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ABSTRACT 

 Benthic foraminiferal assemblages of a drill core from the lower Guadalquivir 

Basin (northern Gulf of Cádiz, SW Spain) have been analysed in order to reconstruct 

the paleoenvironmental evolution in the vicinity of the Betic seaways during the 

Messinian. The core consists of marine sediments ranging from the latest Tortonian to 

the early Pliocene. Changes in the abundance of certain marker species, 

planktonic/benthic ratio (P/B ratio), paleodepth estimated with a transfer function, 

content of sand grains and presence of glauconitic layers indicate a complete 

transgressive-regressive sea-level cycle from the bottom to the top of the section. An 

abrupt sea-level rise, from inner-middle shelf to middle slope, is recorded at the 

lowermost part of the core (latest Tortonian-earliest Messinian), followed by a relatively 

rapid shallowing from middle slope to outer shelf. Magnetobiostratigraphic data show 
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that this sea-level fall postdates the onset of the Messinian salinity crisis (MSC) in the 

Mediterranean. Finally, the early Pliocene deposits are interpreted as inner-middle shelf. 

 Changes in the benthic foraminiferal assemblages through the core are mainly 

controlled by the trophic conditions, specifically by the quantity and quality of the 

organic matter reaching the sea floor. The upper slope and part of the outer shelf 

assemblages are highly diverse and dominated by shallow infaunal species, indicating a 

generally mesotrophic environment with moderate oxygenation. These environments 

have likely been affected by repeated upwelling events, documented by increased 

abundance of Uvigerina peregrina s.l., an opportunistic species thriving in 

environments with enhanced labile organic matter supply. The assemblages of the 

transitional interval between upper slope to outer-shelf, and of the outer-shelf are 

generally characterized by a relatively low diversity and epifaunal-shallow infaunal 

taxa, indicating oligotrophic and well-oxygenated conditions. The inner-middle shelf 

assemblages are characterized by very low diversity and dominance of intermediate to 

deep infaunal taxa, suggesting an eutrophic environment with low oxygen content. 

These assemblages are dominated by Nonion fabum and Bulimina elongata, two taxa 

that are able to feed from continental low-quality organic matter, most likely derived 

from river run-off. The paleoenviromental evolution on the Atlantic side of Betic and 

Rifian seaways is similar during the Messinian, with a Messinian continuous sea-level 

lowering driven by regional tectonic uplift and upwelling-related waters reaching the 

upper slope. This study will further contribute to understand the role of tectonics on the 

sea-level changes as well as on the closure of the Atlantic-Mediterranean gateways that 

led to the MSC, and on the paleoceanography on the Atlantic sides of these corridors. 
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1. Introduction 

 

 The Messinian was a time of drastic paleoenvironmental and paleogeographic 

changes in the Mediterranean (Hsü et al., 1973, 1977). During this time interval, 

tectonic processes together with glacioeustatic sea-level oscillations led to the isolation 

of the Mediterranean triggering the formation of thick evaporite deposits during the so-

called Messinian salinity crisis (MSC) (Benson, 1986; Benson et al., 1991; Martín and 

Braga, 1994; Esteban et al., 1996; Riding et al., 1998; Martín et al., 2010). This event 

took place at around 6 Ma (Gautier et al., 1994; Krijgsman et al., 1999a) as a 

consequence of the closure of the different gateways connecting the Atlantic and the 

Mediterranean in the Betic Cordillera in southern Spain (Esteban et al., 1996; Soria et 

al., 1999; Martín et al., 2001; Betzler et al., 2006; Aguirre et al., 2007; Martín et al., 

2009) and the Rifian counterparts in northern Morocco (Benson et al., 1991; Esteban et 

al., 1996; Krijgsman et al., 1999b; Barbieri and Ori, 2000).  

 The paleoenvironmental changes that occurred before, during and after the MSC 

in the Mediterranean and its satellite basins have been intensively studied. Nonetheless, 

the detailed paleogeographic evolution and the precise timing of the different processes 

leading to the MSC and the later Mediterranean reflooding are still discussed 

controversially (Riding et al., 1998; Krijgsman et al., 1999a; Aguirre and Sánchez-

Almazo, 2004; Braga et al., 2006; Roveri and Manzi, 2006). Various studies addressed 

the Messinian paleoenvironmental evolution on the Atlantic side of the Rifian corridors 

(Hodell et al., 1989; Benson et al., 1991; Gebhardt, 1993; Hodell et al., 1994; Barbieri, 
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1998; Barbieri and Ori, 2000). The results of these studies show a significant sea-level 

fall (about 300 m) indicating the onset of the MSC, a reversal water flux through the 

Rifian corridors and cooling during the Messinian. 

 The Betic marine passages connected the western Mediterranean with the 

Atlantic Ocean throughout the Guadalquivir Basin. There are papers dealing with the 

biochronology of the late Neogene deposits filling the Guadalquivir Basin (Viguier, 

1974; Perconig, 1973; Perconig and Granados, 1973; Sierro, 1985; Aguirre et al., 1995; 

Sierro et al., 1996) and with the tectonostratigraphic framework (Sierro et al., 1996; 

Riaza and Martínez del Olmo, 1996). However, the available studies on the Messinian 

paleoenvironmental evolution of the basin are scarce (Berggren and Haq, 1976; Gläser 

and Betzler, 2002). According to these studies a sea-level drop from middle slope to 

inner shelf related to the MSC took place during the Messinian.  

 In this paper, we study the Montemayor-1 core, located in the westernmost part 

of the northern margin of the Guadalquivir Basin (SW Spain) (Figs. 1 and 2). It covers a 

complete Messinian sedimentary record (Larrasoaña et al., 2008). The location of the 

core is exceptional to investigate the paleoenviromental evolution in an area close to the 

last Betic gateway to be closed, the Guadalhorce corridor (Martín et al., 2001), during 

the Messinian.  

 Among the most abundant organisms in the studied sediments are benthic 

foraminifera. It is largely proved that these organisms are very useful to reconstruct the 

paleoenviromental conditions in marine settings, as their distribution depends on several 

physical, chemical and biological factors (Murray, 1991, 2006). They can be used as 

proxies of oceanographic parameters such as water depth, substrate, oxygen content and 

organic matter supply (Jorissen et al., 2007). Thus, the analysis of the variations in the 

benthic foraminiferal assemblages allows us to infer the key paleoenvironmental factors 
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controlling their distribution, composition, diversity and microhabitats preferences 

during the Messinian in an Atlantic-linked basin close to the Guadalhorce corridor. The 

main objectives of this study are to characterise the benthic foraminiferal assemblages 

along the core and to assess the changes in the main components of the assemblages in 

relation with variations in paleoenvironmental parameters, such as sea-level 

fluctuations, source of organic matter (whether continental or primarily produced in 

marine contexts), and oxygen content around to the seafloor-substrate interface.  

This study aims to improve our understanding of the paleoenvironmental and tectonic 

evolution of the Atlantic-Mediterranean gateways during the MSC, with particular 

emphasis on the Betic corridor. 

 

2. Study area 

 

 The Montemayor-1 core, a continuous core located very close to Moguer 

(Huelva, SW Spain) (Fig. 2) has been studied. The core was drilled in the northwestern 

margin of the lower Guadalquivir Basin, an ENE-WSW elongated Atlantic-linked 

foreland basin of the Betic Cordillera (Sanz de Galdeano and Vera, 1992; Braga et al., 

2002). It is limited to the N by the Iberian Massif and to the S by the Subbetic nappes of 

the Betic Cordillera, and is opened to the Atlantic Ocean to the W (Fig. 1). The 

Guadalquivir Basin was originated in the earliest Tortonian (late Miocene) as a 

consequence of the uplifting of the Subbetic Zone of the Betic Cordillera that closed the 

so-called North Betic Strait (Aguirre et al., 2007; Martín et al., 2009; Braga et al., 

2010).  

 After the closure of the North-Betic Strait, the Guadalquivir Basin was 

established as a wide, open marine embayment opened to the Atlantic Ocean (Martín et 
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al., 2009). This basin was filled with marine and continental sediments ranging from the 

early Tortonian to the late Pliocene (Roldán, 1995; Aguirre et al., 1995; Sierro et al., 

1996; González-Delgado et al., 2004). The sedimentary infilling produced a migration 

of the depocentre approximately along the longitudinal axis of the basin, from the ENE 

to the WSW. This sedimentary succession has been divided into five depositional 

sequences (A-E) that have been correlated with third-order cycles of the Haq et al. 

(1987) global sea-level curve (Sierro et al., 1996).  

