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Abstract

Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors

(TKIs) have high response rates in patients with activating EGFRmutations, but acquired

resistance is inevitable. Acquisition of the EGFR T790Mmutation causes over 50% of resis-

tance; MET amplification is also common. Preclinical data suggest synergy between MET

and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response

to MET inhibition, depending on EGFRmutation status, independently of MET copy num-

ber. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which

co-express L858R and T790M EGFRmutations, namely H1975L858R/T790M (EGFR TKI

resistant); H1975L858R (sensitized) and H1975WT (wild-type). We assessed cell proliferation

in vitro and tumor growth/stroma formation in derived xenograft models in response to a

MET TKI (SGX523) and correlated with EGFR-MET dimerization assessed by Förster Res-

onance Energy Transfer (FRET). SGX523 significantly reduced H1975L858R/T790M cell

proliferation, xenograft tumor growth and decreased ERK phosphorylation. The same was

not seen in H1975L858R or H1975WT cells. SGX523 only reduced stroma formation in

H1975L858R. SGX523 reduced EGFR-MET dimerization in H1975L858R/T790M but induced

dimer formation in H1975L858R with no effect in H1975WT. Our data suggests that MET inhi-

bition by SGX523 and EGFR-MET heterodimerisation are determined by EGFR genotype.

As tumor behaviour is modulated by this interaction, this could determine treatment efficacy.
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Introduction

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) have revo-

lutionised treatment of non-small cell lung cancer (NSCLC) in patients with EGFRmutations.

These mutations cause constitutive kinase activity and are oncogenic drivers in 10–20% of

Caucasian patients and up to 50% of eastern Asians.[1] Such mutations induce conformational

changes in the receptor that alter the dimerization interface, destabilize the inactive state and

increase kinase activity to 50 times that of the wild type (WT) EGFR.[2] The EGFR exon 21

L858R and in-frame exon 19 deletions account for 85% of such mutations.[3] Whilst responses

are often impressive, resistance is inevitable. The commonest mechanism for resistance is

acquisition or clonal expansion of the EGFR exon 20 T790Mmutation.

Amplification of the MET receptor represents an important alternative resistance mecha-

nism [4, 5, 6, 7]. MET is a high affinity tyrosine kinase receptor for hepatocyte growth factor

(HGF).[8] Derailment of normal MET signaling is associated with invasive growth, tumor pro-

gression and metastases; [9] aberrant MET signaling can result fromMET over-expression,

amplification or mutations, all of which are relevant in NSCLC.[4, 5, 6, 7] MET amplification

predicts worse survival in NSCLC, [10] it has been implicated in 5–20% of patients with

acquired resistance to EGFR TKI [11, 12, 13, 14] and correlates with response to MET inhibi-

tor therapy [13]. Blockade of MET is a therapeutic strategy in EGFR TKI resistance. The most

advanced agents, METMAb, a MET neutralizing antibody and Tivantinib, a small molecule

inhibitor of MET have both failed in phase III clinical trials [15]; despite this, there is consider-

able interest in the therapeutic potential of MET inhibition in NSCLC. In fact, Crizotinib, a

MET proto-oncogene, receptor tyrosine kinase (MET) tyrosine kinase inhibitor (TKI) is cur-

rently in clinical trial showing good results for both MET amplification and MET exon 14

skipping [14].

MET may exert its oncogenic effects through crosstalk with other membrane receptors

including the EGFR family, as evidenced by MET and EGFR co-expression in lung cancer cell

lines, [16] crosstalk between EGFR and MET signaling pathways and direct co-immunopre-

cipitation.[16, 17, 18] Moreover, MET amplification in association with EGFRmutations

additionally has a worse clinical prognosis than EGFRmutations alone.[10] In light of these

observations, we sought to understand the importance of EGFR and MET interaction and we

have hypothesized that the efficacy of MET inhibition can be influenced by EGFRmutation

status. We explored this hypothesis by evaluating the response of three lung adenocarcinoma

cell lines that differ only in their EGFR genotype to the MET inhibitor SGX523 in vitro and in

a murine xenograft model derived from the same cells. Our data suggest that EGFR mutations

can determine the effect of MET inhibition independently of MET copy number, by changing

EGFR-MET dimerisation. As tumor behaviour is modulated by this interaction, this could

determine treatment efficacy.

