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Introduction
For decades cancer vaccines have been utilized to induce anti-
tumor immune responses against cancer antigens, sometimes 
in association with clinical responses. Initial cancer vaccination 
strategies targeted antigens linked to oncogenesis and cancer pro-
gression that are shared by many cancers — either overexpressed 
cancer-initiating gene products (driver antigens) such as HER-2 or 
reactivated gene products such as MAGE (1, 2). With the advent 
of bioinformatics tools, studies now focus on vaccines targeting 
neoantigens personalized to individual patients. These studies 
have shown promise in activating robust and durable neoanti-
gen-specific T cells, as well as early clinical responses, particular-
ly in tumors such as melanoma that are more likely to respond to 
immune checkpoint blockade (3–7). Preclinical and early-phase 
clinical trials testing neoantigen vaccines in immunologically 
insensitive cancers, such as pancreatic ductal adenocarcinoma 
and glioblastoma, have also shown promise in inducing neoanti-
gen-specific antitumor immunity (8–11).

While many studies have used DNA or peptide platforms for 
cancer vaccine delivery, mRNA-based therapeutics have demon-
strated equal or greater activity in preclinical studies and ear-
ly-stage clinical trials. The mRNA platform is also versatile and has 
successfully been used in systemic, subcutaneous, intramuscular, 
and in situ vaccine strategies and to genetically modify dendritic 
cell–based vaccines and create chimeric antigen receptor (CAR) T 

cell therapies. But progress in mRNA vaccine clinical development 
has been slow because of challenges relating to stability, cost of 
personalized production of patient-specific vaccines, and delivery. 
The SARS-CoV-2 pandemic led to the successful clinical develop-
ment and application of several mRNA vaccines, underscoring 
the remarkable versatility, favorable immunogenicity, and overall 
safety of the mRNA platform on a global scale. A large part of the 
more recently conducted foundational research that led to this 
success has rested on transformative biomedical engineering and 
novel delivery methods aimed to optimize the therapeutic poten-
tial of this vaccine platform. Understanding the advancements 
that yielded successful mRNA vaccines for COVID-19 should 
accelerate progress in overcoming the remaining challenges for 
their application to cancer vaccination.

History of mRNA-based vaccine strategies
As a novel expression platform, Malone and coworkers first doc-
umented the in vitro expression of a luciferase transgene from an 
mRNA vector (12). Shortly after, in 1990, Wolff et al. demonstrated 
the first successful RNA-mediated expression of a reporter trans-
gene in vivo (13). In 1993, a liposome-mRNA construct expressing 
influenza hemagglutinin was reported to induce cytotoxic CD8+ 
T cell responses capable of detecting and lysing virus-infected 
cells in a murine model of influenza infection, demonstrating the 
immunogenic potential of RNA vectors (14). Two years later, vac-
cination with a naked mRNA encoding cancer embryonic antigen 
(CEA) induced CEA-specific antibodies in mice, underscoring the 
anticancer potential of mRNA therapeutics (15–17).

mRNA-based vaccines were first brought to the immunother-
apy field for their attractive ability to safely vaccinate against pro-
teins harboring oncogenic driver mutations. Notably, compared 
with DNA vectors, the mRNA platform provides robust antigen 
expression without necessitating transgene entry into the nucleus, 
thereby avoiding potential toxicity issues related to DNA integra-
tion. The rapid turnover rate of mRNA further eliminated con-
cerns of potential off-target cell transformation events. Among 
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delivery (33, 34, 37, 40, 41). In this regard, a third mRNA vac-
cine tested, CureVac, comprising an unmodified mRNA vector, 
demonstrated poor immune responses in phase III trials, which 
is attributed to the lower dose given and/or absence of chemical 
modifications to promote antigen expression.

A major challenge in the application and distribution of these 
mRNA vaccines is the required storage and delivery at –80°C, and 
the relatively short shelf life of approximately 6 months (42–44). 
Upon dilution, their half-life is also short, only 6 to 12 hours at 
room temperature or 5 to 30 days at 4°C. This challenge neces-
sitates improvement in product longevity. Several groups have 
attempted to increase nanoparticle-RNA stability through various 
formulations of lipid polyplexes, lipoplexes, and lipopolyplexes 
(45–47). The development of a lyophilized mRNA-LNP should 
further ease delivery and storage requirements (43).

While the SARS-CoV-2 mRNA vaccines showed favorable 
safety profiles across diverse populations, side effects after 
intramuscular delivery of 30 μg of Pfizer’s mRNA construct, 
BNT162b2, were mild to moderate, and included pain at the injec-
tion site, fatigue, fever, chills, and headache (32, 48). Moderna’s 
mRNA platform, mRNA-1273, given at 100 μg, had similar side 
effects (31, 34, 49). Low-frequency anaphylaxis is also suspected 
to arise due to the inclusion of PEG, a component of the nanoparti-
cle, although this remains to be established (50–52). These serious 
adverse events are rare, can be managed, and should not prohibit 
further development of this vaccine platform for other indications.

