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Despite the recent advances in cancer patient management and in the development of

targeted therapies, systemic chemotherapy is currently used as a first-line treatment for

many cancer types. After an initial partial response, patients become refractory to

standard therapy fostering rapid tumor progression. Compelling evidence highlights

that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of

cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular

compartment is endowed with tumor-initiating and metastasis formation capabilities.

CSC chemoresistance is sustained by a plethora of grow factors and cytokines released

by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes,

cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens

CSC refractoriness to standard and targeted therapies by enhancing survival signaling

pathways, DNA repair machinery, expression of drug efflux transporters and anti-

apoptotic proteins. In the last years many efforts have been made to understand CSC-

TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the

combinatorial approaches, which perturb the interaction network between CSCs and the

different component of TME.
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INTRODUCTION

Despite huge progress has been made in the development and optimization of anti-tumor therapies,

cancer remains the second leading cause of death worldwide. Intra- and inter-tumor heterogeneity
represents the main hurdle for cancer treatment. For this reason, the comprehension of the

molecular and phenotypic differences among different cancer types may help to improve the
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prognosis of cancer patients upon therapy. Two models have

been proposed to explain the origin of tumor heterogeneity (1).

According to the stochastic model, each cell within the tumor

mass can become tumorigenic by acquiring specific (epi)genetic

alterations. Conversely, in the hierarchical model tumor

heterogeneity arises from a subpopulation of cancer cells,
termed cancer stem cells (CSCs), able to self-renew and

differentiate into phenotypically and functionally distinct cells.

CSCs share most of the features with normal stem cells, but their

self-renewal capacity is typically deregulated (2, 3). Therefore,

CSCs represent the roots which feed tumor initiation and sustain

metastatic spread, therapeutic resistance and recurrence (4, 5).
Chemotherapy is a pivotal treatment for solid tumors and aims

to counteract all the active proliferative cells, including both

healthy and malignant cells (6). Compelling evidence have

demonstrated that CSCs are endowed with i) high expression

of ATP-binding cassette (ABC) transporter and anti-apoptotic

molecules, ii) aberrant activation of proliferative and survival
signaling pathway and iii) a proficient DNA repair machinery are

the main mechanisms inducing multidrug resistance (MDR) (1).

Interestingly, recent studies have shown that tumor

microenvironment (TME) could generate a protective niche for

tumor cells from drugs, leading to chemoresistance. In addition

to the intrinsic characteristics of CSCs, the interaction with the

TME must be taken into account because it is involved in the
regulation of signaling pathway and resistance to therapy,

representing a potential target for novel therapeutic approaches

(7). In this review, we will illustrate TME protective effects

against chemotherapic drugs and the most updated strategies

for targeted therapies alone or in combination to disrupt the

CSCs/TME interaction.

CANCER STEM CELLS AS A SHIELD TO
ELUDE CHEMOTHERAPEUTIC AGENTS

Different hypotheses have been made about the origin of CSCs,

as a direct consequence of (epi)genetic alterations in the healthy

stem cell compartment, or from progenitor/differentiated cells

through the dysregulation of stemness-related pathways (8).

The pioneering studies conducted by Tilland McCulloch in
early ‘60s demonstrated the existence of hematopoietic stem

cells, opening the era of stem cell research (9). Later in 1994,

Lapidot et al., provided the first evidence of CSC presence in

acute myeloid leukemia (AML). AML cells were fractioned

according to the expression of cell surface markers CD38 and

CD34 and the obtained different subpopulations were injected

into immunocompromised mice. They noticed that only the
CD34+/CD38- subpopulation was able to engraft in mice

reflecting many features of human AML (10, 11). The first

demonstration of CSC existence in solid tumors was provided

in breast cancer (BC) (12) and later in brain, colon, thyroid and

other tumors (13, 14), pointing out that cancer cell

transplantation into immunocompromised mice is the gold
standard assay to identify and characterize CSCs (15).

Compelling evidence point out that CSCs are responsible for

the failure of the conventional therapies, due to aberrant

activation of signaling pathways, high expression of efflux

transporters/anti-apoptotic molecules, and enhanced DNA-

damage repair machinery (4, 16, 17).

Stemness-Related Pathways Involved in
CSC Chemoresistance
Deregulation of developmental and proliferative pathways, such

as Hedgehog (HH), Wnt/b-catenin and Hippo, sustains CSC

growth and chemoresistance (18). The HH pathway has been

shown to regulate the properties of CSCs in various neoplasms
through the up-regulation of stemness-related genes (Nanog,

Oct4, Sox2 and Bmi1) (19, 20). In colorectal cancer (CRC) HH-

GLI pathway activation fostered CSC survival and sustained in

vivo growth and metastatic ability (21). In BC, the CD44+/CD24-

subpopulation isolated from tumor xenografts displayed high

expression levels of HH signaling molecules compared to more
differentiated cell subsets (22). In glioma, the activation of Notch

and HH pathway mediated the resistance to temozolomide

treatment in CD133+ CSCs (23). Aberrant activation of the

Wnt/b-catenin signaling pathway has been mainly linked to

development of CRC (24, 25) and detected also in other tumor

types, as hepatocellular and BC (26). Recently, it has been

demonstrated that knockdown of Wnt1 decreases the
expression of CD44, Aldehyde dehydrogenase 1 (ALDH1) and

Sca-1 stemness genes, thus leading to the reduction of CSC

subpopulation and tumor sphere formation in BC cells (27).

Several studies linked Wnt/b-catenin signaling and

chemoresistance (28). The overexpression of Frizzled1 (FZD1),

a receptor of Wnt ligands, increased ABCB1 transporter and
mediates MDR in neuroblastoma and BC (29, 30). Moreover,

LGR5, a Wnt target gene, promoted resistance to 5-fluoruracil

(5-FU) treatment in CSCs (31, 32). Recent studies have revealed

a complex crosstalk between Wnt and Hippo-YAP/TAZ

pathways. Hippo pathway via YAP/TAZ activation led to the

induction of CSC properties in BC cells (33). In a very elegant

study, Cheung et al demonstrated that the Hippo kinases LATS1/
2 and MST1/2 maintain Lgr5+ CSCs phenotype and sustain the

activation of Wnt/b-catenin signaling pathway in CRC (34).

Alterations of Apoptotic Pathways and
DNA Damage Repair Machinery in
Chemoresistant CSCs
Alterations of apoptotic pathways and DNA damage repair
machinery are among the principal mechanisms underlying

CSC-mediated chemoresistance. Apoptosis regulates tissue

development and homeostasis and is finely regulated by a

network of signals that are crucial for cell fate. The ratio

between apoptotic and anti-apoptotic protein levels defines the

sensitivity of malignant cells to apoptotic stimuli and contributes
to CSCs resistance to anticancer treatments (35). A weakened

expression of death receptors (DRs) was observed in CSCs from

different tumors compared to differentiated counterparts. In

AML, the CD34+ CD38- stem-like subpopulation display a

lower expression of FAS and FAS ligand (FAS-L) than CD38+

differentiated cells, triggering chemoresistance (36, 37). FAS and
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FAS-L reduced expression was also observed in glioma stem cells