In Huelva and neighbouring areas, the Neogene deposits have been divided into 

four lithostratigraphic units formally described as formations. The lowermost unit is the 

Niebla Formation (Civis et al., 1987; Baceta and Pendón, 1999). It consists of late 

Tortonian carbonate-siliciclastic mixed deposits that unconformably onlap the 

Paleozoic-Mesozoic basement of the Iberian Massif (Baceta and Pendón, 1999). The 

second unit, latest Tortonian-Messinian according to planktonic foraminifera and 

calcareous nannoplankton (Sierro, 1985, 1987; Flores, 1987; Sierro et al., 1993), is the 

Arcillas de Gibraleón Formation (Civis et al., 1987). This unit, which begins with 2-4 m 

of glauconitic silts (Baceta and Pendón, 1999), consists mostly of greenish-bluish clays. 

The third unit is the Arenas de Huelva Formation (Civis et al., 1987) that includes early 

Pliocene silts and highly fossiliferous sands. A glauconite-rich layer is found at the 

lowermost part of the formation. Finally, this unit is unconformably overlain by sand of 

the uppermost unit, the Arenas de Bonares Formation, which is attributed to the late 

Pliocene with no biostratigraphic precision (Mayoral and Pendón, 1987).  

 

3. Stratigraphy of the Montemayor-1 core 
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The Montemayor-1 core ranges from the latest Tortonian to the Zanclean 

(Larrasoaña et al., 2008) (Fig. 3). The age of the core is well constrained based on 

magnetobiostratigraphic methods. The magnetostratigraphic dating was performed with 

the revised astronomically-tuned geomagnetic polarity timescale of Lourens et al. 

(2004) (ATNTS2004). The paleomagnetic record of the core comprises from the upper 

part of the C3Br.2r (ca. 7.4 Ma) to the C3n/C2Ar boundary (ca. 4.3-4.2 Ma) 

(Larrasoaña et al., 2008) (Fig. 3). The biostratigraphic framework is based on planktonic 

foraminiferal (PF) events 3, 4 and 6 of Sierro et al. (1993), and the first occurrence of 

Globorotalia puncticulata. According to these authors, the PF event 3, which is 

correlated with the Tortonian/Messinian boundary, is the replacement of the 

Globorotalia menardii group II by the Globorotalia miotumida group; the PF event 4 is 

the first abundant occurrence of dextral specimens in the Neogloboquadrina acostaensis 

group; and the PF event 6 is first abundant occurrence of Globorotalia margaritae s.s.  

 The Montemayor-1 core is 260 m long including the uppermost part of the 

basement and the marine sediments of the four aforementioned formations (Fig. 3). The 

core begins with 1.5 m of reddish clays from the Paleozoic-Mesozoic substrate. A well-

cemented sandy calcarenite layer 0.5 m thick, corresponding to the Niebla Formation, 

unconformably overlays the basement. Silt and clay belonging to the Arcillas de 

Gibraleón Formation, 198 m in thickness, overlay the sandy calcarenites. A glauconitic 

layer, 3 m in thickness, is present at the base of the formation. The sharp boundary 

between the Niebla and Arcillas de Gibraleón formations, located at 258 m, could be 

correlated with the unconformity observed in coeval deposits cropping out onland 

(Baceta and Pendón, 1999). Sands and silts from the Arenas de Huelva Formation, 42 m 

thick, overlay the underlying formation. A 3 m-thick glauconitic layer is found at the 

base of the unit. According to the paleomagnatic data, a discontinuity, located at 60 m, 
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separates these deposits from the Arcillas de Gibraleón (Larrasoaña et al., 2008). The 

Montemayor-1 core ends with 14.5 m of brownish sands with marine fossils, the Arenas 

de Bonares Formation which presents a discontinuity at the bottom (18 m), and 3.5 m of 

recent soil. 

Sedimentation rate was estimated in cm/kyr using thickness of paleomagnetic 

chrons and the calibrated time scale in Fig. 3. Sedimentation rate was calculated in 3 

intervals: 1) from the bottom of the chron C3Br.1n to the top of the chron C3Ar; 2) 

from the bottom of the chron C3An to the top of the chron C3An; and 3) from the 

bottom of the chron C3r to the top of the chron C3r (Fig. 3). Concerning the three 

discontinuities of the core, the lower and upper discontinuities, located at 258 and 18 m 

respectively, prevent us from estimating the sedimentation rate for the lowermost and 

uppermost parts of the core (Fig. 3). The sedimentation rate for the chron C3r is also 

uncertain because of the discontinuity located at 60 m (Fig. 3).  

 

4. Methods 

 

In this paper, an interval of 220 m, from 256.5 m to 36.5 m in the core, has been 

studied. This interval encompasses the Arcillas de Gibraleón, and the lower part of the 

Arenas de Huelva. According to the magnetobiostratigraphy, the sedimentary record of 

the studied interval is continuous except for a discontinuity close to the Miocene-

Pliocene boundary, located at 60 m (Fig. 3). A total of 89 samples each 2.5 m have been 

analysed. All samples were washed over a 63 µm sieve and oven dried at 40 °C. 

For faunal analysis, samples were divided into equal aliquots with a 

microsplitter to obtain sub-samples containing at least 300 benthic foraminifera. These 

sub-samples were dry-sieved over a 125 µm sieve, and benthic foraminifera were 
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identified and counted. Census data were transformed into relative abundances. Several 

metrics were calculated: 1) number of taxa (species richness), 2) the Shannon index (H): 

H =  −∑pilnpi 

where pi is the proportion of the i
th

 species and ln is the natural logarithm; 3) evenness 

(E) sensu Hayek and Buzas (1997): 

E = e
H
/S 

where e is the base of the natural logarithms, H is the Shannon index, and S is the 

number of species; and 4) the dominance (D), defined as the percentage of the most 

abundant species (Levin and Cage, 1998), has also been quantified.  

The sand content was determined as percentage of the > 63 μm fraction. The 

total number of benthic foraminifera per gram of dry sediment (N/g) was also 

calculated.  

Changes in paleowater depth have been inferred applying various proxies, 

including the planktonic/benthic ratio (P/B ratio hereafter), specific marker taxa with a 

narrow and well-defined depth distribution range (depth markers), and a quantitative 

transfer function based on benthic foraminiferal depth ranges. The P/B ratio, scored as 

[P/(P+B)], was used as an approximation to infer sea-level changes. The use of P/B 

ratio to represent sea-level changes exhibits many drawbacks. For instance, dissolution 

affects preferentially to planktic foraminifera (Kucera, 2007), and the planktic 

foraminifera abundance decreases in brackish waters (Arnold and Parker, 1999; 

Retailleau et al., 2009). Furthermore, benthic foraminiferal abundance interferes with 

oxygen and food levels at the sea floor affecting the P/B ratio (van Hinsbergen et al., 

2005; Milker, 2010). In spite of these limitations, the P/B ratio can be used to infer 

general sea-level trends. Depth markers can be used for a qualitative estimation of water 

depth, notwithstanding their occurrence can be related to environmental conditions 
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instead of water depth, such as oxygen and organic matter supply (van Hinsbergen et 

al., 2005). In order to define depth markers, we discarded species with a wide 

bathymetric range such as bolivinids, buliminids and uvigerinids. Depth markers used in 

this study are: 1) Ammonia beccarii and Ammonia sp (inner-middle shelf); 2) 

Cibicidoides floridanus (outer shelf); 3) Planulina ariminensis (predominantly upper 

slope); 4) Anomalinoides flinti (middle and lower slope); 5) Oridorsalis umbonatus and 

Siphonina reticulata (predominantly middle and lower slope). Finally, the transfer 

function developed by Hohenegger (2005) based on depth ranges of benthic 

foraminiferal taxa, later modified by Báldi and Hohenegger (2008) and Hohenegger et 

al. (2008) to include the species relative abundances, was applied to quantitatively 

estimate sea-level fluctuations: 

paleodepth (m) = ∑(njljdj
-1)/ ∑(njdj

-1
) 

where nj is the relative abundance of the j
th

 species, lj is the geometric average of the 

distribution borders, and dj is the dispersion. For the transfer function, very rare species 

were not used, only species with ≥ 1% of the total assemblage at least in 3 samples were 

considered (Table 1). Following the recommendations made by Hohenegger (2005), we 

use global data of water-depth distribution of benthic foraminifer species, thus, avoiding 

local or geographical biases in their bathymetric ranges. Thus, we consider the largest 

depth range possible for each species (Table 1). The accuracy of the water depth 

estimates was expressed with the 95% confidence intervals (Table 2). 

 The major limitation for the quantitative transfer function is that for living taxa 

is based on modern depth ranges and for extinct taxa is calculated comparing with depth 

ranges of morphologically most similar living counterparts (Hohenegger et al., 2008). 