Finally, a major factor in the success of the SARS-CoV-2 
mRNA vaccines was the commitment by pharmaceutical compa-
nies to rapidly manufacture vaccine candidates. Noting that many 
companies are now poised for large-scale production of flexible 
vaccine platforms, they are also positioned to develop novel can-
cer vaccine candidates much more rapidly. To aid in this effort, 
continued development of constructs with improved uptake, sta-
bility, and potency should ease production costs by reducing dose 
requirements and improve therapeutic indexes to successfully 
employ mRNA vaccines for cancer treatment.

Immunologic requirements for mRNA vaccines 
to treat cancer
Most antigen delivery systems are difficult to rapidly engineer, 
modify, or produce, lack potent immunogenicity, and/or cause 
neutralizing immunity to the delivery system itself. However, 
transformative advances in bioengineering, rapid manufacturabil-
ity, and immunogenicity of the mRNA platform provide a unique 
opportunity to target a broad range of antigens for cancer vaccina-
tion. Nonetheless, there are a set of unique immunologic require-
ments for successful vaccine strategies against cancer-associated 
immunogens, particularly when considering prevention, immedi-
ate control of existing disease, and long-term protective immuni-
ty (53). Vaccination to prevent infection with pathogens requires 
robust production of antibodies by B cells, aided by CD4+ T cell 
help, to neutralize pathogens upon initial infection and reinfection 
(37, 54). Further, it is suspected that low levels of cytotoxic CD8+ T 
cells contribute to early control of viral infections before sufficient 
antibody responses are mounted (38, 55, 56). In contrast, treat-
ment and prevention of most cancers require robust and diverse 
cytotoxic CD8+ T cells to directly debulk primary or metastatic 

the earliest constructs, replicative and non-replicative positive 
sense RNA virus genomes proved their amenability to modifica-
tion, transgene expression, and immunogenic potential against 
viral and cancer antigens in several mouse models (18–20). In 
addition, a liposome-mRNA vaccine encoding human glycopro-
tein 100 (hgp100) was shown to activate cognate cytotoxic T cells 
and control tumor growth in a murine model of melanoma (21). 
In parallel, murine or human autologous dendritic cells transfect-
ed ex vivo with bulk tumor or single-antigen mRNAs were highly 
effective in priming antigen-specific T cell responses, thus broad-
ening the scope of mRNA applications to adoptive cell transfer 
therapies (22–25). Such mRNA-based platforms promote antigen 
processing of endogenously translated antigens through the MHC 
class I antigen presentation pathway compared with conventional 
peptide pulsing that requires efficient cross-presentation to prime 
cytotoxic T cells. Collectively, this seminal work in cancer and 
infectious disease vaccine strategies has established mRNA as an 
immunogenic platform. The methodical modifications made to 
RNA vectors throughout their development have collectively led 
to substantial improvements in antigen expression and immuno-
phenotype modulation, paving the way for broad vaccination 
applications against cancer and pathogen antigens (26–30).

Lessons from global application of SARS-CoV-2 
mRNA vaccines
The successful development, characterization, and application 
of mRNA-based SARS-CoV-2 vaccines along with the excep-
tionally high response rate to vaccination in diverse populations 
have propelled the urgent application of the mRNA platform in 
cancer treatment. As the first of their kind, the Pfizer/BioNTech 
(BNT162b2) and Moderna (mRNA-1273) SARS-CoV-2 mRNA–lip-
id nanoparticle (mRNA-LNP) vaccines established worldwide pro-
tocols for and feasibility of large-scale good manufacturing prac-
tice, broad vaccine distribution, and vaccine administration, from 
which several lessons were learned. Importantly, SARS-CoV-2 
mRNA vaccine studies have uncovered the diversity of adaptive 
immune responses that are elicited and contribute to early and 
long-term disease control.

The open and rapid access to ongoing studies evaluating the 
immune mechanism of action of mRNA vaccines led to a consid-
erable amount of new knowledge about mRNA vaccine responses 
in a short period of time. We learned that both vaccines are high-
ly effective at inducing protective responses against SARS-CoV-2 
infection in over 95% of individuals (31, 32). This was much high-
er than was predicted based on knowledge of similar responses 
associated with other vaccine platforms such as live attenuated 
vaccines. Polyclonal, neutralizing IgG antibodies against the spike 
protein were detectable at high levels 3 to 4 weeks after initial vac-
cination (33–35). Further, both vaccines induced Th1-type CD4+ 
T cells and cytotoxic CD8+ T cell responses (33, 36, 37). Pheno-
typically, the polyclonal CD8+ T cells generated were found to be 
early differentiated effector cells at day 85 after vaccination (33). 
Durable antibody and antigen-specific memory T cells have been 
detected 6 to 7 months after vaccination (35, 38, 39). The observed 
differences in protective efficacy between these vaccines likely 
underscore the immunologic effects of vaccine dose, minor vari-
ations in the respective mRNA vector constructs, or lipid-based 
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expression that diminishes over a few days (68). The production of 
non-replicating mRNA constructs is relatively simple through in 
vitro transcription or the isolation of whole-tumor transcripts. In 
contrast, self-replicating constructs contain not only the transgene 
of interest, but also the viral RNA-dependent RNA polymerase 
(RdRp) that amplifies the viral genome. These latter vectors not 
only produce greater amounts of protein, but also induce stronger 
innate signaling due to sensing of double-stranded RNA interme-
diates (69). This strategy is potentially most attractive for cancer 
vaccines, providing higher quantities of immunogen and strong 
acute inflammatory signals, both required for inducing durable 
antigen-specific adaptive responses. Finally, trans-replicating, 
or splitzicon, RNAs deliver the transgene of interest and the viral 
RdRp on separate transcripts to reduce the size of the RNA vectors 
needing to be encapsulated during production (70–72). This addi-
tional feature may be helpful in developing mRNA vaccines that 
deliver multiple antigens for immunization.