(GSCs) and the use of a synthetic FAS-L, Apo010, in

combination with temozolomide induced apoptosis in

glioblastoma (GBM) stem-like cells (38, 39). Moreover, the use

of recombinant soluble TRAIL (TNF related apoptosis inducing

ligand), in combination with bortezomib reduced the colony
formation capacity of GSCs and impaired tumor growth in a

mouse model of GBM (40). Unfortunately, the short half-life of

soluble TRAIL in plasma reduces its efficacy. An interesting

approach to overcome this effect is the use of TRAIL-engineered

mesenchymal stromal cells, which induce apoptosis and curtail

the colony forming ability of lung and breast cancer stem-like
cells (41, 42). However, CSCs usually exhibited TRAIL

resistance, due to c-FLIP over-expression. In BC and GBM, c-

FLIP up-regulation sustained resistance to TRAIL therapy and

the use of siRNA specific for c-Flip lessened self-renewal and

tumorigenic potential of breast CSCs (43–45). The inhibitor of

apoptosis (IAP) proteins were found to be over-expressed in
CD133+ GBM stem cells compared to the CD133- compartment

and their inhibition, by using small molecules, enhanced

apoptosis in g-irradiated cells (46, 47). In GBM patients, the

IAP protein, survivin, was demonstrated to be mainly expressed

in patient-derived GBM stem cells compared to differentiated

cells, with a predominant localization in the core of tumor mass

and associated with the expression of CD133, SOX2 and MELK
(48). In addition, our group demonstrated that highly

chemoresistant colorectal CSCs are characterized by the

autocrine production of IL-4 that boosts survivin expression

(49, 50). On the other hand, the dysregulation of Bcl2 family,

composed by anti-apoptotic (Bcl2, Bcl-xL and Mcl-1) and pro-

apoptotic (Bak, Bax, Bid, Bim, Bic, Noxa and PUMA) factors, has
been found in CSCs (51). In particular, the stem-like

compartment expressed higher expression level of Bcl2 and

Bcl-xL compared to differentiated cancer cells (46, 52).

Moreover, in breast CSCs the activation of avb3/Src/Slug
signaling pathway leads to inactivation of PUMA through

SLUG, a PUMA repressor. The pharmacological inhibition of

Src with dasatinib enhanced PUMA expression levels, reducing
self-renewal and colony formation capacity and increasing

sensitivity to apoptosis (53, 54). On the contrary, the

interaction of PUMA with Bcl2 and Bcl-xL limited its anti-

apoptotic activity and a combined treatment of Src and Bcl2

inhibitors increased apoptosis, thus reducing chemoresistance (55).

Chemotherapeutic drugs mainly target differentiated tumor
cells, while sparing CSCs, characterized by a highly efficient DNA

damage response (DDR) system able to repair DNA damage

induced by radio- and chemotherapies (56, 57). In accordance,

cisplatin (CIS) treatment led to an enrichment of CSC

subpopulation in ovarian and lung cancers, confirming that

chemotherapy efficiently eliminates rapidly dividing

differentiated/progenitor cells (58, 59). DNA damage promoted
the activation of ataxia-telangiectasia-mutated (ATM), Rad17,

Chk1 and Chk2 checkpoint proteins. Experimental evidence

showed that CD133+ GSCs are radio-resistant compared to

CD133- tumor cells, due to a more efficient checkpoint protein

activation in response of DNA damage (60). Another study

reported that GBM stem cells after irradiation increase the

expression levels of L1CAM (CD171), which in turn up-

regulates NBS1, an important component of MRN complex

implicating in the early activation of ATM in response to DNA

damage (61). Knockdown of L1CAM reduced the activating

phosphorylation of ATM and Chk2 in response to IR-induced
DNA damage, sensitizing GBM stem cells to radiation and

reducing in vitro tumor sphere formation (62). In addition to

GSCs, alteration of DDR pathway has been described in CSCs

from different tumor types, including CRC (63). CD133+ lung

cancer cells are resistant to ionizing radiation treatment due to

an up-regulation of genes involved in double strand break repair,
such as Rad51, BRCA1 and Exo1 (64). Moreover, invasive

CD133+ stem-like cells isolated from pancreatic cancer cell

lines displayed higher expression levels of gene involved in the

BRCA1-mediated DNA repair pathway and resistance to

gemcitabine (GEM) treatment compared to CD133 -

subpopulation (65). In a syngeneic p53null mice mammary
g land tumor mode l , the L in - /CD29Hi g h /CD24Hi g h

subpopulation was characterized by increased expression levels

of DDR and DNA repair genes (66). Furthermore, Liu et al.

demonstrated that CSCs, isolated from BRCA1-mutant BC cell

lines, displayed resistance to PARP inhibitors and were

characterized by the overexpression of RAD51. The use of a

shRNA targeting RAD51 sensitized triple negative BC cells to
olaparib treatment (67).

Another mechanism of CSC resistance to anticancer therapies

is represented by the up-regulation of detoxifying enzymes and

drug efflux pump expression levels. ALDH superfamily is

responsible for oxidizing aldehydes to carboxylic acids and

retinol to retinoic acid allowing the detoxification from drug
and the reactive oxygen species (ROS). ALDH1 is the main

isoform of the ALDH superfamily enzymes and is one of the

markers used for the identification of the CSCs (68–71). In BC

patients, ALDH1-positive CSCs were selected after neoadjuvant

treatment and their presence within the tumor could predict

resistance to chemotherapy (72). In breast CSCs, the resistance to

doxorubicin and paclitaxel treatment is related to the over-
expression of ABCB1 efflux pump (73). Moreover, ABCB1

confers resistance to carfilzomib in multiple myeloma stem

cells (74). Indeed, high expression levels of ABCB5 were found

in malignant melanoma initiating cell resistant to doxorubicin

treatment (75) (Table 1).

THE CANCER STEM CELLS-TUMOR
MICROENVIRONMENT INTERACTION: A
HIDDEN HURDLE IN CHEMOTHERAPY
EFFICACY

CSCs require the cooperation of surrounding microenvironmental

cells to promote tumor initiation, metastasis formation and drug

resistance. Recent evidence highlighted the importance of TME cell

education and recruitment as essential events for tumor

dissemination. In fact, cancer cells prime stromal cells, which in

turn maintain and boost CSC subpopulation (76). In particular,
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CSC features are regulated by autocrine and paracrine interactions

between tumor cells and TME, mainly composed by extracellular

matrix, cancer-associated fibroblasts (CAFs), cancer-associated

adipocytes (CAAs), immune and endothelial cells. In addition to
the intrinsic characteristic of CSCs, the understanding of tumor-

TME cell interactions could provide actionable candidates for the

development of novel therapeutic approaches (Figure 1).

CAF Role in Inducing CSC-Mediated
Resistance to Therapy
CAFs are the major component of TME involved in the complex

network of tumor-stroma evolution and tumorigenesis (77, 78).

Several studies demonstrated that CAFs can originate from the

activation of resident fibroblast or derive from the conversion of

adipocytes, endothelial cells, pericytes and bone marrow-derived

mesenchymal stem cells (79). CAFs provide numerous molecules,

soluble factors and proteases playing an important role in ECM

synthesis or remodeling, but also pro-inflammatory cytokines,
chemokines, and growth factors. Notably, CAF secreted factors

are involved in a tight crosstalk with CSCs, governing their

self-renewal capacity, plasticity and chemoresistance (80–85).

Several in vitro experiments highlighted that CAFs guarantee a

CSC reservoir in different tumors, such as breast, lung, colorectal,

gastric and liver, enhancing stemmarkers expression (CD44, Sox2,

Bmi-1), sphere formation, self-renewal and sustaining CSC pool
expansion (86–90). Moreover, CAF conditioned medium

influenced the tumorigenic behavior and the aggressiveness of

CSCs (91). For these reasons, CAFs represent a cellular subtype

TABLE 1 | Cancer stem cell biomarkers correlated to chemoresistance.