Nevertheless, almost all of the taxa we found are not extinct and we assume that their 

depth ranges have not substantially changed through time. Another limitation is that 
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transported shallow-water taxa produce an underestimation of water depth. This 

problem was solved removing allochthonous taxa before applying the equation. 

Allochthonous species are those with a depth range that is different and does not 

overlap the depth range of the autochthonous species found in each sample. Taking 

these limitations into consideration, the application of the transfer function to several 

case studies has proved to be a powerful tool to quantitatively estimate paleodepth 

(Hohenegger, 2005; Spezzaferri and Tamburini, 2007; Hohenegger et al., 2008; Báldi 

and Hohenegger, 2008).  

 Q and R-mode principal component analyses (PCA) were performed to 

determine the benthic foraminiferal assemblages using the software package SYSTAT 

12. The Q-mode PCA groups the dominant species into assemblages. In the R-mode 

PCA, species with similar distribution patterns independent from their relative 

abundance are grouped together. To remove the effect of very rare species, only those 

representing ≥ 1% of the total assemblage at least in 3 samples were considered. 

Pearson correlation coefficients were calculated to quantify the relationships between all 

the metrics used in this study. Correlations with a p-value < 0.01 were considered 

significant. 

 Benthic foraminifera were classified according to their microhabitat preferences 

(Table 3). Five different microhabitats have been recognized, following Lutze and Thiel 

(1989) and Schmiedl et al. (2000): a) epifaunal, elevated epibenthic species, b) 

epifaunal-shallow infaunal (0-0.7 cm below the water-sediment interface; BWSI), c) 

shallow infaunal (0.7-1.5 cm BWSI), d) intermediate infaunal (1.5-3 cm BWSI), and e) 

deep infaunal (>3 cm BWSI). 

  

5. Results 
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 Results of the measured parameters allow the division of the studied section into 

three intervals: a) The lower interval is from 256.5 m, the base of the core, to 180 m. 

This ranges the latest Tortonian and lower part of the Messinian. b) The middle interval 

is from 180 to 60 m. This includes the upper part of the Messinian up to the 

unconformity detected close to the Miocene-Pliocene boundary. c) The upper interval is 

from 60 m to the end of the section, 36.5 m, that corresponds with the lower part of the 

Pliocene deposits. For practical reasons, in the description and discussion following 

below, we will refer to these three parts or intervals. 

 

5.1. Numerical faunal parameters, sand content, and sedimentation rate 

 

 The P/B ratio shows a very sharp increase in the lowermost part, with maximum 

values around 0.6, followed by a gradual decrease to values between approximately 0.1 

and 0.3 in the middle and uppermost part of the section. The lowest P/B ratios (< 0.1) 

appear in the upper part of the section (Fig. 4). The sand content is lower than 5% 

throughout most of the core, except in the two first samples, at 256.5 and 254 m (nearly 

50%), and in the upper part of the section (fluctuating values with up to 38%). The total 

number of benthic foraminifera per gram of dry sediment (N/g) shows high values in 

the lower part (>50 N/g as an average) of the core. The middle part of the section starts 

with values below 50 N/g and ends with values above 50 N/g. Fluctuating values 

(mostly higher than 50 N/g) are recorded in the upper part of the section. 

 In the lowermost part of the core (256.5-240 m), the estimated sedimentation 

rate shows the lowest values throughout the section, with 2.7cm/kyr (Fig. 3).The 

estimated sedimentation rate exhibits an abrupt increase at 217.5 m, corresponding to 

the base of chron C3r, changing from 3.2 cm/kyr to 20 cm/kyr (Fig. 3). This significant 
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change in sedimentation rate is also detected by a sharp decrease in natural remanent 

magnetization intensities (Larrasoaña et al., 2008). 

 

5.2. Species richness, diversity and dominance 

 

 In the lower part of the section, the number of taxa ranges between 40 and 50, 

followed by a decrease with values ranging between 30 and 40. In the middle part, the 

values fluctuate around 40. In the upper part, the number of taxa first decreases sharply, 

reaching the lowest values (< 30) between approximately 60 and 45 m, followed by 

increased values > 30 (Fig. 5). 

 The Shannon index (H) and the evenness (E) have very similar trends as they 

show a positive high Pearson correlation coefficient (Table 4), but fluctuations in the 

evenness are more expressed (Fig. 5). Both H and E decrease progressively through the 

lower part of the core. In the middle part, both metrics alternate between relatively 

higher, then lower and finally higher values. In the upper part, H and E sharply decrease 

reaching the lowest values (H=0.93, E=0.18). Above this low diversified interval, both 

parameters abruptly increase. The dominance shows an opposite trend as those shown 

by H and E. This is consistent with the negative high Pearson correlation coefficients 

(Table 4). 

 

5.3. Benthic foraminiferal assemblages 

 

The Q-mode PCA yields 3 assemblages that explain 81.8 % of the total variance 

(Table 5). The Cibicidoides pachyderma assemblage (PC1), with Cibicidoides sp., 

Cibicidoides floridanus and Brizalina spathulata as accompanying species (Figs. 6A-
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6D, Table 5), shows a fluctuating pattern in the lower part and becomes dominant in the 

middle part of the core (Fig. 7). The Nonion fabum assemblage (PC2) includes 

Ammonia beccarii, Spiroplectinella sp., Ammonia sp., Bulimina elongata and Brizalina 

spathulata as associated taxa (Figs. 6D-6H, Table 5). This assemblage is important in 

the lowermost sample and in the upper part of the section (Fig. 7). The Uvigerina 

peregrina s.l. assemblage (PC3) dominates the lower part and shows significant values 

in the middle part, between 160 and 140 m (Fig. 7). Bulimina subulata, Cibicidoides 

pachyderma, Planulina ariminensis and Cibicidoides sp. are the associated taxa (Figs. 6 

A-6B, 6I-6K, Table 5).  

The relative abundances of dominant and associated taxa from Q-mode 

assemblages are shown in Fig. 8. Three distinctive patterns of relative abundance can be 

distinguished. The first group of species dominates in the lower part of the core, 

comprising Uvigerina peregrina s.l. (Uvigerina peregrina+Uvigerina pigmea), 

Bulimina subulata and Planulina ariminensis. The latter species is exclusively limited 

to this part of the core (Fig. 8). The second group of species is important throughout the 

section, except in the upper part, comprising C. pachyderma, Cibicidoides sp., and in 

lesser abundance C. floridanus. The third group of species dominates in the upper part 

of the section, comprising A. beccarii, Ammonia sp., Spiroplectinella sp., B. elongata, 

N. fabum and B. spathulata. Among them, N. fabum reaches the highest values when the 

others show low percentages (Fig. 8). These species show also a peak of abundance in 

the first sample of the core. 

The R-mode PCA explains 31.2 % of the total variance and differentiates 3 

assemblages (Fig. 9, Table 6). The Anomalinoides flinti assemblage (PC2) is only 

important in the lower, part between 254 and 211.5 m (Fig. 9). Some of the associated 

taxa of this assemblage are Siphonina reticulata, Oridorsalis umbonatus, Uvigerina 
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striatissima and Planulina ariminensis (Figs. 6K, 6O-6R, Table 6). In the middle part, 

the Cibicidoides pachyderma assemblage (PC3) becomes significant (Fig. 9). 

Cibicidoides floridanus and Hanzawaia boueana are other important taxa of this 

assemblage (Figs. 6A-6C, 6S, Table 6). In the upper part, from 44 m to the top, the 

Spiroplectinella sp. assemblage dominates (PC1) (Fig. 9). This assemblage includes 

Valvulineria complanata, Textularia sp., Melonis barleeanum, Textularia agglutinans, 

Cassidulina laevigata and Ammonia beccarii as secondary species (Figs. 6G, 6L-6N, 

Table 6). 

 

5.4. Estimated paleodepth 

 

 A water depth of 31.88 m is estimated for the lowermost sample (Fig. 10, Table 

2). Then, paleodepth sharply increases reaching 449.67 m, and decreases to 282.82 m at 

the end of the lower part. An important sea-level lowering is detected at 211.5 m, in the 

middle part of the lower interval, followed by a rapid increment up to 375.50 m. 

Paleodepth suddenly diminishes at the beginning of the middle part, then slightly 

decreases and finally abruptly drops to 37.94 m. In the upper part, paleodepth remains 

stable with values between 40 and 50 m, except for the last two samples that has values 

around 12 m (Table 2). 