Results

EGFR-MET interaction is modulated by EGFRmutations

To assess if EGFR-MET interaction is modified by EGFRmutations, we first generated two

novel cell lines by modification of the NCI-H1975 lung adenocarcinoma cell line that harbours

L858R and T790M (L858R/T790M) mutant EGFR (to be referred to from here on as

H1975L858R/T790M). We used lentiviral shRNA knockdown of EGFR (targeting the 5’ UTR of

EGFR) in the H1975L858R/T790M, followed by transfection with a plasmid encoding wild/type

(wt) EGFR and EGFRwith the L858R mutation, to generate the H1975WT and the H1975L858R

cell lines respectively. Relative allele frequency (L858R vs. T790M) in these cell lines was
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quantified by digital droplet PCR. We observed equal L858R and T790M copies in the

H1975L858R/T790M cells and a clear reduction of L858R and T790M EGFR alleles in the

H1975WT cells, confirming their effective knockdown following shEGFR treatment; we also

observed decrease of the EGFR-T790M allele frequency in the H1975L858R cells (Fig 1A).

Using Western blot (WB), we showed the total levels of EGFR in the generated cell lines (Fig

1B) and that the H1975L858R and H1975WT cells became sensitive to the EGFR TKI Erlotinib

Fig 1. In vitro validation of the H1975 EGFRmutant cell lines. (A) Relative mutant allele frequency was compared in cDNA from each
cell line by Digital droplet PCR. (B) WB of total EGFR levels in the H1975L858R/T790M cell line before and after lentivirus infection with a
shEGFR and in the H1975 cell lines. hsc70 levels are shown as loading control. Values beneath blots are relative levels of T-EGFR
compared to the H1975L858R/T790M cell line from 2 independent experiments (C) WB of phospho and total EGFR in H1975 derivative cell
lines untreated or treated with EGF (100ng/mL) for 15 min, Erlotinib (1μM, 5μMor 10 μM) for 1 hour or both. hsc70 levels were used as
loading control. Quantification of theWB is shown above the figure from 3 independent experiments. Error bars is SD (*p<0.05 and
**p<0.001).

doi:10.1371/journal.pone.0170798.g001
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upon removal of the T790M EGFR sequence even at a low concentration of Erlotinib (Fig 1C).

Introduction of a GFP plasmid in the H1975L858R/T790M cell line didn’t affect the Erlotinib

resistance (Fig A in S1 File).

We then explored the interaction between EGFR and MET in the cells lines studied. We

observed no differences in basal MET protein levels between the cell lines (Fig 2A). Given that

MET expression is not a good marker for MET activation we also treated the three cell lines

with HGF for different times to asses for the phospho-MET levels. We could observe no differ-

ence in the activity of MET in the different cell lines (Fig B in S1 File). AsMET amplification

has been implicated as a mechanism by which secondary resistance EGFR TKI can emerge in

NSCLC, we used a MET/cep7 fluorescence in situ hybridization (FISH) probe and calculated

the ratio of MET to chromosome 7 centromere signals and the mean copy number of MET.

The MET/cep7 ratio was<1 in all three cell lines; however, MET copy number was increased

in all (Fig 2B).

