2015. An example of such an 

interval is shown in Figure 1a. During this 1-min interval, two dipolarizations are present: one 

beginning at ~08:26:12 and another at ~08:26:40. Both dipolarizations are coincident with 

enhancements in the Gamma-Ray Spectrometer (GRS) count rate, corresponding to energetic 

electron injections (e.g., Lawrence et al., 2015; Baker et al., 2016). The FIPS scan shaded in grey 

spans from the end of the first dipolarization to the beginning of the second. Figure 1b contains 

the scan’s angular flux map: proton flux accumulated during this scan as a function of MSM 

angular direction. Figure 1c contains the scan’s angular FOV map: the number of MCP pixels 

observing each direction of MSM-space. Examining this scan’s angular maps, the FIPS FOV 

limitations are apparent. The sensor surveys only a fraction of the sky and cannot observe plasma 

traveling in neither the sunward (+XMSM) nor antisunward (–XMSM) directions. While the sensor 

cannot unambiguously determine bulk plasma flow from the incomplete plasma distribution of 
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this single scan, there is more flux traveling in +XMSM than –XMSM (see guiding arrows), 

suggestive of a sunward plasma flow. There are several high-flux bins near –ZMSM, however, 

these bins have high uncertainty as they are observed by few MCP pixels and correspond each to 

single proton counts. 

 

Since a single FIPS scan has insufficient FOV coverage to determine plasma flows 

unambiguously, we construct composite plasma distributions by combining multiple FIPS 

measurements. Of the 538 Dewey et al. (2017) dipolarizations, we select 387 for statistical 

analysis. Figure 2 contains the equatorial distribution of all dipolarizations. For our analysis, we 

exclude regions near the magnetopause (YMSM  < –1.5 RM, where RM ~ 2440 km is Mercury’s 

radius) to avoid contamination from the magnetosheath, regions close to the planet with poor 

viewing geometry (i.e., boresight pointing does not vary significantly across these events) to 

avoid biasing the composite distribution, and regions with too few events (< 10 dipolarizations) 

to avoid introducing outliers due to small geographic sample size. Of the 396 dipolarizations 

within the resulting region of interest (outlined by a thick black line), we exclude nine during 

which FIPS operated outside of its nominal mode. 

 

To combine multiple FIPS scans into a composite plasma distribution, we: (1) construct a three-

dimensional spherical velocity phase space in MSM coordinates; (2) select all protons from the 

scans with corresponding MCP pixel location; (3) determine the velocity space location of each 

proton; (4) weigh each proton’s phase space density (PSD) by the ratio of the solid angle of the 

MCP pixel that recorded it to the accumulated solid angle of all MCP pixels during that scan that 

observed that velocity space location; (5) add the weighted PSDs to velocity space; and (6) 

normalize the accumulated PSD at each velocity space location by the number of scans that 

observed that location. This procedure can be written as 

𝐹(𝑣, 𝜃,𝜙) = 1𝑁(𝜃,𝜙) � ���Ω𝑖𝑗(𝜃,𝜙)�𝑓𝑖𝑗𝑘(𝑣)𝑘 �𝑗 �Ω𝑖𝑗(𝜃,𝜙)𝑗� �𝑁(𝜃,𝜙)
𝑖=1  
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where (𝑣,𝜃,𝜙) are typical spherical coordinates; 𝐹(𝑣,𝜃,𝜙) is the averaged PSD at velocity 

space location (𝑣,𝜃,𝜙); 𝑁(𝜃,𝜙) is the number of scans that observed (𝜃,𝜙), indexed by i; Ω𝑖𝑗(𝜃,𝜙) is the solid angle of MCP pixel number j that observed (𝜃,𝜙) during scan i; and 𝑓𝑖𝑗𝑘(𝑣) is the PSD of proton number k that has velocity (𝑣) recorded by MCP pixel j during scan 

i. Combining many FIPS scans with variable boresight pointing will generate a complete three-

dimensional plasma distribution except for the sunshade-blocked conic regions near ±XMSM. 

Plasma flows along ±YMSM and ±ZMSM can be determined unambiguously from this composite 

distribution while flows along ±XMSM can be determined so long as they are sufficiently 

subsonic. 

 

A composite plasma distribution from the 387 dipolarizations is shown in Figure 3. For this 

distribution, we combine all FIPS scans that occur in the 1 s before each dipolarization front 

midpoint. With a 1 s selection window, most dipolarizations contribute one FIPS scan to the 

composite distribution, however, ~10% contribute two as one scan ends and another begins 

within the window, for a total of 424 scans. Clear anisotropies are observed in the angular flux 

map (Figure 3a). While ±XMSM are not observed directly, there is greater flux traveling in +XMSM 

(yellow/orange) than –XMSM (blue) surrounding the unobserved regions. There are bins with low 

flux (black) about both +XMSM and –XMSM, however, these bins have high uncertainty as they are 

observed by few MCP pixels (Figure 3b). The ±XMSM anisotropy is also observed away from the 

XMSM–YMSM plane. In the region between the XMSM–YMSM plane and –ZMSM, for example, greater 

flux is traveling in +XMSM (green) than –XMSM (blue). There is also clear anisotropy between 

±ZMSM.  