A key consideration in developing mRNA vaccines for cancer 
treatment is the optimal balance of innate sensing of the mRNA 
construct and vector expression. Exogenous mRNAs are inherent-
ly immunogenic, as their features are detected by several cellular 
pattern recognition receptors (PRRs) (Figure 1). Collectively, these 
innate signals result in the shutdown of RNA translation as well as 
degradation mechanisms that limit expression of the therapeutic 
payload. Among these, Toll-like receptor 3 (TLR3) recognizes dou-
bled-stranded RNA in the endosomal compartment and signals 
through TRIF and IRF3, resulting in type I interferon production. 
Unmodified guanosine- and uridine-rich single-stranded RNA 
segments are recognized by TLR7 and TLR8 (73). Further, several 
cytosolic innate immune sensors, such as RIG-I, MDA5, and OAS, 
detect double-stranded RNA of foreign intracellular RNAs. Recent 
experience with mRNA vaccines has yielded multiple broad strat-
egies to achieve this balance through modifications that reduce 
innate sensing or improve transcript stability and maximize trans-
lation. In the following sections, we discuss the modifications that 
have been methodically investigated to balance innate immune 
detection and transgene expression.

Chemical modifications balance mRNA 
immunogenicity with antigen expression
To mitigate innate sensing of the chemical RNA backbone, 
incorporation of nucleoside analogs such as pseudouridine or 
N1-methyl-pseudouridine into the mRNA construct during in vitro 
transcription, as was used in both SARS-CoV-2 mRNA vaccines, 
dramatically reduces TLR recognition (28, 29, 74–77). Sequence 
engineering to increase guanosine-cytosine (GC) content can less-
en innate immune sensing of RNA (78). Additionally, the removal 
of double-stranded RNA structures improves protein translation 
and reduces mRNA degradation (79–81). An alternative strate-
gy is to augment STING-mediated innate sensing to bypass TLR 
signaling through heterocyclic lipid carriers. In both melanoma 
and HPV-associated murine tumor models, this strategy lowered 
systemic cytokine expression after sensing of the mRNA back-
bone, while maintaining innate signaling involved in enhancing 
antigen processing and presentation and reducing tumor growth 
(82). Moreover, co-delivery of constitutively active PRRs, such as 
a mutant STING, enhanced activation of vaccine antigen target 

tumor burdens, which are composed of heterogeneous tumor cells 
expressing many tumor antigens. A diverse T cell repertoire is 
required to meet the changing antigen landscape as cancers evolve 
to escape immune recognition (57). Furthermore, CD4+ T cells are 
increasingly recognized as both direct and indirect contributors 
to immunotherapeutic efficacy (3, 4, 58, 59). Importantly, CD4+ 
Th1 cells have been preclinically and clinically implicated in main-
taining control of tumor growth, even in tumor models that lack 
MHC class II expression (59–64). mRNA vaccines are among the 
few antigen delivery systems with the potential to simultaneous-
ly deliver multiple antigens that can activate potent and diverse 
CD4+ and CD8+ T cell responses.

mRNAs are immunogenic delivery systems in part because 
they naturally target antigen-presenting cells (APCs) — notably 
macrophages and dendritic cells — the specialized immune cells 
that most effectively prime T and B cells (65). Thus far, mRNA 
vaccination strategies for cancer treatment have shown success in 
murine cancer models and in patients targeting an array of tumor 
antigen types, including the tumor-associated antigens hTERT, 
Melan-A, gp100, tyrosinase, WT-1, and PRAME; the tumor- 
specific antigens CEA, MUC1, survivin, p53, NY-ESO, MAGE-A1, 
MAGE-A3, and CMV-pp65; oncoviral proteins; patient-specific 
neoantigens; or CAR T cell targets. Despite these early successes, 
the cost, scalability, and delivery issues have historically contribut-
ed to their slow adaptation for cancer treatment.

An additional challenge for cancer vaccines in general is over-
coming the local and systemic immunosuppressive mechanisms 
often associated with transformed cells that prevent priming or 
effector function of anticancer T cells. While most tested vaccines 
demonstrate priming of antigen-specific T cell responses, the 
immunosuppressive tumor microenvironment (TME) of cancers 
often hinders T cell access and function at the tumor site. Immune 
checkpoint therapies successfully reprogram one or more immu-
nosuppressive signals in the TME to allow T cell access and func-
tion. Thus, in situ vaccines that successfully induce anticancer T 
cell responses require the co-delivery of costimulatory molecules 
or immune checkpoint inhibitors to achieve antitumor immunity 
(66). Because mRNA vaccines are easy to engineer and offer flexi-
ble delivery options, it is possible to deliver mRNA vaccines encod-
ing tumor antigens along with or in parallel with diverse immuno-
modulatory agents. Interestingly, mRNA vaccines have also been 
engineered to target and induce immunogenic cell death of tumor 
cells directly (67). The success of SARS-CoV-2 mRNA vaccines has 
provided new opportunities for application to cancer therapeutics. 
Below, we discuss the biomedical engineering of mRNA vectors 
and liposome delivery systems that have the potential to promote 
anticancer responses through these pathways.