 

5.5. Distribution of benthic foraminiferal microhabitats 

 

 The lowermost sample has a high percentage of intermediate infaunal species 

(Fig. 11). In the lower part of the core, between 254 to 194 m, shallow infaunal taxa 

show high percentages and epifauna only amounts to 10 % on average. Between 194 
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and 180 m, the epifauna and epifauna-shallow infauna increase, and the shallow infauna 

decreases. In the middle part of the core, between 165 and 130 m, the shallow infauna 

has relatively high values. Up in the section, epifaunal-shallow infaunal species become 

significant but then gradually diminish, being replaced by shallow infauna towards the 

top of the middle part (around 60 m). In the upper part, between 64.5 and 46.5 m, 

intermediate infaunal species are significantly abundant, reaching up to 80 %. In this 

interval, deep infauna also reaches the highest values. From 56.5 to the top of the core, 

the fauna is dominated by shallow infaunal and epifaunal-shallow infaunal taxa (Fig. 

11). 

 

6. Discussion 

 

6.1. Relative sea-level fluctuations 

 

 According to the paleobathymetric indicators used in this study, a very abrupt 

sea-level rise is inferred at the lowermost part of the core. The Q-mode PCA Nonion 

fabum assemblage, which includes species inhabiting inner-middle shelf such as 

Ammonia beccarii and Ammonia sp. (Murray, 1991, 2006), occurs in the lowermost 

sample of the section (Fig. 7, Table 5). A peak in sand content in this sample (Fig. 4) is 

consistent with a shallow inner-middle shelf paleoenvironment. Further, this is 

supported by a paleodepth of 31.88 m estimated with the transfer function (Fig. 10, 

Table 2). Coincidently, a very low value of the P/B ratio is also shown (Fig. 4). 

 The next three samples show a significant increase in the Cibicidoides 

pachyderma assemblage that includes Cibicidoides floridanus, a species living on the 

outer shelf (van Morkhoven et al., 1986; Barbieri and Ori, 2000), as associated species 
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(Fig. 7, Table 5). Coinciding with the increased importance of this assemblage, the P/B 

ratio and paleodepth rise concomitantly (Figs. 4 and 10), responding to the rapid sea-

level rise. Sand-sized particles virtually disappear, which is consistent with the inferred 

deepening (Fig. 4).  

 Enhanced glauconite concentration is recorded in the second sample of the 

section. Glauconite is commonly formed along the shelf to continental slope during 

transgressions and under very low sedimentation rates (Odin and Matter, 1981; Galán et 

al., 1989; Harris and Whiting, 2000). The rapid transgression produced a sharp onshore 

shift of the depositional systems, trapping the coarse-grained sediment in shallower 

areas of the platform. Sedimentation rate dropped and sand grains virtually disappeared 

in this interval (Figs. 3, 4), thus promoting the deposition of glauconite. As a recent 

analogue, glauconite is formed on the present-day outer shelf off Guadiana River (SW 

Spain), close to the study area (Gonzalez et al., 2004). 

 Magnetobiostratigraphic data indicate that the rapid sea-level rise occurred 

during the latest Tortonian-earliest Messinian. The same sea-level rise has been also 

inferred from the investigation of onland sections along the northern margin of the 

lower Guadalquivir Basin (Baceta and Pendón, 1999; González-Regalado et al., 2005). 

 The maximum flooding is reached between 254 and 236.50 m core depth as 

indicated by the dominance of the Anomalinoides flinti R-mode assemblage (Fig. 9), 

and the highest paleodepth values (Fig. 10, Table 2). Anomalinoides flinti is common in 

middle and lower slope settings (Berggren and Haq, 1976). Some additional taxa of this 

assemblage (Table 6), such as Siphonina reticulata and Oridorsalis umbonatus, also 

inhabit the middle and lower slope (Berggren and Haq, 1976; Berggren et al., 1976; 

Hayward et al., 2003). This assemblage shows a positive Pearson correlation coefficient 

with P/B ratio (Table 4) and dominates at highest P/B ratios (Fig. 4). Consequently, 
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maximum flooding detected in this part of the core reached at least the middle talus 

slope. 

 Following the maximum flooding, the P/B ratio and paleodepth decrease 

progressively up to the end of the lower core interval, suggesting a sea-level lowering 

(Figs. 4 and 10). This interpretation is supported by a decrease of the A. flinti 

assemblage scores (Fig. 9). The dominance of the U. peregrina s.l. assemblage in this 

part of the section (Fig. 7) suggests an upper slope depositional environment. Similarly, 

Planulina ariminensis (Table 5), an associated species of the U. peregrina s.l. 

assemblage, predominantly inhabits the upper slope, with maximum abundances 

commonly between 300-500 m (Berggren and Haq, 1976; Schönfeld, 1997). The same 

bathymetric preference of P. ariminensis was also inferred for occurrences in Miocene-

early Pliocene deposits off Morocco (Gebhardt, 1993). This species also inhabits the 

upper slope in the continental margins off NW Africa, off southern Portugal, and in the 

Gulf of Cádiz (Lutze, 1980; Schönfeld, 1997, 2002). Quantitative transfer function also 

suggests an upper slope water depth between 400 and 250 m (Fig. 10, Table 2). 

Coincidently, U. peregrina is below 300 m depth in the Gulf of Mexico (Parker, 1954; 

Schönfel, 2006). 

 In the last ten meters of the lower interval, 190-180 m, the P/B ratio, estimated 

paleodepth, and the U. peregrina s.l. assemblage decrease rapidly (Figs. 4, 7 and 10, 

Table 2). All these changes are interpreted as a sea-level fall. Concurrently, the 

Cibicidoides pachyderma assemblage dominates, as documented by the Q-mode 

assemblage (Fig. 7). Above this benthic foraminifera faunal turnover, at 179 m, P. 

ariminensis disappears (Fig. 8), thus indicating the transition to the outer shelf, and 

corroborating the sea-level decrease. At the north of Cape Blanc in the continental 
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margin of NW Africa the shallowest occurrence of P. ariminensis also indicates the 

transition to the outer shelf (Lutze and Coulbourn, 1984). 

This sea-level drop occurred in chron C3r (Fig. 10, Table 2). Therefore the age 

uncertainty for this event is from 6.033 to 5.235 Ma. However, it can be correlated with 

the global sea-level fall that took place during the mid Messinian (Haq et al., 1987; 

Hardenbol et al., 1998) (Fig. 10). At the northwestern margin of Morocco, Barbieri and 

Ori (2000) also detected a sea-level fall during the middle part of the Messinian that can 

be correlated with the sea-level drop observed in the Montemayor-1 core (Fig. 10). 

These authors associated the mid-Messinian shallowing with the onset of the MSC on 

the Atlantic side of the Rifian corridors and correlated it with the glacial stages TG22 

and TG20 of Shackleton et al. (1995), two of the most pronounced glacial events 

occurring during the Messinian. Nonetheless, these glacial stages have been dated at 

5.79 and 5.75 Ma, respectively (Krijgsman et al., 2004), well after the onset of the MSC 

that took place at 5.96 ± 0.02 Ma according to Krijgsman et al. (1999a). Hence, the 

major sea-level fall observed both in the Montemayor-1 core and in the Rifian corridors 

would most likely postdate the start of the MSC. The detailed record along the core of 

the estimated paleodepth trend based on the transfer function allows us to identify a 

major sea-level fall at 211.5 m, before the aforementioned major sea-level drop (Fig. 10, 

Table 2). This sea-level fall could be related to the onset of the MSC. 

 In spite of the constant dominance of the outer shelf C. pachyderma assemblage 

throughout the middle core interval, the continuous upward decrease in P/B ratios and 

paleodepth (Figs. 4 and 10) suggests a slight and progressive lowering in sea level. The 

middle core interval ends with a sharp sea-level fall reaching the middle shelf. This 

shallowing is also recorded in the Rifian corridors (Fig. 10). 
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The continuous Messinian record is interrupted by a discontinuity around the 

Miocene-Pliocene boundary (Fig. 3). After this unconformity, an inner-middle shelf 

setting established during the deposition of the upper part of the section. This setting is 

indicated by the dominance of the Nonion fabum assemblage (Fig 7), and paleodepth 

values between 40 and 50 m (Fig. 10, Table 2). 

The glauconitic layer at the base of the upper part of the core caps the 

unconformity (Figs. 3). This bed is also present in onland sections and has been 

interpreted as the transgressive deposits formed during the early Pliocene (Sierro and 

Flores, 1992; Sierro et al., 1996). Nonetheless, this deepening did not exceed the early 

Messinian inundation since only shelf deposits were formed during the early Pliocene at 

the studied site.  