CSC markers Stemness-related pathways Tumors References

CD133 Hedgehog (HH) CRC 21

CD44+CD24-/low Lin- BC 22

CD133 Glioma 23

CD133 Notch Glioma 23

TOP-GFPhigh CD133high Wnt/b-catenin CRC 25

Lgr5 32

Lgr5 31

24

BC 26

27

ALDH activity, SP 30

Neuroblastoma 29

CD44+CD24-/low YAP/TAZ BC 33

Lgr5 CRC 34

Apoptotic molecules

CD34+/CD38- FAS/FAS-L AML 36

Pancreatic 37

CD133 Glioma 38

39

CD133 TRAIL GBM 40

CD133 44

CD133 BC 43

ALDH activity 45

CD133 IAP GBM 22

47

CD133, SOX2 Survivin GMB 48

CRC 49

CD133 Bcl2 family GBM 22

Haematopoietic disorders 54

CD44+CD24-/low BC 53, 55

DNA damage repair machinery

CD133 Chk1/2 Glioma/GBM 60

SOX2 62

CD44v6 TOP-GFPhig CRC 63

ATM GBM 61

SOX2 62

CD133 Rad51 Lung 64

ALDH activity BC 67

CD133 BRCA1 Lung 64

CD133 Pancreatic 65

Detoxifying enzymes /Drug efflux molecules

CD44+CD24-/low ALDH1 BC 72

CD44+CD24-/low and CD133 ABCB1 BC 73

ALDH activity Myeloma 74

CD133 ABCB5 Melanoma 75
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FIGURE 1 | Crosstalk between cancer stem cells (CSCs) and tumor microenvironment (TME) components. Within the tumor mass, a subpopulation of cancer cells,

called cancer stem cells (CSCs), are endowed with high resistance to anticancer therapies, due to elevated expression levels of ABC transporters, anti-apoptotic

proteins and a proficient DNA damage repair (DDR) machinery. Tumor microenvironment (TME), mainly composed by cancer associated fibroblasts (CAFs),

adipocytes, immune and endothelial cells, has a key role in the maintenance of CSC peculiarities. Cytokines and chemokines produced by both CSCs and TME cells

boost cancer cell growth, prompt chemoresistance and promote tumor progression and relapse.
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on which particular attention is being paid to predict patients’

outcome and to design new target therapies.

CAF-secreted factors, which include chemokines, cytokines,

growth factors, proteins and exosomes, influence and sustain

CSCs aggressiveness by modulating their stemness features.

CCL2 supported CSC self-renewal activating NOTCH signaling
pathway and the co-injection of CAF and breast CSCs into the

mammary fat pads of NOD/SCID/IL-2Rg-null mice enhanced

CSC tumorigenic potential, unveiling the CCL2 driving role in BC

(83). In addition, SDF-1 interacting with its receptor (CXCR4),

highly expressed on CSC surface, regulated stem phenotype

through the activation of Wnt/b-catenin and PI3K/AKT
signaling pathways and boosted the proliferation of CD44+/

CD24- BC cells (92). In agreement, CXCR4+ cells were more

prone to reach the stem phenotype and properties, in comparison

to CXCR4- cells (90).

Among the variety of cytokines and growth factors secreted

by CAFs, a great number of studies highlighted the IL-6 and IL-8
essential role in the maintenance of stem-like features of cancer

cells and in the promotion of tumor growth, metastasis

formation, and chemoresistance (93, 94).

CAFs also supported the aggressive behavior of cancer cells

through the secretion of TGF-b. In different tumor types, TGF-b
induced the acquisition of a stem-like phenotype, promoted

EMT and chemoresistance via the activation of TGF-b/Smad
signaling pathway (88, 95).

Hepatocyte growth factor (HGF), another important

molecules secreted by CAFs, promotes cancer cell invasiveness.

In hepatocellular carcinoma, HGF sustained cancer cell stemness

through the activation of MET/FRA1/HEY1 cascade (89). Our

group recently demonstrated that HGF, SDF-1, and OPN
released by CAFs were able to reprogram CD44v6- progenitor

cells in metastatic CD44v6+ CSCs by activating Wnt/b-catenin
and PI3K/AKT signaling pathways (90).

Synthesis and remodeling of extracellular matrix (ECM)

represents an important function of CAFs in TME. Malanchi

et al. demonstrated in a murine BC model that lung fibroblasts,

activated by infiltrating CSCs, produce periostin which boosts

Wnt pathway sustaining metastatic colonization (96). Moreover,

in a syngeneic BC mouse model S100A4+ lung CAFs secreted
VEGF-A and tenascin-C, which mediate angiogenesis and CSC

survival, respectively (97). In addition to the production of ECM

components, CAFs secreted metalloproteases, a family of

enzymes able to degrade and remodel ECM, favoring cancer

cell invasion (98).

Numerous studies highlighted that CAFs can support CSC
chemoresistance in different solid tumors. Co-culture

experiments performed with freshly isolated colorectal CSCs

showed that CAFs secrete high levels of TGF-b2 and IL-6,

which in turn prompt the transcription of GLI-2, promoting

resistance to 5-fluorouracil/oxaliplatin (5-FU/oxa) treatment

(99). In breast and lung tumors, the CD10+/GPR77+ CAF
subpopulation secreted both IL-6 and IL-8, which induce CSC

enrichment and chemoresistance to CIS treatment (100).

Moreover, in triple negative BC mice models, cancer cells

reprogrammed CAFs through the secretion of HH ligand.

CAFs, in turn, triggered the acquisition of chemoresistance

through FGF5 secretion and the production of fibrillar collagen

(101). In head and neck small cellular cancer, CAF-secreted
periostin bound PTK7, a receptor expressed on cancer cell

surface, favoring CSC invasion and proliferation through the

activation PTK7–Wnt/b-Catenin signaling pathway. Notably,

PTK7/periostin interaction enhanced erlotinib chemoresistance

and the formation of lung metastasis (102). Recently, our group

demonstrated that in colorectal CSCs CAF-secreted cytokines
confer resistance to PI3K/AKT inhibitors (103) (Table 2). Given

the key role of CAFs in both CSC maintenance and drug

refractoriness, the use of therapeutic strategies blocking CAFs-

TABLE 2 | Molecular mechanisms prompting cancer stem cell resistance to standard and targeted therapies.

Mechanism of resistance Tumor Molecule secreted Drug References

Cancer associated fibroblasts (CAFs) GLI-2 enhanced expression CRC TGFb2 , IL-6 5-FU/oxa 99

NF-kB pathway BC/lung IL-6, IL-8 CIS 100

Wnt/b-catenin pathway head/neck periostin erlotinib 102

PI3K/AKT and MAPK pathway CRC HGF, SDF-1, OPN PI3K/AKT inhibitors 90, 103

STAT3/NF-kB pathway BC IL-6 trastuzumab 104

Cancer associated adipocytes (CAAs) High MVP expression levels BC CM from adipocytes doxorubicin/ 5-FU/ paclitaxel 105

MAPK pathway BC IL-4 arimidex/ docetaxel+BKM120 106

AKT/MAPK pathways BC Leptin 5-FU 107

MAPK and AKT pathways CRC Leptin 5-FU 108

AMPK/mTOR/JNK pathways BC Resistin doxorubicin 109

Up-regulation of ABCG2 BC CXCL1 doxorubicin 110

Endothelial cells (ECs) Notch pathway Lymphoma Jagged-1 doxorubicin 111

Notch pathway CRC Jagged-1 5-FU/oxa 112

High c-Met expression levels GBM bevacizumab 113

HIF/VEGF pathways CRC VEGF bevacizumab 114

Increase of intratumoral hypoxia LLC sunitinib 115

VEGF-independent angiogenesis Pancreatic cancer FGFs DC101 (anti-VEGFR2) 116

VEGF-independent angiogenesis RCC IL-8 sunitinib 92

NF-kB pathway RCC IL-6 sunitinib 117

AXL and Met signaling RCC sunitinib 118
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CSCs crosstalk could improve patients’ survival. In resistant BC

cells, trastuzumab treatment activated an IL-6/STAT-3/NF-kB
inflammatory loop, which correlates with the expansion of the

CSC subpopulation. The administration of an anti-IL-6 receptor

antibody reverted the stem-like phenotype of tumor cells (104).