Biologic and immunologic qualities underpinning 
mRNA vaccine immunogenicity
There are three broad categories of mRNA vaccine constructs: 
non-replicating, self-replicating, and trans-replicating (or 
splitzicon) RNAs. Non-replicating and self-replicating RNAs have 
been primarily used in cancer vaccine strategies. Non-replicat-
ing mRNAs, such as the SARS-CoV-2 vaccine, encode the target 
antigen that is translated into protein immediately after uptake 
into the target cell’s cytoplasm. This results in initial high protein 
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transformation. Recent studies have shown that methylation of 
adenosine start nucleotides using synthetic S-adenosyl-L-methi-
onine analogs significantly improves protein expression and vac-
cine immunogenicity in in vitro systems (101). Understanding the 
role of cap binding proteins in transcript translation within cancer 
cells or immune cells should further inform the rational design of 
mRNA vectors with improved stability and translation efficiency.

Enhanced antigen expression can also be achieved by alter-
ation of the 3′- and 5′-UTRs of the mRNA construct, including 
its secondary elements that are central for transcript stability 
and translation efficiency (102–104). These maneuvers include 
removing long stem-loop-like structures with high GC con-
tent (105, 106); inserting an internal ribosomal entry site within 
the 5′-UTR (107); and including a Kozak sequence (GCCACC) 
upstream of the start codon (108). In hypoxic conditions, such 
as within the TME, an initiation complex composed of eIF2E3, 
HIF-2α, and RBM4 binds to hypoxia response elements present in 
specific 5′-UTRs to promote translation. Predictive algorithms of 
5′-UTR translation efficiencies should lead the way for the devel-
opment of novel constructs through deep learning with improved 
transgene expression profiles (109). mRNA constructs with longer 
3′-UTR regions have longer half-lives (110) and greater transcript 
stability (111). Transcript half-life can also be improved by remov-
al of miRNA-targeting sites and AU-rich regions (112). Moreover, 
use of tandem β-globin 3′-UTRs has been shown to significantly 
improve transcript stability and antigen expression (4, 113).

Furthermore, it is critical to avoid highly rigid secondary 
structures in the open reading frame of an mRNA construct, which 
may slow ribosomal scanning, leading to RNA decay (114, 115). 

HPV E7–specific CD8+ effector memory T cells in mice, leading to 
improved control of tumor growth (83). Importantly, the magni-
tude and kinetics of type I interferon responses induced by mRNA 
vaccines have been shown to have both beneficial and detrimental 
effects on mRNA-mediated induction of cytotoxic T cell respons-
es (84). Thus, the balance between strong inflammatory signals 
provided by the vaccine and efficient transgene production is still 
being defined for cancer vaccine development (Figure 1).

Several mechanisms have been used to enhance transgene 
expression and selectively reduce innate detection that aims to 
eliminate the mRNA vector. One such approach has been through 
modification of the 5′ cap structure of the mRNA transcript, as has 
been achieved for both SARS-CoV-2 vaccines. RNA caps play a 
critical role in transcript stability and in distinguishing self-RNAs 
from foreign RNAs (85–88). An array of anti-reverse cap analogs 
(or ARCAs) have been developed and used in clinical products 
to generate mRNA constructs with enhanced antigen expression 
(89–91). Building on this technology, the CleanCap (TriLink Bio-
chechnologies) method, used in the production of mRNA-1273, 
generates the cap1 structure, which includes methylation of the 
first transcribed nucleotide, a strategy that further improves trans-
lation efficiency. As the removal of the cap, or decapping, initiates 
transcript degradation (88, 92, 93), there has been a surge of inter-
est in developing decapping-resistant cap analogs that improve 
transcript stability and enhance target antigen expression (94–98).

In addition, an altered 5′ cap structure can result in modi-
fied affinities for translational initiation factors, such as eIF3E, 
yielding a therapeutic advantage (99, 100). Notably, the dysreg-
ulation of translation initiation factors is a hallmark of cancer cell 

Figure 1. Modifications of mRNA vaccines for enhanced antitumor immunity. Several strategies have been used to chemically modify mRNA constructs 
to optimally balance antigen expression with innate immune recognition of the mRNA construct itself. (A) Manipulations that enhance antigen expression 
include modification in the 5′ cap through anti-reverse cap analogs, methylation of start nucleotides, and decapping-resistant analogs; modification in 
untranslated regions through the removal of long stem-loop-like structures with high GC content, insertion of an internal ribosomal entry site within the 
5′-UTR, and inclusion of a Kozak sequence upstream of the start codon; modification in the open reading frame (ORF) through codon optimization based 
on target cell tRNA abundance; and modification of the poly(A) tail by incorporation of ATP analogs and click-labeling with fluorescent dyes. The ideal 
polyA length within human cells is approximately 120 bases. Use of nucleotide analogs, sequence complexity, GC content, and length modifications can 
reduce detection by innate sensors such as TLR7/8 or TLR3 or cytoplasmic sensors such as RIG-I, MDA5, OAS, NOD2, and PKR. Purification of in vitro–tran-
scribed RNAs by HPLC, FPLC, or cellulose-based methods can further remove contaminating dsRNA products that would engage these sensors. (B) While 
these alterations result in greater transgene expression and less immunogenicity to the mRNA construct, the optimal combination of modifications and 
balance of the two to yield a therapeutic advantage is still an open question as it relates to optimization of cancer vaccines.