The global sea-level curve of Hardenbol et al. (1998) shows three transgressive-

regressive 3rd-order cycles during the late Tortonian-early Pliocene (Fig. 10). This 

global trend is not recorded in the Montemayor-1 core. As previously discussed, sea-

level at the Montemayor-1 core site shows a very rapid rise close to the Tortonian-

Messinian boundary, when the global sea-level curve shows a progressive shallowing 

(Fig. 10). After the sudden deepening in the Montemayor-1 core, sea-level followed a 

continuous fall until the end of the Messinian (Fig. 10). The Handerbol et al. (1998) 

eustatic curve shows, however, a fluctuating sea level. Gebhardt (1993) and Barbieri 

and Ori (2000) noticed a similar Messinan sea-level trend in the Atlantic side of the 

Rifean corridors as that observed in Montemayor-1 core, thus differing from the global 

one. According to these authors, a regional tectonic uplifting might account for the 

continuous sea-level drop through the Messinian in a context of global fluctuating sea 

level. Tectonic uplifting also led to the closure of the Guadalhorce corridor during the 

Messinian, most likely just before the main gypsum deposition in the Mediterranean 
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(Martín et al., 2001). The N-S compressional regime established during the Messinian 

in the Betic-Rifean domain (Sanz de Galdeano, 1990; Maldonado et al., 1999) supports 

this interpretation. Thus, our data sustain that the tectonic uplift could played an 

important role in the relative sea-level changes observed in the Atlantic side of the 

Atlantic-Mediterranean gateways in both the Rifian corridors and the Betic ones. This 

might explain the age disagreement between the major sea-level fall observed during the 

mid Messinian and that leading to the onset of the MSC. 

 

6.2. Paleoenvironmental key factors: continental versus marine organic matter supply 

and seafloor oxygen content 

 

It is well known that organic matter supply and dissolved oxygen content in the 

sea bottom and pore waters are among the key environmental factors affecting benthic 

foraminifera distribution (e.g., Jorissen et al., 1995; Fariduddin and Loubere, 1997; De 

Rijk et al., 2000; Jorissen et al., 2007). The impact of these factors on benthic 

foraminifera cannot be analysed separately. The oxygen content of the sea floor and in 

the pore waters is controlled by the quantity of organic matter. In environments with 

high organic input, the remineralisation of organic matter decreases the oxygen 

concentration on the sea floor as well as the depth of oxygen penetration below the 

water-sediment interface (Jorissen et al., 1995; Mojtahid et al., 2009, 2010a). 

Consequently, eutrophic environments are commonly characterised by a low oxygen 

concentration and shallow oxygen penetration, while oligotrophic environments exhibit 

a high oxygen concentration and deep oxygen penetration. Furthermore, changes in the 

trophic conditions can produce variations in the diversity and microhabitat preferences. 

Oligotrophic environments are dominated by epifaunal taxa and have rather low 
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diversity; mesotrophic environments show the highest diversity and all microhabitats 

are represented; and finally, eutrophic environments are characterised by low diversity 

and dominance of (deep) infaunal taxa (Jorissen et al., 1995). 

Based on this concept, it appears likely that the benthic foraminiferal fauna at 

the study site was also influenced by changes in trophic conditions, particularly in 

quantity and quality of the available food source. In general, continental organic matter 

is more refractory than organic matter primarily produced in marine settings since 

terrestrial-derived organic matter is degraded before reaching the marine environment 

(Zonneveld et al., 2010). High input of this terrestrial organic matter can provoke 

eutrophication and led to oxygen depletion at the bottom and pore waters (Van der 

Zwaan and Jorissen, 1991; Jorissen et al., 1992; Donnici and Serandrei Barbero, 2002) 

The inner-middle shelf Nonion fabum assemblage at the base of the section (Fig 

7) indicates the most eutrophic conditions, suggesting organic matter run-off from the 

continent. This assemblage is characterised by low diversity and dominance of 

intermediate infaunal taxa (Figs. 5 and 11). Nonion fabum is usually associated with 

eutrophic environments with high organic matter of low quality and significant oxygen 

depletion (Fontanier et al., 2002; Duchemin et al., 2008; Mojtahid et al., 2010a, 2010b). 

In the prodelta of the Rhône River, high proportions of N. fabum occur under the 

influence of the river plume reflecting low-quality continental organic matter supply 

from river discharge and low oxygen penetration (Mojtahid et al., 2010b; Goineau et al., 

2011). Similarly, Bulimina elongata, an associated species of the N. fabum assemblage, 

can also feed from low quality organic matter and tolerates low oxygen concentrations 

(Diz and Francés, 2008; Mojtahid et al., 2009). Coincidently, B. elongata also occurs in 

the Rhône prodelta close to the river mouth (Mojtahid et al., 2009). 
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Above the N. fabum assemblage, the Uvigerina peregrina s.l. and the 

Cibicidoides pachyderma assemblages alternate (Fig. 7). Uvigerina peregrina s.l. is an 

opportunistic taxon commonly present in fine grained sediments deposited in 

environments with significant fluxes of labile organic matter and moderate oxygen 

depletion (Schmiedl et al., 1997, 2000; 2010; Fontanier et al., 2002; Koho et al., 2008). 

The presence of Uvigerina peregrina s.l. indicates a productivity between 4.0 to 17.0 g 

C m
-2

 yr
-1

 in NW-Africa and Gulf of Guinea and from 4.0 to 5.1 g C m
-2

 yr
-1

 in the 

northeastern Atlantic (Schönfeld and Altenbach, 2005). Furthermore, this species is 

common in upper slope and outer shelf environments under the influence of seasonal 

upwelling events, for example off Southwest Africa (Schmiedl et al., 1997), off the Ría 

de Vigo, NW Spain (Martins et al., 2006), off Congo (Mojtahid et al., 2006), and off the 

Guadiana platform, SW Spain (Mendes et al., 2004), close to the study area.  

Accordingly, the presence of upwelling above the upper slope may account for 

the dominance of U. peregrina s.l. assemblage in the lower part of the section. This 

assemblage indicates mesotrophic conditions, characterised by a relatively high benthic 

foraminiferal diversity and low dominance (Fig. 5), as well as the highest percentages of 

shallow infaunal taxa (Fig. 11). The high abundance of shallow infaunal taxa in 

mesotrophic settings is attributed to a diversification of infaunal niches (Milker et al., 

2009). The present-day current system in the northern Gulf of Cádiz can be used as a 

possible analogue for the paleoceanographic setting in the study area during the 

Messinian. In the present Gulf of Cádiz, major upwelling is located near Cape St. 

Vicent (S Portugal), and during westerly conditions, upwelled waters extend eastwards 

along the shelf margin reaching our study area (Vargas et al., 2003; Criado-Aldeanueva 

et al., 2006).  
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On the other hand, the C. pachyderma assemblage shows a high abundance of 

epifaunal-shallow infaunal taxa and relatively low diversity indicating more 

oligotrophic conditions (Figs. 5 and 11). Cibicidoides pachyderma is a suspension 

feeder that inhabits oligo- to mesotrophic environments with high oxygenation contents 

(Gebhardt, 1999; Schmiedl et al., 2000, 2003). This species feeds from episodic inputs 

of labile organic matter (Fontanier et al., 2002; Melki et al., 2009). The presence of 

Cibicidoides sp. is also consistent with a well-oxygenated and relatively oligotrophic 

setting (Kaiho, 1994, 1999; Takata, et al., 2010).  

To summarize, the alternation of U. peregrina s.l. and C. pachyderma assemblages in 

the lower part of the section suggests episodic influence of upwelling currents and 

related food pulses at the core site. 

At the end of deposition of the lower core interval (194-180 m), the influence of 

upwelling currents diminished, indicated by the disappearance of the U. peregrina s.l. 

assemblage and the consistent establishment of the C. pachyderma assemblage. This 

faunal turnover coincides with a maximum proportion of epifaunal taxa in the interval 

between 194 and 180 m, attributable to the high abundance of the epifaunal species 

Planulina ariminensis (Figs. 7, 8 and 11). This transition interval likely represents 

particularly oligotrophic conditions.  

The outer shelf C. pachyderma assemblage dominates throughout the middle 

part of the section (180-60 m), although some short-term occurrences of the U. 

peregrina s.l. assemblage are observed between 160 and 140 m. 