Zong et al. reported that the use of MEDI5117, an anti IL-6
antibody, in combination with chemotherapy or gefitinib impairs

tumor growth in mice injected with NSCLC cells. MEDI5117 also

displayed robust activity against trastuzumab-resistant HER2

tumor cells by targeting the CD44+/CD24- population (119).

A novel strategy to counteract IL-6 downstream pathway is

represented by the use of specific oligonucleotide decoy specific
for STAT3, which display encouraging anticancer effects. In

EGFR inhibitors-resistant NSCLC cells, the treatment with a

cyclic STAT3 decoy (CS3D) impaired in vitro proliferation and

tumor formation (120). Likewise, AZD9150, a STAT3 antisense

oligonucleotide, sustained antitumor activity in lymphoma and

NSCLC preclinical models. Based on these promising results,
AZD9150 was used as single agent in a Phase I clinical trial

including patients with advanced lymphoma and NSCLC (121).

Moreover, the double inhibition of IL-6 and IL-8 in combination

with docetaxel in CD10+/GPR77+ CAFs impaired tumor growth

in a patient-derived xenograft (PDX) model of BC (100). In

human BC PDX, the use of a specific antibody against IL-8

receptor, CXCR-1, or an inhibitory molecule against to CXCR-1
and CXCR-2, repertaxin, favored the eradication of CSC pool,

thus impeding tumor progression. In particular, ALDH+ and

CD24-/CD44+ levels were reduced by ≥ 20% in 4/17 and 9/17

patients (122). Two independent research groups described that

the use of CXCR-2 inhibitors, AZ13381758 and SB225002,

suppresses tumor progression and hampers chemotherapy
resistance in BC and pancreatic adenocarcinoma, respectively

(123, 124).

The use of smoothened inhibitors (SMOi), in combination

with docetaxel, in triple negative BC PDX and in a Phase I

clinical trial (EDALINE) reduced metastasis formation and

displayed clinical benefits, respectively (101). In addition,

vismodegib, a HH inhibitor, triggered apoptosis and decreased
both CAF and CSC proliferation in breast, colon and prostate

cancer (125–127). In head and neck cancer, the combination of

anti-PTK7 and erlotinib highly reduced tumor growth compared

to single agent treatment (102).

In gastric cancer, TGFb1 neutralizing antibody or TGFbR
inhibitor (Ki26894) reduced the side population fraction, able to
exclude fluorescence dye, even in presence of CAF conditioned

medium (88). Alike, treatment with AMD3100 (plerixafor), a

CXCR4 antagonist, blocked SDF1/CXCR4 interaction leading to

a regression of CSC subpopulation in breast, colon and prostate

cancer (125–127). A Phase I study on a cohort of cancer patients

with worse prognosis showed that treatment with a cMET pan-

inhibitor, capmatinib (INC280), displays anticancer activity in 8/
44 patients (128). In preclinical studies, treatment with WNT/b-
catenin inhibitors, iLGK974, Wnt-C59, and cyclosporin A,

impaired CSC survival in different cancer types (129–131). In

this context, we have recently demonstrated that the use of a

variant of BMP7 with enhanced stability (BMP7v) induced the

differentiation of CD44v6+ cells, suppressed Wnt pathway

activity and sensitized CSCs to standard and target therapies

(132). Recently, we demonstrated that cytokines secreted by

CAFs boosted resistance to PI3K/AKT inhibitors in colorectal

CSCs and this protective effect was overcome by the triple

targeting of Her2, PI3K and MEK (103).
Interestingly, new therapeutic approaches focus on the direct

depletion of CAFs. The targeting of FAP+ CAFs could represents

a new promising target therapy (133). In agreement, FAP+

CAF inhibition and depletion with the use of the dipeptidyl

peptidase inhibitor PT100 led to a reduction of the crosstalk

between CAF and pro-tumorigenic immune or endothelial
cells by enhancing oxa treatment efficacy in colon cancer mice

models (134). Interestingly, FAP could be used as an antigen for

CAR-T anticancer treatment strategy. For instance, treatment

with CAR-T against FAP+ CAFs promoted growth arrest in in

vivo models of lung cancer xenografts and syngeneic murine

pancreatic cancers (135).

Adipocyte-Released Factors
Strengthening CSC Chemotherapy
Refractoriness
Adipose tissue (AT) is a specialized soft connective tissue

consisting of about 90% of adipocytes cells and for the

remaining part by adipose derived stem cells (ADSCs),
endothelial cells, pericytes, fibroblasts and immune cells

(macrophages, dendritic cells, lymphocytes). AT can be divided

according to anatomic localization in three different subtypes:

subcutaneous, visceral and intramuscular. In addition, adipose

depots may be sub-classified in white (WAT) and brown AT

(BAT), which is characterized by a dark color due to the presence

of vessels and a high number of mitochondria (136). For these
reasons, BAT is mainly implicated in thermogenic regulation,

maintaining the appropriate balance between energy storage and

consumption. AT originates from the mesoderm, whose cells

give rise to adipocyte and the myogenic lineages. Specifically,

white adipocytes derived from the adipogenic MYF5 negative

cells, whereas brown adipocytes from myogenic MYF5 positive
cells (137). White and brown cells could be discriminated in

accordance with the expression of specific markers, with white

adipose cells expressing leptin and S100B, lacking UCP-1

expression, and brown adipose cells characterized by PPAR

gamma and UCP-1 (138). In the last years, WAT, which was

traditionally considered as an energy storage tissue, due to the

triglycerides and cholesterol contained in intracellular droplets,
has been demonstrated to represent the biggest human endocrine

organ, with the production and release of hormones, growth

factors, cytokines and adipokines. Accordingly, a conspicuous

secretion of these factors is observed in obesity conditions (139,

140). Nowadays, obesity represents a global health problem and

constantly increases in all countries of the world (141, 142). It has
been demonstrated that overweight and obesity correlate with

the onset of several solid tumors, including esophagus,

pancreatic, colon, breast, endometrium, ovarian and kidney,

suggesting an association between these conditions and tumor

initiation (143, 144). In obese subjects, adipocytes increase their
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dimension (hypertrophy) both in subcutaneous and visceral

ATs, whereas only visceral is characterized by an increase of

adipocyte number (hyperplasia) (145).

In obese conditions, WAT secrete high amount of hormones,

adipokines and pro-inflammatory cytokines, such as leptin, IGF-1,

HGF, TNF-a, IL1b, IL-4, IL-6, IL-8, plasminogen activator inhibitor
1 (PAI-1) and CCL-2. This promotes both a chronic inflammatory

state and a tumor-permissive microenvironment, which in turn

induce tumorigenesis, neo-angiogenesis via VEGF release and

metastatic progression (106, 134, 146–150). Furthermore,

adipokines locally recruit monocytes, macrophages, lymphocytes

and other immune cells, which increase the inflammatory status in
the AT particularly in obese subjects (151). The adipocytes’ role in

TME has been broadly studied in the context of BC. The established

crosstalk between BC cells and the close AT cells increases the

production of cytokines with proinflammatory activity. Picon-Ruiz

et al. demonstrated that tumor cells, after exposure to

proinflammatory cytokines, are characterized by the activation of
ALDH1 and an increment of mammosphere formation capacity,

which are correlated with the increase of CSC number and

metastasis formation in in vivo settings. These processes are

driven by Src oncogene, which activates the transcription of

SOX2, MYC and NANOG, well-known stem cell markers (152).