 

Since the ±XMSM anisotropy is observed at all ZMSM in the composite plasma distribution, 

sunward plasma flows are sufficiently subsonic to determine numerically. Calculating the 

moments (e.g., Paschmann et al., 1998) yields a proton density np of 0.60 ± 0.03 cm-3, a sunward 

velocity vx of 136 ± 14 km/s, a duskward velocity vy of –60 ± 25 km/s, a northward velocity vz 

This article is protected by copyright. All rights reserved.



 8 

of –140 ± 18 km/s, and a proton temperature Tp of 38.6 ± 0.9 MK. We evaluate uncertainties 

using both Monte Carlo and subsampling techniques. In the former, we perturb the PSD at each 

velocity space location by a random value from a normal distribution multiplied by that 

location’s propagated Poisson error. In the latter, we randomly select 10% of the scans and 

construct a new composite plasma distribution. After generating new plasma distributions, we 

compute the new plasma moments. We repeat each technique with 5,000 iterations to form 

probability distributions for each plasma moment for each technique. For Monte Carlo, a 

distribution’s spread represents that moment’s instrument error, while for subsampling, it 

represents that moment’s sampling error. We find that sampling error dominates instrument 

error.  

 

We use a software model of the FIPS sensor (Dewey, Raines, and Tracy, 2017) to correct the 

plasma moments for the unobserved regions of the composite plasma distribution. The model 

simulates the sensor’s response to a drifting Maxwellian plasma distribution. The model uses an 

input proton density, bulk velocity, temperature, and time-accurate pointing information to 

determine the PSD at each MCP pixel. Following the same procedure as for the composite 

plasma distribution, multiple intervals are combined and the plasma moments are calculated. 

Using this technique, we estimate that the in situ plasma in Figure 3 is most likely np = 0.74 ± 

0.05 cm-3, vx = 225 ± 25 km/s, vy = –58 ± 27 km/s, vz = –147 ± 18 km/s, and Tp = 46.4 ± 1.7 

MK. The moments determined directly from the composite plasma distribution underestimate np 

by only ~20%, vx by ~40%, and Tp by ~17% while capturing vy and vz well. At a temperature of 

Tp = 46.4 MK, the thermal proton speed is ~875 km/s, indicating the flow is subsonic with a 

Mach number of ~0.3. 

 

3. Results 

 

This article is protected by copyright. All rights reserved.
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To examine the evolution of the plasma flows about the 387 selected dipolarizations, we perform 

superposed epoch analysis on the plasma and magnetic field observations, displayed in Figure 

4a. Each dipolarization is aligned at the midpoint of its dipolarization front (defined to be t = 0). 

For each 1 s time step –60 < t < +40 s, we collect the magnetic field, spacecraft location, and 

FIPS scans within the time window for each dipolarization. For each step, the average magnetic 

field and spacecraft location are calculated, and the plasma density, flow, and temperature are 

determined using the statistical technique described in Section 2. The composite plasma 

distribution from Figure 3 corresponds to the time of the dashed vertical line in Figure 4a.  

 

Typical dipolarization signatures are immediately apparent. In Bz, a decrease in the magnetic 

field beginning at t = –3 s followed by a sharp, step-like increase to t = +2 s marks the 

dipolarization front, while afterwards, the decaying Bz to a near-constant value (+2 < t < +7 s) 

marks the dipolarizing flux bundle. The grey shaded region spans from the start of the 

dipolarization front to the end of the dipolarizing flux bundle. During this interval, the proton 

density decreases ~30% and the proton temperature increases ~20%. The spacecraft is located, 

on average, in the post-midnight sector at local time ~2.7 h and radial distance ~1.5 RM, and its 

northward motion through the plasma sheet can be seen in the magnetic field components. Bx and 

By have small amplitudes throughout the interval but both reverse sign, consistent with the 

averaged spacecraft motion from –ZMSM to +ZMSM, indicating a current sheet crossing. These 

composite plasma and magnetic field signatures are similar to previous studies at Mercury 

(Sundberg et al., 2012; Sun et al., 2017a), which is not surprising given the use of dipolarization 

intervals from Dewey et al. (2017). 