Immunofluorescence staining and confocal images showed that both proteins co-localise

similarly in the membrane of the three cell types (Fig 2C). Immunoprecipitation result showed

there was more interaction between EGFR and MET in H1975L858R/T790M compared to

H1975L858R and H1975WT cells (Fig 2D), which provides evidence of potential differential

interaction between MET and different EGFR mutant types. Since a direct protein interaction

(nanometer (nm) proximity) between MET and EGFR cannot be inferred by these experi-

ments, we assessed Förster Resonance Energy Transfer (FRET) using fluorescence lifetime

imaging microscopy (FLIM) which is the gold standard technique for measuring protein

proximity within the typically<10nm range [19, 20, 21, 22]. Results show that highest FRET

efficiency between MET and EGFR occurred in H1975L858R/T790M cells, in contrast with signif-

icantly lower FRET efficiency in the H1975L858R and H1975WT cells (Fig 2E). These results

demonstrate that EGFR and MET can interact directly at the cell membrane and that the

level of interaction is significantly higher in H1975L858R/T790M compared to H1975L858R and

H1975WT cells.

Inhibition of MET changes the EGFR-MET interaction both in vitro and in

vivo

In view of the observed differences in the interaction between EGFR and MET in our cells, we

hypothesised that MET inhibition would also result in different outcomes. To test this, we

used SGX523, a selective MET kinase inhibitor.[23] After confirming rapid (15min) and sus-

tained (48hr) SGX523 inhibition of MET phosphorylation in the three cell lines (Fig C in S1

File), we measured change in the interaction between MET and EGFR using FRET before and

after MET inhibition by SGX523. We found that the interaction between MET and EGFR in

H1975L858R/T790M cells was significantly reduced in the presence of SGX523. By contrast,

SGX523 led to a significant increase in MET-EGFR interaction compared to baseline in

H1975L858R cells (Fig 3A and 3B). There was no significant difference in the FRET between

MET and EGFR before and after MET inhibition in the H1975WT cells. These results provide

evidence to support the hypothesis that MET inhibition by SGX523 altered the direct interac-

tion between MET and EGFR in a mutation-specific manner in these cells.

To test whether the differential effects of SGX523 on MET and EGFR interaction could be

reproduced in vivo, we generated a xenograft model using the H1975-derived mutant cell

lines. H1975L858R/T790M, H1975L858R and H1975WT cells were injected into the flanks of BalbC

mice and tumors were allowed to grow for 2 weeks. Mice were then subjected to 12 days of

treatment with SGX523 or vehicle administered daily by oral gavage. Tumor volumes were

measured every two days until animals were culled and tissue collected (see Fig 4D). WB and
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Fig 2. EGFR-MET interaction is modulated by EGFRmutations. (A) Western blot (WB) of total MET levels in
H1975 derived cells. Tubulin levels are shown as loading control. Values beneath blots are relative levels of MET
compared to the total levels in the H1975L858R/T790M cell line from 2 independent experiments +/−SD (B) MET (7q31)
(red signal) copy number analysis by FISH in the three H1975 cell lines using the Leica Kreatech C-MET (7q31)/SE7
FISH probe (KBI-10719). The green signal indicates the chromosome 7 centromere control probe. Scale bar 10 mm.
Average copy number and ratio betweenMET and chromosome 7 centromere probe are also indicated (n = 30
cells). (C) Immunofluorescence of total EGFR (Alexa546 –red in the image) and MET (Cyanine 5 –green in the
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immunohistochemistry (IHC) (Fig D (i) and (ii) in S1 File) confirmed target tissue drug

delivery.

We observed the highest FRET between MET and EGFR in H1975L858R/T790M derived

tumors, and this was again significantly reduced by SGX523 (Fig 3C and 3D). In H1975L858R

derived tumors, MET-EGFR interaction at baseline was low and increased significantly by

SGX523. There was no significant change in FRET between MET and EGFR in xenograft tis-

sue derived from H1975WT cells. These results mirror the in-vitro findings with these cells (Fig

3C and 3D). We conclude that MET interacts with EGFR differently in cells that encode WT,

L858R and L858R/T790M-EGFR and SGX523 modifies this interaction in opposite directions

in L858R and L858R/T790M-EGFR encoding cells in vitro and in vivo.