In agreement with these observations, we have previously

demonstrated that the release of IL-4 sustains breast CSCs
invasion, tumorigenic potential, and drug resistance (106).

Moreover, in obese conditions, adipocytes released elevated levels

of leptin, which trigger the activation of many stemness-related

molecular pathways, as Notch,Wnt/B-catenin, OCT4,SOX2, Nanog

and ALDH1 up-regulation (153–156). In intestinal epithelial cells,

the activation of Wnt pathway determines the expansion of crypt
stem cells and favors progenitor proliferation (153–156). Breast

CSCs harness higher lipid metabolism than differentiated cancer

cells and used long chain fatty acids as an energy source (157). This

population is characterized by an increased b-oxidation activity,

which produces numerous metabolic intermediates used in ATP

production (154). Recent studies have shown that ovarian and

colorectal CSCs retain a high amount of fatty acids within lipid
droplets to maintain their stem-like features (158). This population

is rich of monounsaturated fatty acids (MUFAs), generated by

stearoyl-CoA desaturase-1 (SCD1), which are metabolic markers of

CSCs (159, 160). The inhibition of SCD1 decreased ovarian CSC

phenotype, impairing the expression of SOX2, Nanog and Oct4,

sphere forming capacity and tumorigenic potential (161–163). In
melanoma, lipids released by adipocytes induced metabolic

reprogramming, enhancing cell proliferation (164).

In addition, tumor cells prime peritumoral adipocytes,

boosting intense lipolysis. In fact, these adipocytes, called

cancer associated adipocytes (CAAs), show both in vitro and

in vivo smaller cell sizes and irregular shapes with an expanded

ECM and over-expression of collagen IV. They are also
characterized by an increased secretion of proinflammatory

factors and numerous high-energy metabolites, free fatty acids,

ketone bodies, pyruvate, and lactate (165, 166). Several studies

show that CAAs activate Wnt/b-catenin pathway, leading to the

loss of terminal adipocyte differentiation markers such as

adiponectin (APN), resistin, hormone-sensitive lipase (HSL)

and adipocyte protein 2 (aP2) (166). In particular, CAAs have

some characteristics of the senescence-associated secretory

phenotype (SASP), such as the release of proinflammatory

factors (167). CAA-released leptin determined the activation of

STAT3-CPT1-fatty acid b-oxidation (FAO) in CSCs, with an
increased use of fatty acids as an energy source. The in vivo

blocking of this signaling pathway led to a reduction of stem-like

features and a re-sensitization of breast tumor cells to

chemotherapy (107).

Recent studies showed that obesity could be associated with

treatment-related toxicity (168), thus, lower doses of
chemotherapeutic drugs are administered to obese patients,

compromising therapy efficacy and leading to resistance

development (169, 170). These observations highlighted that

the body max index (BMI) is not the appropriate parameter to

determine the dose of chemotherapy, because it does not take

into account the altered pharmacokinetics and pharmacodynamics
in obese patients. A meta-analysis revealed that obese patients

treated with full chemotherapy doses, estimated using actual body

weight, showed lesser toxicity compared to normal weight subject

(171). Lehuédé et al. observed that adipocytes promote in vitro

resistance to doxorubicin, paclitaxel and 5-FU in BC cells and this

phenomenon is amplified by adipocytes isolated from obese women

(105). It has been demonstrated that the adipocytes, to accomplish
their protective effect on BC cells treated with doxorubicin, increase

the production and secretion of resistin mediating AMPK/mTOR

and JNK signaling pathway activation (109). In addition,

doxorubicin may influence adipocyte functions, deregulating

adipokine secretion and thus altering lipogenesis and lipolysis

(170). Yeh et al. observed that pre-adipocytes promote
doxorubicin resistance in triple negative BC by secreting CXCL1,

which determines over-expression of ABCG2 (110). Moreover, high

concentrations of leptin increased colorectal CSCs survival and the

resistance to 5-FU treatment (108) (Table 2).

In addition to cytotoxic drugs, adipocytes are implicated in the

resistance to multiple therapies, including radiotherapy, hormonal

therapy, immunotherapy, and chemotherapy (172–174). CAAs
expressed high levels of PD-L1 and in turn protected cancer cell

from the anti-tumor activity ofCD8+T lymphocytes (151).Ofnote,

the use of immune checkpoint inhibitors in BC displays limited

efficacy, probably due to the presence of surrounding AT. The

inhibition of adipogenic processes increased anti PD-L1 or anti

PD-1 activity (175). Moreover, it was demonstrated that IL-6
secreted by mammary adipose tissue up-regulated Chk1 signaling

pathway in BC cells, promoting resistance to radiotherapy

(138). Therefore, the targeting of tumor-released factors which

induce the activation of adipocytes in CAAs could improve

patient outcomes. In BC cachectic patients, the secretion of

miR-155 by tumor cells restored adipocyte metabolism, reducing

PPARg expression levels, and was associated with tumor
progression. The administration of propranolol impaired the

release of exosomes containing miR-155, thus restoring PPARg
in adipocytes (176, 177).

Moreover, targeting the metabolic dependence of cancer cells

on adipocytes could be a therapeutic strategy to lessen tumor
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progression (178). In melanoma cells, the treatment with fatty

acid transport protein 1 inhibitor impaired the invasive capacity

of tumor cells promoted by adipocyte conditioned medium

(179). In addition, CD36 inhibition in ovarian cancer cells

reduced their in vitro and in vivo invasive capabilities

sustained by CAAs (180). Moreover, Masko et al. pointed out
that the combination of standard treatments with drugs

interfering with adipocyte metabolism, like statins, has

promising therapeutic relevance in prostate cancer treatment

(181, 182). The administration of a high fat diet, instead of a

normal one, in mice treated with diethylnitrosamine promoted

hepatocellular carcinoma development, increasing STAT3
activation and IL-6 production. This phenotype was

counteracted using acyclic retinoids (183, 184). Metformin is

an anti-hyperglycemic agent, indicated for obesity-related type 2

diabetes, which determines the inhibition of the hepatic

gluconeogenesis pathway, through the activation of AMPK.

Moreover, metformin reduced the circulating levels of
androgen, estrogen, insulin and sensitized BC cells to chemo

and radiotherapy through a selective killing of stemness

compartment (NCT02874430) (185–187).

Immune Cells Rewiring Therapies
Immune system is an interesting network composed of
specialized immune cells (ICs), cytokines, chemokines, and

lymphoid organs, which, all together, contribute to immune

response. The principal function of immune system is to

discriminate “self” from “non-self” components. In TME, ICs

affect both cancer development and immunological surveillance,

influencing patients’ clinical outcome (188). ICs are classified in
effector and non-effector cells, with the first category including

natural killer (NK) cells, B and T lymphocytes, involved in the

adoptive immune response along with the killing of cancer cells.

The presence of T cytotoxic CD8+, T helper 1 (Th1) CD4+, B and

NK cells within the TME is associated with a positive patients’

outcome in many cancers (189, 190). It is well known that NK

cells act directly on the tumor cells, hampering their proliferation
and dissemination. Compelling evidence demonstrated that NK

cells eradicate CSCs at mestatatic sites, preventing tumor

progression and relapse (191–194). Differently, the reduction

of NK cells was associated with a worse outcome (195).