 

A flow enhancement is observed coincident with the statistical dipolarization. Throughout the 

interval, vx dominates the total flow speed vt, while vy remains near 0 km/s and vz remains 

negative. Prior to the dipolarization (–60 < t < –30 s), each velocity component remains steady 

with vx ~ 160 ± 22 km/s, vy ~ 0 ± 25 km/s, vz ~ –100 ± 20 km/s, and vt ~ 200 ± 18 km/s. From –

This article is protected by copyright. All rights reserved.



 10 

30 < t < –15 s, vx increases steadily to 276 ± 26 km/s bringing vt to 294 ± 25 km/s. The flow 

speed remains at ~300 km/s until after the dipolarization (t > +25 s). During the dipolarization, 

the flow diverts azimuthally with vt remaining constant while the magnitude of vx decreases (228 

± 25 km/s) and the magnitude of vy increases (–74 ± 27 km/s). The cyan arrow in Figure 2 

marks the equatorial direction of the flow during the statistical dipolarization. Throughout the 

interval, vz remains negative, reaching a maximum absolute value of –159 ± 20 km/s within the 

dipolarization at t ~ +6 s. 

 

For comparison, we perform the same statistical analysis on quiescent intervals, shown in Figure 

4b. We select 336 orbits between 1 March 2013 and 30 April 2015 that cross the magnetic 

equator within the region of interest (see Figure 2), contain no dipolarization-injection events 

(Dewey et al., 2017), and during which FIPS operated nominally. We align each orbit at the 

current sheet crossing (t = 0) and determine plasma and magnetic field parameters at 5 s 

resolution for times –300 < t < +300 s. We select this time interval as it corresponds to the 

typical time required for the spacecraft to traverse |ZMSM| < 0.5 RM, the region Dewey et al. 

(2017) used to identify dipolarizations. The shaded grey interval (–20 < t < +80 s) corresponds to 

the same averaged ZMSM traveled by the spacecraft as in Figure 4a. During this interval, plasma 

conditions remain constant to within uncertainty. The plasma sheet is denser (np ~ 3.10 ± 0.26 

cm-3), colder (Tp ~ 17.0 ± 0.9 MK), and more stagnant (vx ~ 38 ± 16 km/s, vy ~ –7 ± 23 km/s, vz 

~ 20 ± 16 km/s, vt ~ 47 ± 17 km/s) compared to the averaged dipolarization and agrees well 

with previous typical plasma sheet proton densities and temperatures (e.g., Gershman et al., 

2014). While the plasma moments show no significant trends within the shaded interval, the 

magnetic field is dominated by the spacecraft’s motion through the planetary dipole field.  

 

4. Discussion & Conclusions 
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We use statistical techniques to determine mean proton flows in the plasma sheet during 

substorm and quiescent intervals using the FIPS data. We combine plasma observations from 

387 dipolarization intervals and 336 background intervals to produce composite plasma 

distributions from which flows are inferred. During dipolarizations, the flow is ~300 km/s and 

predominately in the +XMSM direction. By comparison, the convection speed during more 

quiescent intervals is ~50 km/s. The dipolarization-associated flows are similar to those during 

dipolarizations at Earth. Liu et al. (2014), for example, found vx to be typically ~100 km/s greater 

during a dipolarization than the interval preceding it. 

 

While vx is enhanced during dipolarizations, it increases in magnitude steadily prior to the 

dipolarizations, which may be associated with enhanced convection during the substorm growth 

phase. During the growth phase at Earth, enhanced convection driven by reconnection at the 

magnetopause pulls closed flux from the inner tail to the dayside reconnection region (Hsieh and 

Otto, 2014), which results in tail current sheet thinning (e.g., Sun et al., 2017b; Gordeev et al., 

2017). Alternatively, this signature could be due protons reflected by the dipolarization front 

(e.g., Zhou et al, 2010) or an effect of averaging successive dipolarizations, as in Figure 1a. 

Nevertheless, an increase in vx prior to a dipolarization is typically observed at Earth (e.g., 

Runov et al., 2011). Finally, the negative vz during dipolarizations may be combination of 

effects. It could be related to the spacecraft (located at ZMSM ≳ 0) observing current sheet 

thinning or the contraction of stretched field lines. It could also be related to the asymmetry 

between Mercury’s loss cones, in which more particles are lost in the southern hemisphere, 

resulting in a net southward streaming and indicating particle loss. Sampling bias is unlikely to 

cause the vz signature since the statistical composite technique accounts for FOV bias. 