https://www.jci.org
https://doi.org/10.1172/JCI156211


The Journal of Clinical Investigation   R E V I E W

5J Clin Invest. 2022;132(6):e156211  https://doi.org/10.1172/JCI156211

tage of an mRNA vector is the relative ease 
of co-delivering cytokines, immunostim-
ulatory or suppressive cell type–depleting 
molecules that, in essence, address these 
distinct requirements for successful genera-
tion of robust and durable anticancer T cells 
(Figure 2). This strategy requires identifying 
and including the most potent vaccine adju-
vant, as well ensuring the delivery of key 
immunomodulatory drugs either within the 
same mRNA vector or in a trans-replicating 
(splitzicon) construct, as discussed above.

Multifunctional innate immunoadju-
vants have been co-delivered, including 
natural lipids, such as squalene, LPS, and 
saponin; synthetic lipids; polymers, includ-
ing protamine, chitosan, and dextran sulfate; 
and synthetic polymers, such as polyeth-
ylenimine and poly-L-lysine (126). However, 
although co-delivery of certain non-lipid-
like adjuvants with mRNA vaccines requires 
careful chemical packaging, preclinical 
studies with gardiquimod, a TLR7 agonist, in 

poly(lactic-co-glycolic acid) (PLGA)–core/shell RNA-nanoparticle–
induced potent antitumor immune responses (127).

mRNA-based vaccines provide a platform for co-delivering a 
range of immunomodulatory agents, thus allowing a fine-tuning of 
T cell responses. For example, co-delivery of stimulatory cytokines, 
such as GM-CSF, IL-12, and IL-15, with mRNA encoding tumor 
antigen in dendritic cell vaccines promotes remodeling of the TME, 
enhances cytotoxic T cell responses, and controls tumor growth in 
preclinical models (128–131). Further, in situ vaccination with a cock-
tail of naked mRNAs encoding IL-12, GM-CSF, IL-15, and IFN-α4 
promotes tumor infiltration of polyfunctional Th1-like CD4+ cells, 
cytotoxic CD8+ T cells, and pro-immune monocytic cell types while 
decreasing Tregs, leading to survival benefits in murine models 
of cancer including metastatic melanoma (132). Similarly, in mel-
anoma patients, coexpression of immunostimulatory molecules, 
such as CD40L, CD70, and constitutively active TLR4 (TriMix, 
eTheRNA Immunotherapies), along with the tumor antigen mRNA 
potentiates APC maturation and cognate T cell activation (133, 134). 
Several studies have also documented the benefit of mRNA-based 
vaccination against a variety of tumor antigens in combination with 
immune checkpoint blockade, such as anti–PD-1 and anti-CTLA4 
targeting antibodies in both murine and human therapy studies (4, 
135). In this regard, it has been shown that mRNA delivery of TYRP2 
plus siRNA against PD-L1 reduces expression of PD-L1 on dendritic 
cells, increases cognate T cell activation and proliferation, and con-
trols tumor growth in murine melanoma (136). Likewise, depletion 
of immunosuppressive Treg populations and myeloid-derived sup-
pressor cells by chemotherapeutics or depleting antibodies deliv-
ered along with antigen-encoding mRNAs slowed tumor growth 
(137). Finally, the potential to broadly apply the mRNA platform 
in diverse cancer immunotherapy strategies as an immune activa-
tor is underscored by its use in adoptive cell therapies for both ex 
vivo generation and in vivo expansion of CAR T cells by encoding of 
CAR constructs or CAR T cell targets, respectively (138, 139).

Several computational algorithms can predict transcript stability 
based on sequence structure (116, 117), one of which not only pre-
dicts RNA structure, but also indicates modifications that would 
prevent hydrolytic degradation (118). Codon optimization based 
on transfer RNA (tRNA) abundance can also improve translational 
efficiency. As tRNA abundance is cell type–specific and is dysregu-
lated in cancer cells, mRNA vectors should be appropriately codon 
optimized based on the target cell of interest (119). Notably, cells 
within the spleen and lymph nodes have the highest abundance of 
tRNA relative to other tissues, suggesting that codon optimization 
may be less important for immune cell targets (120). Conversely, 
some proteins require slower translation rates for proper folding to 
occur, and thus codon optimization may not be ideal.

Finally, another chemical modification to improve RNA sta-
bility is to alter the poly(A) tail by incorporating ATP analogs, 
such as ATPαS, with non-bridging atoms at the α-phosphate; 
this stabilizes the transcript without impacting translation (121). 
Similarly, click-labeling at the poly(A) tail with fluorescent dyes 
increases translation (122, 123).