Non effector cells include antigen-presenting cells (APCs),

regulatory T cells (Treg), tumor-associated macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs), which

support tumor growth, progression, and dissemination,

hampering immune response.

The most abundant IC subset within the TME is represented

by TAMs, which modulate the innate immune response in the

context of tumor. TAMs own a phenotypic plasticity, thus transit
from M1 to M2 phenotypes, and viceversa. M1 TAMs are

involved in activated proinflammatory pathway and counteract

tumor growth, while the M2 are engaged in anti-inflammatory

response, largely promoting angiogenesis and tissue remodeling

and sustaining tumor progression (196, 197).

Several studies highlighted that M2 TAMs are characterized

by the expression of specific markers, such as CD163 and CD206

(198). In BC the release of TNF-a, IL-6 and IL-1b in the TME

sustained M2 macrophages, which boost tumor initiation,

dissemination and metastasis formation (199). In addition,

Rodriguez-Garcia et al. highlighted the role of folate receptor b
(FRb) in TAMs cells. They demonstrated that immunosuppressive

M2 TAMs expressing FRb promote tumor progression in a mouse
model of ovarian cancer, pointing out FRb as a potential therapeutic
target in combination with chemo- or immunotherapy (200).

Furthermore, the expression of FRb in M2 TAMs correlated with

a poor prognosis also in pancreatic cancer (201). A recent study

showed that BC cells, through TNF-a and IL-1b releasing in TME,

induce the production of CCL8 by pro-tumorigenic TAMs and this
crosstalk correlates with worse outcomes (202). These data confirm

thatM2 phenotype of TAMs plays a pivotal role in sustaining tumor

growth and therefore could be a potential target. Overall, many

studies highlighted that TAMs are responsible, in addition with

other factors and cells available in the TME, for the increase of CSC

subpopulation, leading to chemotherapy resistance. The induction
of EMT and the over-expression of stem cell markers, such as

CD90/Thy1 and EphA4, mediated the crosstalk between CSCs and

TAMs. In addition, in different types of cancers and in particular in

BC, the maintenance of a stem-like phenotype is also correlated to

the presence of M2 macrophages in the TME (203, 204). In

osteosarcoma, Xue-jing Shao et al. described the contribution of

CD209+ M2 macrophages in tumor initiation and CSC
maintenance, corroborating the possibility that the blockage of

M2 macrophages depletes CSC subpopulation in the tumor bulk

and, at the same time, inhibits tumor progression (205).

In liver cancer, the activation of oncoprotein Yes-associated

protein (YAP) in CSCs correlated with both tumorigenesis and

TAM recruitment, indicating that the blocking of M2
macrophage or YAP could be an efficacious therapeutic

strategy (206).

In BC the inflammatory process predisposes to the malignant

transformation, inducing the release chemokines, such as IL-8

and growth-regulated oncogene (GRO), which activate JAK/

STAT3 pathway and in turn maintain CSC-like cell phenotype

(207). Larionova et al. dissected the contributions of M2
macrophages in chemoresistance, showing that the depletion of

M2 macrophages or M2-to-M1 re-polarization improves therapy

efficacy of conventional cytotoxic drugs and/or immunotherapy,

enhancing immune response (197).

It is widely demonstrated that cytotoxic chemotherapeutic

drugs weaken immune sys tem homeostas i s (208) .
Simultaneously, over the last ten years, several studies

highlighted the effects of chemotherapeutic agents regarding

increased immunogenicity of human cancer cells and the role

of chemotherapies in activating antitumor immune responses

(209, 210). Different studies shed light on the role of NK cells

within tumors and the influence of TME and chemotherapy on

innate lymphoid cells. The high presence of NK cells in the TME
correlate with an increased patients’ survival in different types of

cancer, such as HER2-positive and triple negative BCs (211). It

has been demonstrated that NK function could be regulated by

chemotherapy (212). Recent studies have reported that different

chemotherapeutic compounds, such as GEM, positively regulate

Gaggianesi et al. Cutting-Edge Strategies Targeting Cancer/TME Cross-Talk

Frontiers in Oncology | www.frontiersin.org July 2021 | Volume 11 | Article 7026429

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


NK cell functions. In lung cancers, the use of low-dose GEM

enhanced the release of INF-g and at the same time activated NK

cells (213). In in vivo models of pancreatic cancer, the use of

GEM as adjuvant chemotherapy improved mice overall survival

with a reduction of tumor burden bulk. Thereafter, GEM

induced a decrease of MDSCs and, on the other hand,
increased the anti-tumor capability of NK cells (214, 215). In

the last decades, to eradicate cancer cells many therapeutic

strategies were focused on the re-activation of ICs, in

particular of T cells. Cancer immunotherapies comprehend

different approaches including the immune checkpoint

blockade, with anti programmed death 1 (PD-1)/PD-ligand 1
(PD-L1)/cytotoxic T lymphocyte antigen 4 (CTLA4) antibodies,

and adoptive cellular therapies (216). The following data

illustrate that the use of cytotoxic chemotherapy combined

with immunotherapy could block signaling factors or targets

essential for CSC-mediated tumor progression and dissemination

(190, 217).
In order to counteract fast cancer cell proliferation and

enhance immune response, Orecchioni et al. tested the

synergic effect of 5-FU, cyclophosphamide (CPX) or

vinorelbine in combination with checkpoint inhibitors. In

immunocompetent mice, the treatment with all the three

chemotherapic drugs influenced the number of circulating ICs,

in particular reducing MDSCs, APC cells, Treg, whereas
increasing NK cells. The combination of chemotherapy and

anti PD-L1 in mice injected with triple negative BC and B cell

lymphoma cells reduced tumor growth and metastasis formation

compared to the control group (218).

Many studies have been carried out to characterize the

immunomodulatory properties of GEM. In pancreatic cancer,
GEM induced a decrease in MDSCs and Treg, albeit did not

counteract effector lymphocytes. Although GEM influences

infiltrating ICs, generating an unfavorable condition for tumor

growth, it was not sufficient as single agent and needed to be

combined with immunotherapy to enhance immune response

(219). In fact, in in vivo models GEM in combination with

immunotherapy reduced the number of immunosuppressive
cells, enhancing CD8+ T cells and promoting tumor cell

elimination (220). These results pointed out that GEM is an

immune checkpoint inhibitor-compatible drug, and this

combination treatment reactivates the immune response with

the goal of killing active proliferating cells (221).

Chemotherapy resistance is nowadays a sensitive issue that
led several scientists to look for the causes of this phenomenon

and the possibility to counteract the failure of chemotherapy

drugs l inked wi th the CSC subgroup . In NSCLC

adenocarcinoma, the use of pemetrexed firstly stimulated the

host antitumor immunity and simultaneously induced in vitro

immunogenic cancer cell death (ICD), leading to improved

antitumor immune response (222). In the KEYNOTE–021G
trial, the use of pemetrexed and carboplatin (CARB) plus anti

PD-1 antibody promoted immune response through the

recruitment of infiltrating T cells, the reduction of APC cells,

as well as elicited ICD in patients affected by NSCLC, improving

their clinical outcome (NCT 02039674).