Similarly, the sporadical influence of upwelling currents likely also fostered high 

diversity and increase of shallow infaunal species, such as B. spathulata, at the end of 

deposition of the middle core interval (120-60 m) (Figs. 5, 8 and 11). Brizalina 

spathulata can tolerate low oxygen concentrations (Barmawidjaja et al., 1992; 
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Stefanelli, 2004) and shows an opportunistic life style, rapidly responding to pulses of 

fresh organic matter in high oxygen environments (Fontanier et al., 2003; Diz et al., 

2006; Diz and Francés, 2008). In the Ría de Vigo (NW Spain), this species reproduces 

immediately after phytoplankton blooms related to upwelling conditions (Diz et al., 

2006; Diz and Francés, 2008). It is also related to upwelling events off Guadiana River 

in SW Iberia (Mendes et al., 2004). However, the increased abundance of B. spathulata 

could also be related to nutrient influx derived from the continent as has been observed 

by other authors (i.e. Duchemin et al., 2008; Schmiedl et al., 2010). 

During deposition of the upper part of the section (60-36.5 m), the inner-middle 

shelf was inhabited by the N. fabum assemblage indicating eutrophic conditions. Here, 

species dominance and percentages of deep and intermediate infauna reach maximum 

values (Figs. 5 and 11). Nonion fabum is found in the finer-grained interval, between 

56.5 and 39 m (Figs. 4 and 8), consistent with its preference to muddy sediments 

(Haunold et al., 1997; Rezqi et al., 2000; Duchemin et al., 2008). In the present-day 

northern and northeastern Gulf of Cádiz, extensive mud deposits accumulate on the 

middle shelf, related to the Guadiana run-off (Gonzalez et al., 2004) and to the 

Guadalquivir prodelta (Gutiérrez-Mas et al., 1996; Nelson et al., 1999). Recent N. 

fabum populations proliferate in the prodelta muddy sediments of the Guadalquivir 

River (Villanueva-Guimerans and Canudo, 2008). In late Pliocene deposits from the 

Almería-Níjar basin (SE Spain), N. fabum is a major component in silts and fine-grained 

sands of middle fan-delta deposits and in varve-like laminated deposits that indicate 

low-oxygen conditions and high organic input derived from terrestrial run-off (Pérez-

Asensio and Aguirre, 2010). Hence, the dominance of this species in the upper part of 

the studied section points to periods of high river run-off supplying fine-grained 

sediment and low quality continental organic matter. 
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The interpretation of river-derived continental matter input is corroborated by 

appearance of B. elongata that has been observed in comparable environments of the 

Mediterranean Sea (Jorissen, 1988; Mojtahid et al., 2009). Enhanced river run-off 

influence is also suggested by the low P/B ratio values in the muddy interval (Fig. 4), 

because planktic foraminifera do not tolerate brackish waters (Arnold and Parker, 1999; 

Retailleau, et al., 2009). 

The upper limit of the muddy interval is dominated by the R-mode 

Spiroplectinella assemblage, coinciding with a sandy substrate and high diversity (Figs. 

4, 5 and 9). Valvulineria complanata and Textularia sp. (Table 6) are also abundant in 

this assemblage. In the prodelta of the Rhône River, V. complanata and some 

arenaceous taxa, such as Textularia agglutinans and Textularia porrecta, occur close to 

the end of the freshwater layer entering the marine waters. Food supply in this 

environment is mainly of marine origin although there is still influence of organic 

matter provided from the continent (Mojtahid et al., 2009, Goineau et al., 2011). Thus, 

the Spiroplectinella sp. assemblage is indicative of shallow freshwater-marine 

transitional conditions with a greater influence of marine organic matter in a sandy inner 

shelf environment.  

Benthic foraminiferal assemblages of the Montemayor-1 core show a 

mesotrophic upper slope setting influenced by seasonal upwelling, an oligotrophic outer 

shelf less affected by upwelling, and inner-middle shelf settings with high continental 

run-off influence. Upwelling conditions also prevailed on the upper slope of the Atlantic 

side of the Rifian corridors during the Messinian (Gebhardt, 1993). The coastal 

upwellings have persisted off NW Africa up to the present day (Sarnthein et al., 1982). 

In our study case, however, it seems that the position of the area of major influence of 

upwelling nuclei has changed westwards from the Messinian to the recent. This 
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paleoceanographic reconfiguration in the northern Gulf of Cádiz can be due to the 

observed Messinan progressive shallowing. This is consistent with the change in 

organic matter supply from marine labile to continental refractory inferred along the 

Montemayor-1 core.  

 

7. Conclusions 

 

1 A detailed paleoenvironmental evolution of the lower Guadalquivir Basin during 

the Messinian has been proposed using benthic foraminifera from the Montemayor-

1 core.  

2 Relative sea-level fluctuations during the late Miocene-early Pliocene have been 

reconstructed using P/B ratio, depth marker species and a quantitative transfer 

function. A very sharp transgressive episode, changing from inner-middle shelf to 

middle slope settings, took place at the beginning of the studied deposits (latest 

Tortonian-earliest Messinian). After this maximum flooding, sea-level dropped, 

passing from the middle slope to the outer shelf. This sea-level fall appears to 

postdate the onset of the Messinian salinity crisis in the Mediterranean. Next, a 

progressive but slow sea level lowering occurred. Sea-level abruptly dropped close 

to the end of the Messinian. After a discontinuity close to the Miocene-Pliocene 

boundary, inner-middle shelf established during the early Pliocene. This 

trangressive-regressive sea-level trend is similar to that observed on the Atlantic 

side of the Rifian corridors. In the context of global fluctuating sea level, the 

continuous Messinian shallowing trend on the Betic and Rifian corridors is likely 

caused by regional tectonic uplift.  
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3 The distribution, composition, diversity and microhabitat preferences of the 

benthic foraminiferal assemblages of the late Miocene-early Pliocene in the lower 

Guadalquivir Basin are predominantly controlled by trophic conditions in terms of 

quantity and quality of the organic matter reaching the sea floor.  

4 During the Messinian, the outer shelf fauna is characterised by relatively low 

diverse foraminiferal assemblages and dominance of epifaunal-shallow infaunal 

taxa. Similarly, the assemblages of the transitional interval between the upper slope 

and the outer shelf are low diverse and dominated by epifaunal-shallow infaunal 

taxa although epifaunal taxa are more important than on the outer shelf. Both the 

outer shelf and the transitional interval between the upper slope and the outer shelf 

faunas are consistent with a low organic matter input and high oxygen contents. The 

upper slope faunas are highly diverse and mainly dominated by shallow infaunal 

taxa indicating mesotrophic conditions with moderate oxygenation. The inner-

middle shelf environments are characterized by a very low diverse fauna, dominated 

by intermediate infaunal and various deep infaunal taxa. Eutrophic conditions with 

very high organic matter supply and low oxygen concentrations are in agreement 

with this fauna.  

5 Upwelling currents and river run-off are considered to be the major sources of 

organic matter at the study area. The sediments deposited in the upper slope are 

dominated by species from the U. peregrina s.l. assemblage that profit from pulses 

of labile marine organic matter related to upwelling events. The outer shelf has 

likely also been influenced by upwelling events indicated by the presence of U. 

peregrina s.l. and B. spathulata. The middle shelf muddy sediments may have been 

influenced by continental organic matter derived from river run-off. These 
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environments have been inhabited by N. fabum and B. elongata that can tolerate 

continental low quality organic matter.  
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Figure captions 

 

Fig. 1. Geological map of the Betic Cordillera showing the Guadalquivir foreland basin 

(modified from Martín et al., 2010). The inset is shown in figure 2. 

 

Fig. 2. Geological map of the lower Guadalquivir Basin including Montemayor-1 core 

location (modified from Civis et al., 1987). 

 

Fig. 3. Log of the Montemayor-1 core and magnetobiostratigraphic framework. 

Magnetostratigraphy follows the ATNTS2004 (Lourens et al., 2004). Biostratigraphy is 

based on the planktonic foraminifera events (PF events) of Sierro et al. (1993) and first 

occurrence of Globorotalia puncticulata. Numbers in the right-hand side column are 

sedimentation rates (cm/kyr) estimated for the Montemayor-1 core.  

 

Fig. 4. Curves showing the planktonic-benthonic ratio (P/B ratio), sand content, and 

number of benthic foraminiferal per gram of sediment (N/g) along the Montemayor-1 

core. 

 

Fig. 5. Number of taxa, diversity metrics (Shannon index H, evenness E) and 

dominance. 