Designing mRNA vaccines to optimize antitumor 
immunity
Cancer cells develop multiple mechanisms that modulate both 
local and systemic immunosuppression, including metabolic 
reprogramming, recruitment of immunosuppressive cells, and 
upregulation of inhibitory cytokines and signals. For successful 
treatment outcomes with mRNA-based therapeutics, the vaccine 
should ideally induce high-quality antigen-specific T cells and 
simultaneously reduce immunosuppressive signals within the 
TME. In this regard, modulation of the cytokine milieu in which T 
cells engage cognate antigen influences cell fate and memory phe-
notype. In addition to robust cytotoxic effector cells, generation of 
stem-like, memory T cells is important for durable immunologic 
memory and cell renewal in cancer therapy (124, 125). One advan-

Figure 2. Enhancing the adaptive response of RNA vaccines for anticancer therapy. The induction 
of a robust and durable adaptive antitumor immune response with mRNA vaccines can be enhanced 
in several ways, highlighting the flexibility of the platform. These include delivery of lipid adjuvants 
within the nanoparticle; targeting multiple target antigen types, including those that are tumor–
associated and tumor–specific antigens, such as neoantigens, and CAR T cell targets; employing 
cytokines or chemokines; and encoding or co-delivering immunostimulatory molecules and immuno-
suppressive inhibitors. These strategies should not only induce high-quality antigen-specific T cells, 
but also reprogram the tumor microenvironment in favor of a robust and durable anticancer response.
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Targeting mRNA vaccines to immune  
and cancer cells
Focused approaches to enhance mRNA vaccine uptake into 
immune or cancer cells are under way with a focus on improving 
therapeutic index and limiting off-target toxicity (140, 141). Ex 
vivo transfection of autologous dendritic cells constituted the ear-
liest attempts to ensure the delivery of mRNA-transfected APCs to 
patients. Preconditioning of human APCs with cytokines, such as 
TNF-α, or TLR agonists was shown to improve dendritic cell traf-
ficking into the lymph nodes and enrich presentation of transfect-
ed antigen to T cell populations (142–144). However, the expense 
and labor-intensive protocols associated with delivering repro-
ducible biologic product limit broad applicability.

Nonencapsulated mRNA vaccines degrade rapidly within 5 
minutes when injected systemically (145), while widely used lipo-
some encapsulation has resulted in a marked improvement in sta-
bility and in vivo targeting, thus broadening the scope of injection 
routes for mRNA delivery (146, 147). Lipid nanoparticles are gen-
erally composed of four components: ionizable lipid that dictates 
particle charge, cholesterol, a helper lipid, and PEGylated lipids 
that aid in particle stability, formation, and membrane-membrane 
fusion in the cell (45, 148, 149). The size, shape, and surface charge 
influence biodistribution and cell-type uptake (150, 151). Cationic 
lipids, including DOTMA and DOTAP, have most commonly been 
used to encapsulate anionic RNAs efficiently. Particle size also 
directly correlated to biodistribution. Lipoplexes around 200 to 
400 nm in size accumulate preferentially in the spleen after intrave-
nous delivery (150, 152), while smaller particles, optimally 20 to 50 

nm, are required for trafficking into lymph nodes (153–155). Mod-
ification of lipid complexes to display mannose domains has been 
shown to improve dendritic cell uptake, antigen expression, and 
antitumor responses in murine melanoma models (156). Impor-
tantly, dendritic cell populations including plasmacytoid, classical 
type 1, and classical type 2 have distinct capabilities to process and 
present antigen, utilize cross-presentation pathways, and produce 
inflammatory signals. Thus, targeting these cell types individually 
promotes differential cognate T cell responses with classical type 
1 dendritic cells being the primary target for cancer vaccines thus 
far given their superior cross-presentation capability (157–159). A 
recently developed mRNA hydrogel vaccine containing the TLR7/8 
adjuvant R848 for the treatment of metastatic melanoma increased 
dendritic cell uptake of the mRNA vaccine, significantly enhanced 
CD8+ T cell responses, and provided durable antitumor immunity 
in preclinical models (160). The SARS-CoV-2 mRNA vaccines used 
Lipid H (Cayman Chemical, SM102) or Acuitas ALC-0315 ionizable 
lipids in mRNA-1273 and BNT162b2, respectively (161, 162).

Targeting tumor cells directly to deliver immunogenic pay-
loads or to induce oncolysis provides an alternative mechanism to 
reduce tumor burden and initiate remodeling of the TME. Leaky 
tumor vasculature and damaged lymphatic structures within the 
TME improve retention of systemically delivered nanoparticle 
constructs. Thus, similar to immune cell targeting, particle size 
and charge dictate propensity for tumor cell–specific uptake (150). 
It was recently shown that manipulation of the particle lipid con-
tent can promote tumor cell uptake and cell death (67). Notably, 
N1,N3,N5-tris(2-aminoethyl) benzene-1,3,5-tricarboxamide–for-

Table 1. Overview of representative mRNA-based cancer vaccine clinical trials

Vaccine type Antigens and costimulatory molecules Outcomes Challenges
Autologous dendritic  
cell

• TriMixDC-MEL: mRNAs encoding CD70, CD40L,  
constitutively active TLR4 and tumor antigens (134, 180)

• WT-1 dendritic cell: mRNA encoding WT-1 (181) 
AGS-003: whole-tumor mRNA and synthetic CD40L  
mRNA (182)

• RNA/dendritic cell vaccine: whole-tumor RNA (183)