It has been demonstrated that CIS, oxa and CARB are able to

stimulate antitumor immunity by promoting the enhancement

of CD8+ T and APC cells with concomitant down-regulation of

Treg and MDSC subpopulations. This effect, prompted by

platinum derivatives drugs, improved the sensitivity of tumor

cells to immunotherapy (223).
In bladder cancer cell lines, the use of CIS increased the

expression level of PD-L1 through the activation of c-Jun, one of

the activator protein-1 (AP-1) subunits, via ERK1/2. These data

showed that chemotherapy in combination with immunotherapy

(anti PD-L1) preempts cancer relapse blocking AP-1 oncogene

factor (224).
The Keynote-407 multicentric study investigated the use of

immune checkpoint inhibitors alone or in combination with

CARB and paclitaxel in squamous NSCLC patients. The

response rate and median progression-free survival increased

in patients treated with checkpoint inhibitors plus chemotherapy

instead of placebo groups (NCT02775435). The use of these
combinatorial regimes recruited T, NK, and APC cells with a

concomitant reduction of MDSCs and Treg in the TME (225).

The results of a Phase III clinical trial, which includes recurrent

inoperable or metastatic triple-negative BC patients, reported that

pembrolizumab plus chemotherapy (paclitaxel, GEM) improved

the median progression-free survival (NCT02220894) (226).

Moreover, in an ongoing Phase III randomized trial in patients
affected by metastatic CRC the use of chemotherapy (FOLFOX)

in combination with immunotherapy (atezolizumab, anti

PD-L1) was tested in order to hamper cancer progression and

improve immune system response, in particular cytotoxic CD8+

T cells (NCT02912559) (227). All these data highlighted that

immunotherapy, in association with standard chemotherapy, has
erupted as a novel therapeutic strategy to counteract tumor growth

and chemoresistance.

In addition to the use of immune checkpoint inhibitors,

another promising therapeutic approach is the chimeric

antigen receptor T-cell (CAR-T) therapy. This methodology is

based on the use of patients T cells engineered with vectors

carrying a CAR specifically expressed on cancer cells. This
genetic modification allows T cells, after re-infusion in

patients, to efficiently recognize and kill cancer cells (228). To

date, five different generations of CARs, characterized by

differences in their intracellular domain, have been developed.

Specifically, the first generation of CARs presented only the

CD3z domain, which in the second generation was conjugated
with a costimulatory domain, such as CD28 or 4-1BB, to

improve their proliferation and cytotoxic potential. The third

and fourth generation differed from the second generation for

the addition of CD137/CD134 or IL-2 inducer domain,

respectively. To improve CAR-T proliferation and survival, the

last generation display a STAT3 inducer domain in combination

with CD3z-CD28 and IL-2 inducer (229, 230). Promising data
showed that CAR-T cells, engineered for the most abundant

surface antigen expressed on CSCs, efficiently target cancer cells

mainly in liquid tumors. CAR-T cell-based clinical trials displayed

huge remission rates in patients with B cell hematologic

malignancies (231). In the ELIANA trial, children and young
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patients with refractory B-cell acute lymphoblastic leukemia (ALL)

were infused with autologous T cells engineered with a CD19 CAR

(CTL019, tisagenlecleucel), achieving durable remission with

transient toxic effects (NCT02435849) (232). The anti CD19

CAR-T cell therapy also displayed remarkable results in adult

patients with diffuse large B-cell lymphoma (DLBCL)
(NCT02445248) (233). Despite the encouraging results obtained

in the treatment of hematological tumors, limited successes have

been reached with solid ones. This is probably due to the

immunosuppressive role of TME and the heterogeneous

expression of targetable antigens (234). Nevertheless, several

CAR-T clinical trials have been approved for the treatment of
solid cancers. The high expression levels of EpCAM have been

associatedwith local growth and dissemination in different cancers,

including breast and colorectal tumors (230). Zhang et al. described

that use of CAR-T cells, targeting EpCAM+ cancer cells, induces

tumor strinkage in in vivoCRCmodels (235).Moreover, inaPhase I

clinical trial the use of a CD133 CAR-T cells induced, after the first
infusion, the reductionof tumorgrowthand thepartial remissionor

stable disease for the treatment in hepatocellular, pancreatic and

CRC patients (NCT02541370) (236). Besides hitting cancer cells,

CAR-T could also be engineered to target components of TME. In

murine ovarian carcinoma cell lines, the use of CAR-T targeting

FRb induced a selective depletion of M2 TAMs and, at the same

time, led to the recruitmentof inflammatory cytokine andprecursor
myeloid cells. Despite the clinical benefits obtained in term of

durable remission, the majority of CAR-T cell therapies displayed

high grade toxic effects, such as cytokine-release syndrome and

neurotoxicity (237, 238). Therefore, the next milestone on CAR-T

cell therapies is the optimization of clinical approaches and

engineering strategies to improve safety and efficacy.

Role of Tumor Angiogenesis in
Chemotherapy Failure
The aberrant and rapid growth of cancer cells requires a

continuous demand of nutrient and oxygen, which generate

hypoxic area in the TME. To restore an adequate oxygen

supply, CSCs boosted HIF-1A expression levels which mediate

the secretion of VEGF-A, SDF-1 and HGF, recruiting VEGF

receptors (VEGFRs)-expressing endothelial cells (ECs) and

promoting tumor angiogenesis (239–241). Through this
process, VEGF signaling activates the proliferation and survival

of ECs, determining the increase of vessel permeability and

supporting the metabolic needs of cancer cells (242).

Moreover, the VEGF secreted by CSCs recruited mesenchymal

stem cells inducing their differentiation into ECs (243).

These observations indicate that CSCs play a fundamental
role in determining the TME through an important crosstalk

with mesenchymal cells and ECs associated with the tumor. In

normal conditions, angiogenesis, which has key role during

embryonic development and tissue repair, is finely regulated by

a poise between pro- and anti-angiogenic factors (244). This

process is characterized by a dynamic and complex sequence of

events which involve two main cells type: proliferating stalk cells
and the highly invasive and motile endothelial tip cells. At the

end of vessel formation, pericytes and vascular smooth muscle

cells are recruited to stabilize newly formed blood vessels (245).

The alteration of normal angiogenesis is a hallmark of cancer

which leads to important changes and transformation inside

TME and is connected with tumor progression (246). In 1971,

Folkman used for the first time the expression “tumor

angiogenesis” to describe blood vessel sprouting mediated by
activated ECs nearly tumor mass (247). The new tumoral vessels

are characterized by chaotic organization and weak interactions

between pericytes and ECs favoring vascular leakiness, which is

one of the most important barriers for efficient drug delivery in

solid tumors (245, 248, 249). Several studies described that CSCs

could trans-differentiate and promote the formation of new
vessels without the recruitment of ECs. In the 1999, Maniotis

et al. described for the first time this phenomenon, called

vascular mimicry, in melanoma (250). Thereafter, other groups

described the trans-differentiation of CSCs in ECs and pericytes

in other tumors, like GBM, colon, and BC (4, 243, 251–253).

Calabrese et al. described a close ECs-brain CSCs interaction in
the perivascular niche, which maintains the self-renewal capacity

of CD133+ stem-like cells and supports xenograft tumor growth.

The treatment with anti-angiogenic drugs impaired CSC features

(254). In a 3D system, brain ECs secreted IL-8 which promotes

the expression of stem cell markers and boosts the invasive

potential of patient-derived GBM cells (255). Moreover, ECs

isolated from different organs increased the stem-like phenotype
of CRC cells and the expression levels of OCT4 and NANOGP8

mediated by AKT activation (256). Many studies highlighted the

key role of NOTCH signaling pathway in ECs/CSCs cross-talk,

which prompts stem-like phenotype and tumor progression in

cancer cells (257).

In GBM, the juxtacrine signaling between NOTCH ligand-
expressing ECs and tumor cells exposing Notch1 receptor

boosted in vitro and in vivo growth of cancer stem-like cells

(258). Cao et al. pointed out that FGF4, produced by lymphoma

cells, induces the expression of Jagged-1 on ECs, which in turn

promotes Notch2 activation in cancer cells, increasing their

tumorigenic and invasive capacity (111). A similar mechanism

has been described in breast CSCs (259, 260). In a
complementary manner, ECs released a soluble Jagged-1 which

activates Notch signaling in colorectal CSCs, enhancing their

tumorigenic and metastatic potential (112).