 

Given an average plasma sheet Bz ~ 45 nT and vx ~ 250 km/s, the implied electric field during 

dipolarizations is ~11 ± 1 mV/m. If we assume a single cross-tail flow channel width of ~0.2 RM 

(scaled from the ~1–2 RE at Earth), the additional cross-magnetospheric potential due to a 
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dipolarization would be ~5.4 ± 0.5 kV and the typical flux transported by a dipolarization would 

be ~0.06 ± 0.01 MWb. In contrast, from the statistical background observations, the typical 

cross-tail electric field is ~2.4 ± 1.2 mV/m, corresponding to a cross-tail potential of ~23 kV, 

which is consistent with previous estimates at Mercury (Slavin et al., 2010; DiBraccio et al., 

2015; Jasinski et al., 2017). For substorm intervals, Imber & Slavin (2017) found that loading 

typically increases the lobe magnetic content by ~0.6 MWb over a period of ~100 s. This rate of 

loading corresponds to a difference in the dayside and tail reconnection rates of ~6 kV. While a 

single dipolarization can account for the reconnection rate difference, numerous dipolarizations 

(~10) are required to unload the magnetotail. Dipolarizations at Mercury, therefore, are 

associated with strong convection and transport although multiple are expected to occur during 

Mercury’s substorm cycle. 

 

Without reliable spatial gradients, the flow braking of the statistical dipolarization cannot be 

determined. As the dipolarization continues to move sunward, however, it is expected to 

encounter strong braking due to increased magnetic pressure gradients from the planetary dipole 

field (e.g., Shiokawa et al., 1997) where the flow’s rapid braking and flux pile-up develop the 

substorm current wedge (e.g., Kepko et al., 2015). Using the magnetic field strength of the 

statistical dipolarization and a dipole description of Mercury’s inner magnetotail (appropriate for 

radial distances ≲ 1.5 RM; Rong et al., 2018), we estimate substantial braking to occur at radial 

distances < 1.3 RM. If the negative vz signature indicates particle loss as discussed above, the 

reduction in specific entropy of the dipolarizing flux tube would result in a braking region even 

closer to the planet (e.g., Wolf et al., 2008), with some fast flows possibly reaching Mercury’s 

nightside surface. However, observations suggest that the typical dipolarization diverts about the 

planet (cyan arrow in Figure 2) such that it may not encounter steep gradients in the field and 

may instead propagate some distance before stopping. Without observations within the braking 

region, we cannot reliably estimate the typical dipolarization’s contribution to the substorm 

current wedge, although the expectation that multiple dipolarizations are required to unload the 
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magnetotail is similar to the wedgelet model at Earth (Liu et al., 2013). Interestingly, and 

requiring future investigation, a sustained series of dipolarizations compressing the nightside 

inner magnetosphere could produce induction effects in Mercury’s core, similar to those induced 

on the dayside during strong solar wind forcing conditions (Slavin et al., 2014), which would 

cause the braking region to move tailward and possibly divert flows. Understanding the 

dipolarization flow speed as a function of downtail distance (e.g., Baumjohann et al., 1990) will 

help to refine these estimates; future observations from BepiColombo will be of particular value. 
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Figure 1. (a) Magnetic field dipolarizations and energetic electron injections identified by 

Dewey et al. (2017). From top to bottom: GRS count rate; FIPS H+ flux spectrogram; and 

magnetic field components Bx, By, Bz, Bt. Spacecraft position is listed below the bottom panel. 

(b) FIPS angular flux map corresponding to the energy scan shaded in grey in (a). Color bins 

have nonzero flux as indicated by the upper color bar. (c) Angular FOV map of the same scan. 

The number of MCP pixels sampling each region of MSM space is indicated by the lower color 

bar. For both maps, white indicates regions outside the FOV. 
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Figure 2. Equatorial distribution of dipolarizations identified by Dewey et al. (2017). The color 

bar indicates the number of dipolarizations within each (0.1 RM)2 bin; light grey corresponds to 

no dipolarizations. The number of dipolarizations within each (0.5 RM)2 box is listed in the box’s 

lower-left corner. The thick black line outlines the region used for statistical analysis. For the 

selected dipolarizations, the star denotes the average spacecraft location and the cyan arrow 

points in the statistical equatorial flow direction. The dark grey region marks Mercury’s surface. 

Annotations are discussed in the text. 
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Figure 3. Composite plasma distribution of the 387 dipolarizations. (a) Angular flux map in the 

same format as Figure 1b. (b) Angular FOV map in the same format as Figure 1c. White 

indicates unobserved regions for both maps. 
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Figure 4. (a) Statistical plasma and magnetic field observations from the 387 dipolarization 

intervals. (top to bottom) Magnetic field components; plasma flow components; proton density 

and temperature. Average spacecraft location is listed below the bottom panel. The light grey 

shaded region spans the statistical dipolarization. (b) Statistical observations from 336 
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background orbits, in the same format as (a). The light grey shaded region corresponds to the 

same range of ZMSM as in (a). 
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