• Safe toxicity profile
• Antigen-specific T cell responses in some patients
• Proinflammatory changes in TME observed in some 

patients

• Costly
• Laborious to produce
• Variation in patient-specific dendritic  

cell preparations limiting
• Variation in dendritic cell trafficking  

after injection

Naked mRNA • TriMix: mRNA encoding CD70, CD40L, and constitutively 
active TLR4 (184)

• IVAC MUTANOME (BioNTech): mRNA encoding personalized 
neoantigens (4)

• mRNA-Mix: mRNA encoding MAGE-A1, MUC1, CEA, and 
survivin (185) 

• Safe toxicity profile, mild adverse events
• Antigen-specific T cell responses detected after 

vaccination in subset of patients
• Promising clinical responses in combination  

with ICB

• Short half-life
• Limited uptake in cells
• Requires ultrasound-guided injection 

into lymph nodes

Protamine-coated  
mRNAs

• RNActive, CV9201: mRNA encoding NY-ESO-1, MAGE-C1, 
MAGE-C2, survivin, 5T4 (186)

• RNActive, CV9103: mRNA encoding PSA, PSCA, PSMA,  
and STEAP1 (187)

• Safe toxicity profile, mild to moderate adverse  
events

• Activation of T cell responses in small proportion  
of patients

• Significant increase in B cell responses

• Modest immunogenicity 

Lipid-complexed  
mRNAs

• mRNA-2416 (Moderna): mRNA encoding OX40L (188)
• mRNA-2752: mRNA encoding OX40L, IL-23, IL-36Y (189)
• mRNA-4157 (Moderna): mRNA encoding patient-specific 

neoantigens (190, 191)
• FixVac, BNT111 (BioNTech): mRNA encoding NY-ESO-1, 

tyrosinase, MAGE-A3, TPTE (5, 152)

• Safe toxicity profile, mild adverse events
• Activation of antigen-specific CD4+ or CD8+ T cells  

in large subset of patients
• Proinflammatory changes in TME
• Durable disease control for some patients
• Promising clinical responses in combination with ICB

• Variable tumor-associated antigen–
specific responses in subsets  
of patients

ICB, immune checkpoint blockade.
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mulated (TT-formulated) nanoparticles promoted particle uptake 
in tumor cells in vitro and in vivo, and induced cell lysis while con-
ferring IL-12 transgene expression (67, 163, 164). These cytotoxic 
tumor-targeting particles induced robust and durable CD8+ T cell–
mediated reduction of tumor growth in a murine B16F10 mela-
noma model (67, 164). Alternatively, mRNAs have been used to 
reintroduce tumor suppressors such as TP53 and PTEN to tumors, 
sensitizing them to chemotherapeutics and delaying tumor growth 
in preclinical models (145, 165). A number of tumor-targeting con-
structs also rely on hypoxic conditions, selective antigen expres-
sion, and antibody display to promote tumor cell uptake; however, 
the use of these particles for mRNA delivery has been limited. A 
recent report of successful selective organ-specific targeting with 
mRNA delivery provides a potential opportunity to enhance tumor 
targeting based on tissue location (166). Regardless of the cell type 
targeted, mRNA delivered in nanoparticle carriers needs to under-
go endosomal release into the cytosol for translation to occur. 
Endosomal release is largely modulated by the pKa of the particle, 
which is directly related to ionizable lipid shape and size (167, 168). 
Many endosomal release methods have been characterized; how-
ever, they have not been broadly compared (167, 169–171).

Intradermal, subcutaneous, and intramuscular injection 
routes of any mRNA vaccine capitalize on the presence of diverse 
APC populations within the skin and muscle (172, 173). Notably, 
HIV antigen–containing lipid nanoparticles delivered by intra-
muscular and subcutaneous routes displayed distinct anatomi-
cal lymph node trafficking and sites of T cell activation (174), but 
without differences in T cell responses (174). Intramuscular injec-
tion, however, resulted in the longest sustained antigen expression 
over time that is directly related to mRNA half-life (68) — thus, 

both SARS-CoV-2 mRNA vaccines, BNT162b2 and mRNA-1273, 
are delivered intramuscularly. In contrast, intravenous delivery 
induces more robust cytotoxic T cell responses (152, 175), but with 
greater particle uptake in the liver and possible off-target toxicity, 
requiring a more careful design of the targeting nanoparticles for 
successful delivery by this route.

Approaches to test mRNA cancer vaccines  
in humans
mRNA vaccines have been studied in different formats and set-
tings and as part of combinatorial therapies in cancer clinical trials 
(Table 1). Two strategies that have shown promise include dendrit-
ic cell–based mRNA pulsing and lipid-complexed mRNA vaccines. 
An early approach had been to load dendritic cells with cancer 
antigens by pulsing with mRNA that was mostly generated by in 
vitro transcription or obtained from autologous cancers or cancer 
stem cells. An example of this approach was a phase I trial that 
pulsed autologous Langerhans-type dendritic cells with xenogene-
ic TRP-2 mRNA. Stage IIB to IV melanoma patients who had their 
tumors resected were given five vaccines every 2 weeks. Six of nine 
patients remained disease free for a median of 51.1 months, and 
generated robust immune responses, including T cell activation, 
cytokine release, and increased clonality, with minimal signs of 
toxicity (176). A major drawback that prevented widespread testing 
was the inability to develop these somewhat cumbersome biologic 
agents at a reliable quality and quantity on a large scale.