The below reported studies pointed out that ECs not only

promote stem-like phenotype in cancer cells, but also play a key

role in the resistance to chemotherapy. The activation of Notch
pathway triggered by ECs confers resistance to doxorubicin

treatment in aggressive lymphoma cells (111). Moreover, EC

conditioned medium drove refractoriness to 5-FU and oxa

treatment in colorectal CSCs (112). Therefore, the possibility

to counteract chemoresistance mediated by ECs/CSCs

interaction could ameliorate the management of cancer

patients. Compelling evidence showed that anti-angiogenic
treatments not only contrast the formation of new blood

vessels, but also improve the quality of existing blood vessels,

enhancing blood perfusion and consequently the exposure of

cancer cells to chemotherapeutic treatments (261). The majority

of anti-angiogenic therapies is represented by monoclonal
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antibodies directed against EC membrane molecules, while other

compounds targeted intracellular components, inhibiting their

activation (261).

In the last decades, numerous anti-angiogenic drugs have

been tested in clinical trials and approved by the FDA.

Bevacizumab is a humanized monoclonal antibody directed
against VEGF-A, approved in 2004, and used in clinic for

treatment of different tumors, such as GBM, colorectal, ovarian

and BC (262, 263). Bevacizumab prevents the VEGF-A/VEGFR

interaction and thus impairs the activation of VEGF signaling

pathways in ECs. In vivo studies have shown that bevacizumab

inhibited the spouting of blood vessel, induced the regression of
newly formed vessels, and normalized the morphology of

preexisting ones to improve the administration of cytotoxic

chemotherapy (242). However, the treatment with bevacizumab

did not display significant improvement of patients’ overall

survival in advanced BC (264). The inefficacy of bevacizumab

treatment was also observed in colorectal and brain tumors due to
the increased expression levels or activation of alternative

angiogenic factors and signaling pathways, respectively (113,

114). In particular, Lu et al. demonstrated that in GBM CSCs,

VEGF inhibits cell invasiveness by blocking HGF receptor (Met)/

VEGFR2 interaction and recruiting PTP1B phosphatase, which

promotes Met dephosphorylation. The treatment with

bevacizumab led to Met signaling pathway activation and to the
acquisition of a mesenchymal-like phenotype in GBM CSCs

(265). Although angiogenesis inhibition initially reduce

tumor growth and prevent metastasis formation, these effects

are transitory and associated with tumor relapse and

recurrence (266).

There are several explanations for the failure of anti-
angiogenic therapies. One possible cause is the induction of

intra-tumoral hypoxia related to decreased number of blood

vessels and the over-expression of HIF-1A, which promotes and

sustains CSC features and paradoxically reactivate neo-

angiogenesis (267, 268).

These observations suggest that anti-angiogenic therapy used

as single agent not only favors tumor growth and progression,
but also induces therapy resistance. In fact, angiogenic inhibitors

induced deep changes in vascular morphology involving the

down-regulation of junction proteins and a reduction of pericyte

number and functionality (115).

Another important limiting factor of anti-angiogenic drug

efficacy is the activation of VEGF-independent pro-angiogenic
signaling pathways in pancreatic tumors (116).

Other possible strategies able to interfere with tumor

angiogenesis consist in the use of tyrosine receptor kinase

inhibitors molecules (269). Sorafenib is an inhibitor of

numerous tyrosine kinases, including Ras and VEGFR family

and platelet-derived growth factor receptor b (PDGFR-b). In a

Phase III study, the treatment with sorafenib increased the
overall median survival of hepatocellular carcinoma patients

(270). Moreover, in the DECISION trial patients with

radioactive iodine-refractory thyroid cancer treated with

sorafenib display an improved progression free survival

compared to the placebo group (NCT00984282) (271).

Unfortunately, mechanisms of resistance to sorafenib

treatment similar to those described above for bevacizumab

have been reported (272, 273). In addition, the intratumoral

hypoxia generated by sorafenib treatment enhanced the

expression of PD-L1 in cancer cells and the recruitment of

TAMs (274).
Another tyrosine kinase inhibitor used as anti-angiogenic

molecule is sunitinib, which targets PDGFR, VEGFRs and c-

kit. Suninitib has been approved for the treatment of imatinib-

resistant gastrointestinal stromal tumor (GIST) and metastatic

renal cell carcinoma (RCC), displaying an increased response

rate compared to placebo patient group (275). Nevertheless,
patients rapidly acquire resistance to treatment (276). Huang

et al. generated a sunitinib-resistant RCC xenograft model and

observed high microvessel density together with increased serum

levels of IL-8, suggesting that patients with elevated IL-8 levels

display intrinsic resistance to sunitinib (277). Moreover,

sunitinib treatment induced a stem-like phenotype and
refractoriness in RCC cells through the activation of PAK1/

NF-kB/IL-6 signaling axis (117). In addition, the chronic

administration of sunitinib in RCC cells promoted EMT,

invasion and angiogenesis via the activation of MET and AXL.

This sunitinib-induced phenotype was suppressed by

cabozantinib treatment (118) (Table 2).

Based on the poor clinical efficacy of VEGF pathway inhibitors,
in the last years alternative strategies have been tested to impair

tumor angiogenesis. Small molecules (rebastinib) and monoclonal

antibodies (MEDI3617, demcizumab, enoticumab and

MEDI0639) targeting ANGPT2/TIE2 and Notch ligand–receptor

interactions have been tested and approved for the treatment of

advanced solid tumors (278, 279).
Given that CSCs can activate ECs through different stimuli,

the simultaneous targeting or the subsequent multiple targeting

of several angiogenic factors could represent an important

perspective in the innovation of anti-angiogenic therapies

avoiding the above described resistance mechanisms (261). In

particular, in many clinical trials the treatment with anti-

angiogenic compounds displays clinical effects only in early
stage, due to a ‘selection’ of functional vessels among the newly

tumor vessels. Therefore, this treatment-induced ‘therapeutic

window’ could be an advantage for the administration of

standard and targeted therapies (278).

Another important therapeutic strategy used to counteract

the resistance to the combination of anti-angiogenic and
cytotoxic drugs is the metronomic chemotherapy, based on the

continuous administration of low chemotherapy doses. This

approach hinders CSC/TME interactions, targeting both cancer

cells and tumor-associated ECs (261, 280).

CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

Despite the great advances made in early diagnosis and the
development of targeted therapies, which increase patients’
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survival rates, the metastatic disease remains incurable. This is

mainly due to primary or acquired resistance to chemotherapeutic

drugs and the presence of TME. Compelling evidence highlights

that the inefficacy of anti-cancer therapy results from the

refractoriness of a subpopulation of tumor cells, called CSCs,

which are endowed with stem-like features including tumor-
initiating and metastasis formation capabilities. In addition to the

intrinsic characteristics of CSCs, interactions with TME are crucially

involved in the resistance to chemo and targeted therapies.

The mechanisms sustaining CSC/TME crosstalk and the

limitations of targeting this complex signaling network have been

comprehensively described in this review. Specifically, the reasons of
treatment failure using the most recently available compounds

targeting both CSCs or TME components have been reported. Of

note, CSC plasticity and ability to adapt to the metabolic

demand are the major hurdles in targeting CSC/TME interplay.

Therefore, additional studies are needed to develop potential

promising strategies to overcome cancer progression and
drug refractory.
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