 

Fig. 6. Some of the most abundant and representative benthic foraminiferal species in 

the Montemayor-1 core. A) Cibicidoides pachyderma, spiral side; B) Cibicidoides 

pachyderma, peripheral view; C) Cibicidoides floridanus, spiral side; D) Brizalina 

spathulata, side view; E) Nonion fabum, side view; F) Nonion fabum, peripheral view; 
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G) Ammonia beccarii, spiral side; H) Bulimina elongata, side view; I) Uvigerina 

peregrina s.l., side view; J) Bulimina subulata, side view; K) Planulina ariminensis, 

spiral side; L) Valvulineria complanata, spiral side; M) Valvulineria complanata, 

peripheral view; N) Cassidulina laevigata, apertural side; O) Anomalinoides flinti, 

spiral side; P) Siphonina reticulata, side view; Q) Oridorsalis umbonatus, spiral side; 

R) Uvigerina striatissima, side view; S) Hanzawaia boueana, umbilical side. Scale bars 

= 100 µm. 

 

Fig. 7. Benthic foraminiferal assemblages as derived from Q-mode Principal 

Component Analyses (PCA). Principal component loadings higher than 0.5 are 

considered significant following the suggestions of Malmgren and Haq 

(1982) and indicated by gray shading. 

 

Fig 8. Relative abundance (in percentage) of dominant taxa as extracted from the Q-

mode benthic foraminiferal assemblages.  

 

Fig. 9. Benthic foraminiferal assemblages as derived from R-mode Principal 

Component Analyses (PCA). Significant principal component scores are indicated in 

gray.  

 

Fig. 10. Estimated paleodepth changes for the Montmayor-1 core. Horizontal bars 

represent the 95% confidence intervals. Three important sea-level drops are shown at 

211.5, 176.5, and 61.5 m. This sea-level trend is correlated with that inferred in the 

Rifian corridors by Barbieri and Ori (2000) and with the global sea-level curve of 

Hardenbol et al. (1998). The two last shallowing events correlates precisely with similar 
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lowering inferred in the Rifian corridors. The sea-level fall at about 211.5 m can be 

linked with the onset of the MSC. 

 

Fig. 11. Distribution of microhabitat preferences of benthic foraminifera (in percentage 

of the total taxa) along the studied section. 
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Table captions 

 

Table 1. Depth ranges of the benthic foraminifera from the Montemayor-1 core. 

Minimum, maximum, average depth and standard deviation (SD) are indicated. 

Bathymetric ranges are based on Berggren and Haq (1976), Berggren et al. (1976), 

Lutze (1980), van Morkhoven et al. (1986), van Marle (1988), Gónzalez-Regalado 

(1989), Sgarrella and Moncharmont Zei (1993), Schönfeld (1997), González-Regalado 

et al. (2001), Murray (2006), Schönfeld (2006), Spezzaferri and Tamburini (2007), 

Pascual et al. (2008), Villanueva-Guimerans and Canudo (2008), González-Regalado et 

al. (2009), and Corbí (2010).  

 

Table 2. Paleodepth estimates in meters, and lower and upper confidence limits (CL). 

 

Table 3. Microhabitat preferences of benthic foraminifera from the Montemayor-1 core. 

 

Table 4. Pearson correlation coefficients at p-value < 0.01 of the Q-mode and R-mode 

PCA assemblages and the other measured parameters. 

 

Table 5. Results of the Q-mode principal component analysis with indication of the 

more representative benthic foraminiferal species. 

 

Table 6. Results of the R-mode principal component assemblages with indication of the 

more representative benthic foraminiferal species. 
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Table 1. 
 

Species  
Minimum 

depth Maximum depth 
Average 

depth SD 

Ammonia beccarii 0 100 50 50.00 

Ammonia inflata 20 30 25 5.00 

Ammonia sp. 0 100 50 50.00 

Amphicoryna sp. 9 2860 1434.5 1425.50 

Anomalinoides flinti 600 2000 1300 700.00 

Bolivina punctata 50 2000 1025 975.00 

Brizalina dilatata 15 3000 1507.5 1492.50 

Brizalina spathulata 30 3547 1788.5 1758.50 

Brizalina sp. 15 3547 1781 1766.00 

Bulimina aculeata 5 4000 2002.5 1997.50 

Bulimina costata 50 3241 1645.5 1595.50 

Bulimina elongata 16 200 108 92.00 

Bulimina mexicana 100 2000 1050 950.00 

Bulimina sp. 5 4000 2002.5 1997.50 

Cassidulina laevigata 30 2500 1265 1235.00 

Cassidulina sp. 30 3588 1809 1779.00 

Cibicides sp. 0 2000 1000 1000.00 

Cibicidoides dutemplei 100 600 350 250.00 

Cibicidoides floridanus 100 200 150 50.00 

Cibicidoides pachyderma 30 4000 2015 1985.00 

Cibicidoides ungerianus 50 4000 2025 1975.00 

Cibicidoides sp. 30 4000 2015 1985.00 

Fursenkoina schreibersiana 20 200 110 90.00 

Globocassidulina subglobosa 50 4000 2025 1975.00 

Gyroidinoides soldanii  100 5000 2550 2450.00 

Gyroidinoides umbonatus 16 2000 1008 992.00 

Hanzawaia boueana 30 200 115 85.00 

Hoeglundina elegans 30 4330 2180 2150.00 

Lagena sp. 16 3500 1758 1742.00 

Lenticulina sp. 19 4500 2259.5 2240.50 

Marginulina costata 50 310 180 130.00 

Martinottiella communis 200 3000 1600 1400.00 

Melonis barleeanum 13 3974 1993.5 1980.50 

Melonis soldanii 90 1000 545 455.00 

Melonis sp. 13 4800 2406.5 2393.50 

Nonion fabum 12 200 106 94.00 

Oridorsalis umbonatus 65 4000 2032.5 1967.50 

Orthomorphina tenuicostata 50 1000 525 475.00 

Planulina ariminensis  70 1300 685 615.00 

Planulina sp. 70 4700 2385 2315.00 

Pullenia bulloides 60 4000 2030 1970.00 

Siphonina reticulata 55 1500 777.5 722.50 

Siphotextularia concava 50 631 340.5 290.50 

Sphaeroidina bulloides 25 4500 2262.5 2237.50 

Stilostomella monilis 100 2500 1300 1200.00 

Textularia sp. 0 2000 1000 1000.00 
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Trifarina bradyi 0 600 300 300.00 

Uvigerina canariensis 150 1097 623.5 473.50 

Uvigerina peregrina s.l.  100 4400 2250 2150.00 

Uvigerina striatissima 200 2000 1100 900.00 

Valvulineria complanata 30 100 65 35.00 

 
 

 

 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

 53 

Table 2. 

 
Core depth 

(m) Paleodepth (m) Lower CL Upper CL 

256.50 31.88 -25.32 89.08 

254.00 449.67 301.18 598.16 

251.50 394.53 239.99 549.08 

249.00 383.67 244.64 522.69 

246.50 321.86 210.09 433.63 

244.00 447.91 313.78 582.05 

241.50 443.72 295.62 591.81 

239.00 383.02 251.29 514.75 

236.50 440.75 283.07 598.43 

234.00 458.48 317.39 599.57 

231.50 401.62 298.15 505.10 

229.00 370.43 231.37 509.48 

227.00 439.12 298.50 579.75 

224.00 342.36 222.61 462.11 

221.50 372.87 234.63 511.10 

219.00 405.48 275.03 535.93 

216.50 405.27 230.55 580.00 

214.00 383.92 218.85 548.98 

211.50 156.63 48.45 264.81 

209.00 247.46 121.20 373.71 

206.50 303.18 186.51 419.85 

204.00 339.13 192.95 485.31 

201.50 341.18 230.76 451.60 

199.50 375.50 248.36 502.64 

196.50 333.72 216.86 450.58 

194.00 334.10 224.06 444.13 

191.50 326.20 175.12 477.27 

189.00 307.78 180.57 434.99 

186.50 269.44 166.35 372.54 

184.00 301.41 171.45 431.36 

181.50 287.80 162.02 413.58 

179.00 282.82 165.26 400.39 

176.50 113.74 25.65 201.83 

174.00 182.35 123.74 240.96 

171.50 166.25 72.89 259.61 

169.00 197.67 117.59 277.74 

166.50 166.83 105.78 227.88 

164.00 167.09 106.56 227.63 

161.50 161.61 99.03 224.19 

159.00 189.16 109.18 269.14 

157.00 161.68 102.72 220.65 

154.00 164.57 100.07 229.07 

151.50 155.43 92.55 218.30 

149.00 155.08 105.60 204.55 

146.50 171.87 111.02 232.72 

144.00 162.91 106.42 219.40 

141.50 214.61 140.83 288.39 

139.00 162.52 102.45 222.58 
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136.50 179.19 117.94 240.44 