A second approach using lipid-complexed mRNAs demon-
strated both favorable safety and robust immune responses against 
immunizing antigens expressed by different tumor types (Table 1). 
For example, patients with metastatic gastric, colon, and rectal can-

Figure 3. Outstanding questions for RNA-based cancer therapeutics. Several questions remain as to how mRNA vaccines can be best applied for cancer 
treatment. These include questions related to optimal cell-specific targeting; balancing of antigen expression with immunogenicity of the mRNA construct; 
optimal cancer antigens to be targeted; route of injection; manufacturability and stability of the vaccine; minimizing of off-target effects; and optimization 
of combinatorial therapies to synergize with mRNA vaccines.
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because of the inherent heterogeneity of cancer both within and 
across clinical indications, additional technological advances are 
needed to develop successful RNA-based cancer therapies (Figure 
3). Ongoing chemical engineering initiatives are adapting mRNA 
vectors to optimize the balance between antigen expression and 
innate immune sensing of the vector to achieve a therapeutic 
advantage (Figure 1). Furthermore, the tumor antigen target type 
may require different levels of immunostimulatory signaling to 
overcome systemic or local tolerance. The ideal combination of 
antigen and immunomodulatory targets included in the vaccine 
construct needs to be defined and is likely cancer type specific or 
even patient specific (Figure 2). There has been good progress in 
developing lipid nanoparticle carriers to improve mRNA platform 
stability, pharmacology, and target cell specificity. Since particle 
size, charge, and shape have direct implications for pharmacoki-
netics and pharmacodynamics, it is critical to define the immu-
nologic benefits and disadvantages of different delivery routes 
to optimize anticancer immune responses. A critical question 
remains as to which immune cells should be the target and how 
best to deliver the mRNA to achieve the optimal therapeutic ben-
efit, while limiting off-target toxicity. Lastly, the development and 
global distribution of the COVID-19 mRNA vaccine have under-
scored the feasibility and safety of mRNA-based vaccination in 
diverse groups worldwide. The now proven ability to manufacture 
these agents rapidly and efficiently has signified a giant step for-
ward for future cancer vaccination applications. However, contin-
ued efforts are required to improve vaccine stability, and to reduce 
the cost of these therapeutics, particularly if this approach is to be 
used in precision-based, patient-specific treatments.

In summary, considerable progress has been made in mRNA-
based cancer therapeutics. This progress is made more tangible 
with the global success of the SARS-CoV-2 mRNA vaccines, fur-
ther promoting promise for cancer immunotherapy.
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cers were vaccinated against up to 20 shared and personalized anti-
gens delivered in a single lipid-complexed mRNA construct (named 
mRNA-4650). The vaccine was safe and induced neoantigen-spe-
cific T cells, but without objective clinical responses (177). This rein-
forces the need to combine these vaccines with immune modulation 
to achieve clinical benefit in immune-insensitive tumors. In contrast, 
in patients with melanoma, an immune-sensitive cancer, an interim 
analysis of an ongoing first-in-human dose escalation phase I trial 
has documented efficacy of an intravenously administered liposo-
mal RNA vaccine, FixVac (BioNTech, BNT111), which targets four 
melanoma-associated antigens. Notable, objective responses were 
observed in patients who had previously received checkpoint block-
ade, and these responses correlated with the induction of de novo 
vaccine carrying neoantigen-specific CD4+ and CD8+ T cells (5).

mRNA vaccines can also be enhanced using TriMix, a cocktail 
of three naked mRNAs encoding constitutively active TLR4 to facil-
itate dendritic cell antigen presentation, and CD70 and CD40L to 
activate CD8+ and CD4+ T cells, respectively (178). Both the naked 
TriMix mRNA and ex vivo dendritic cell–loaded TriMix mRNA have 
shown efficacy in multiple preclinical and clinical studies, mainly 
through increased dendritic cell activation and by shifting the CD4+ 
T cell phenotype from Tregs to Th1-like cells (134, 179, 180). Nota-
bly, 27% of patients with stage III or stage IV melanoma who were 
immunized using dendritic cells loaded with mRNA encoding the 
melanoma-associated antigens MAGE-A3, MAGE-C2, tyrosinase, 
gp100, and TriMix showed tumor regressions (179).

Human studies testing mRNA vaccines in cancer have provid-
ed evidence for safety and immunogenicity. However, these trials 
have had a relatively small sample size, with clinical responses that 
are mixed, despite robust immune responses seen peripherally. 
This is particularly true in patients with “immunologically cold” 
tumors, such as glioblastoma. These early studies reiterate the 
need for co-delivery of immunomodulating agents to effectively 
bypass tumor-specific immunosuppressive signals. Furthermore, 
most of the immune responses are evaluated using assays requir-
ing ex vivo expansion, which provide an antigen-specific readout 
but may not accurately quantify and assess the quality of the over-
all T cell response in vivo.

Steps to advance mRNA vaccines for cancer 
therapeutics
Early mRNA-based therapeutics have shown promise in cancer 
therapy. Clinically, these agents can be potent T cell inducers 
and can also remodel the immunosuppressive TME. However, 
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