134.00 173.87 112.11 235.63 

131.50 168.71 106.75 230.67 

129.00 190.47 128.67 252.27 

126.50 179.28 119.27 239.29 

124.00 230.78 160.65 300.90 

121.50 175.32 119.02 231.62 

119.00 176.16 120.81 231.51 

116.50 166.96 111.89 222.03 

114.00 194.59 127.54 261.65 

112.50 181.35 124.82 237.87 

109.00 168.79 107.86 229.72 

106.50 186.27 118.63 253.90 

104.00 183.70 123.02 244.38 

101.50 170.59 113.55 227.64 

99.00 167.50 105.51 229.50 

96.50 151.64 95.13 208.15 

94.00 175.42 114.56 236.27 

91.50 165.42 102.85 227.99 

88.50 180.08 120.27 239.89 

86.50 145.96 90.01 201.91 

84.00 170.39 97.52 243.25 

81.50 142.10 86.03 198.17 

79.00 149.95 102.74 197.17 

76.50 155.04 96.88 213.21 

74.50 160.35 101.69 219.02 

71.50 149.16 92.25 206.07 

69.00 148.26 92.60 203.93 

66.50 134.91 81.70 188.12 

64.50 37.94 -14.25 90.13 

61.50 46.80 15.50 78.09 

59.00 47.83 20.87 74.78 

56.50 52.97 0.84 105.11 

54.00 44.27 2.30 86.25 

51.50 48.18 0.29 96.06 

49.00 40.04 -1.01 81.09 

46.50 49.58 4.65 94.51 

44.00 40.99 4.73 77.25 

41.50 52.68 23.16 82.19 

39.00 12.37 -27.85 52.60 

36.50 13.26 -11.84 38.36 
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Table 3. 

 
Microhabitat 

Epifauna Epifauna-shallow infauna Shallow infauna Intermediate infauna Deep infauna 

Asterigerinata mamilla Ammonia beccarii Amphicoryna scalaris Melonis barleeanum Cassidulinoides bradyi 

Asterigerinata sp. Ammonia inflata Amphicoryna semicostata Melonis soldanii Fursenkoina schreibersiana 

Cibicides refulgens Ammonia tepida Amphicoryna sublineata Melonis sp. Globobulimina affinis 

Cibicides lobatulus Ammonia sp. Amphicoryna sp. Nonion boueanum Globobulimina ovula 

Cibicides wuellerstorfi Anomalinoides flinti Bigenerina nodosaria Nonionella turgida Globobulimina sp. 

Cibicides sp. Anomalinoides helicinus Bolivina punctata Nonionella sp. Pleurostomella sp. 

Cymbaloporetta squammosa Anomalinoides sp. Bolivina reticulata Rectuvigerina sp. Praeglobobulimina ovata 

Discorbis sp. Burseolina calabra Bolivina sp.     

Elphidium advenum Cassidulina crassa Brizalina arta     

Elphidium complanatum Cassidulina sp. 1 Brizalina dilatata     

Elphidium macellum Cassidulina sp. Brizalina spathulata     

Hanzawaia boueana Cibicidoides dutemplei Brizalina sp.     

Hanzawaia sp. Cibicidoides floridanus Bulimina aculeata     

Planulina ariminensis  Cibicidoides incrassatus Bulimina alazanensis     

Planulina sp. Cibicidoides kullenbergi Bulimina costata     

Rosalina sp. Cibicidoides pachyderma Bulimina elongata     

  Cibicidoides ungerianus Bulimina mexicana     

  Cibicidoides sp. Bulimina subulata     

  Elphidium sp. Bulimina sp.     

  Eponides sp. Cancris auriculus     

  Fissurina sp. Cancris sp.     

  Globocassidulina subglobosa Cassidulina carinata     

  Gyroidinoides laevigatus Cassidulina laevigata     

  Gyroidinoides soldanii s.l. Chrysalogonium sp.     

  Gyroidinoides umbonatus Dentalina leguminiformis     

  Gyroidinoides sp. Dentalina sp.     

  Heterolepa bellincionii Dorothia gibbosa      

  Hoeglundina elegans Eggerella bradyi     

  Lagena striata Florilus sp.     
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  Lagena sp. Glandulina sp.     

  Lenticulina calcar Globulina sp.     

  Lenticulina cultrata Martinottiella communis     

  Lenticulina curvisepta Nodosarella sp.     

  Lenticulina inornata Nodosaria pentecostata     

  Lenticulina rotulata Nodosaria sp.     

  Lenticulina vortex Nonion sp.     

  Lenticulina sp. Orthomorphina tenuicostata     

  Marginulina costata Orthomorphina sp.     

  Marginulina glabra Pandaglandulina dinapolii     

  Marginulina hirsuta Pullenia bulloides     

  Marginulina sp. Pullenia quinqueloba     

  Neoeponides sp. 1 Pullenia salisburyi     

  Oridorsalis umbonatus Reussella spinulosa     

  Planularia sp. Stilostomella monilis     

  Quinqueloculina sp. Stilostomella vertebralis     

  Siphonina reticulata Stilostomella sp. 1     

  Siphotextularia concava Stilostomella sp.     

  Sphaeroidina bulloides Trifarina angulosa     

  Spiroplectinella sagittula Trifarina bradyi     

  Textularia agglutinans Uvigerina canariensis     

  Textularia calva Uvigerina peregrina s.l.     

  Textularia pala Uvigerina rutila     

  Textularia pseudorugosa Uvigerina striatissima     

  Textularia sp. Valvulineria complanata     

  Vaginulina sp. Valvulineria sp.     
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Table 4. 

 
 

 

 QPC1 QPC2 QPC3 RPC1 RPC2 RPC3 P/B ratio % sand N/g Number of taxa H E D 

QPC1 1.000             

QPC2 -0.674 1.000            

QPC3  -0.643 1.000           

RPC1  0.318 -0.753 1.000          

RPC2  -0.492 0.472  1.000         

RPC3 0.848 -0.575    1.000        

P/B ratio  -0.483 0.655  0.816  1.000       

% sand -0.529 0.552 -0.428 0.372  0.488  1.000      

N/g -0.283 0.311       1.000     

Number of taxa 0.392 -0.571 0.294  0.317 0.415 0.374   1.000    

H 0.481 -0.567    0.553    0.787 1.000   

E 0.356 -0.314    0.498    0.358 0.828 1.000  

D  0.458   -0.324 -0.316 -0.313   -0.567 -0.880 -0.822 1.000 
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PC assemblage Variance (%) Species  Score 

1 49.6 Cibicidoides pachyderma 6.86 

    Cibicidoides sp. 1.98 

    Cibicidoides floridanus 1.22 

    Brizalina spathulata 1.03 

2 8.5 Nonion fabum 7.20 

    Ammonia beccarii 2.01 

    Spiroplectinella sp. 1.31 

    Ammonia sp. 1.19 

    Bulimina elongata 1.13 

    Brizalina spathulata 1.05 

3 23.7 Uvigerina peregrina s.l. 6.01 

    Bulimina subulata 2.65 

    Cibicidoides pachyderma 2.46 

    Planulina ariminensis  1.77 

    Cibicidoides sp. 1.22 

 

 

 

 

 

 

Table 5. 
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PC assemblage Variance (%) Species  Loading 

1 11.5 Spiroplectinella sp.  0.85 

    Valvulineria complanata 0.76 

    Textularia sp. 0.70 

    Orthomorphina tenuicostata 0.68 

    Melonis barleeanum 0.68 

    Textularia agglutinans 0.67 

    Cassidulina laevigata 0.66 

    Ammonia beccarii 0.56 

2 9.9 Anomalinoides flinti -0.70 

    Cibicidoides incrassatus -0.67 

    Uvigerina canariensis -0.65 

    Globocassidulina subglobosa -0.60 

    Planulina sp. -0.59 

    Siphonina reticulata -0.58 

    Oridorsalis umbonatus -0.57 

    Uvigerina striatissima -0.56 

    Planulina ariminensis -0.55 

    Gyroidinoides sp. -0.54 

    Anomalinoides sp. -0.53 

3 9.7 Cibicidoides pachyderma 0.61 

    Cibicidoides floridanus 0.60 

    Pullenia bulloides 0.59 

    Sphaeroidina bulloides 0.55 

    Lenticulina sp. 0.55 

    Hanzawaia boueana 0.53 

    Melonis soldanii 0.53 
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    Gyroidinoides soldanii  0.51 

 

Table 6. 
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Highlights 

 

> We study Messinian benthic foraminifera from the lower Guadalquivir Basin. > Paleodepth analyses show a transgressive-regressive cycle 

from the bottom to the top. > Trophic conditions and bottom oxygenation controlled the assemblages. > Similar paleoenvironmental evolution is 

observed in NW Morocco. > Tectonic and sea-level evolution that led the Messinian salinity crisis is analyzed. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 

 

 