In vitro and in vivo effects of MET inhibition on cell proliferation

In order to assess functional consequence of MET kinase inhibition, we assessed the prolifera-

tion rate of the generated cells before and after MET inhibition. We found that the H1975L858R

cells were more proliferative than the H1975L858R/T790M or H1975WT cells (Fig E (i) and (ii) in

S1 File). MET inhibition significantly decreased proliferation rate in H1975L858R/T790M cells

only (Fig 4A and 4B). We also assessed proliferation in a 3D environment using an anchorage

independent growth assay. As expected, we found that the H1975L858R cells produced most

colonies (Fig E (iii) in S1 File). In the presence of SGX523, there was a significant decrease in

the number of large colonies in H1975L858R/T790M cells. SGX523 had no effect in the 2D or 3D

proliferation rate in the case of the H1975WT cells or in the H1975L858R cells (Fig 4C).

We then analysed the in vivo effect of oral administration of SGX523 on tumor growth and

proliferation. As was the case in vitro, the H1975L858R was the most proliferative cell line in

vivo (Fig 4D and Fig F (i) in S1 File). The H1975L858R/T790M-derived tumors in SGX523 treated

mice grew more slowly than in vehicle treated mice; this effect was evident after 4 days of

SGX523 administration and was sustained up to 14 days. SGX523 had no effect in the prolifer-

ation in the H1975L858R and H1975WT derived tumors over the 14-day growth period (Fig

4D). This result was confirmed using the proliferation marker phospho-Histone H3 (Fig 4E).

In vitro and in vivo effects of MET inhibition on stroma remodeling

We observed marked morphological differences in the xenograft tumors derived from the dif-

ferent cell lines. H1975L858R/T790M-derived tumors were dense and cellular with tightly packed

cells oriented in similar directions. The H1975L858R-derived tumors had abundant intra-

tumoral stromal tissue deposition leading to highly segregated cells that appeared to grow by

interaction with the stroma (Fig F (ii) in S1 File). Given this different tumours appearance, as

well as the important role proposed for MET in tumour-tissue interaction and in cell migra-

tion/metastasis, we analysed stromal compartment markers, namely collagen deposition

(Masson’s trichrome), anti-smooth muscle actin staining (α-SMA), a marker of activated

fibroblasts and cd31 staining to assess for neovascularization, before and after SGX523 treat-

ment. The H1975L858R-derived tumors demonstrated the most substantial collagen deposition

image) in H1975 derived cells. Hoescht dye was used to stain the nuclei of the cells. Merge panels are also shown.
Bars, 20 μm. (D) Co-immunoprecipitation (IP) of EGFR in H1975 derived cell lines. The EGFR antibody was used to
immunoprecipitate. EGFR and MET levels are shown in both bound and input fractions. The gels shown in the figure
were run separately for the bound and input fractions, as indicated by the dotted line, under the same experimental
conditions. (E) Fluorescence lifetime imaging was performed on cells plated to sub-confluence on cover-slips and
time-resolved analysis in Tri2. Quantification of average FRET efficiency (*** p < 0.0005) is shown, as well as
representative pseudocolour lifetime images showing FRET efficiency and corresponding grayscale donor
(EGFR-Alexa 546) and acceptor (MET-Cyanine 5) intensity images. Scale bar: 50μm.

doi:10.1371/journal.pone.0170798.g002
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Fig 3. Inhibition of MET changes the EGFR-MET interaction both in vitro and in vivo. (A) Fluorescence
lifetime imaging performed in the three H1975 cell lines plated on coverslips with or without treatment with
SGX523 (5 μM) for 24 hours. Representative pseudocolour lifetime images showing FRET efficiency
accompanied by corresponding grayscale donor (EGFR-Alexa 546) and acceptor (MET-Cyanine 5) intensity
images are shown. Scale bar: 50μm. (B) Bar graph showing quantification for average FRET efficiency in the
three cell lines with or without SGX523 treatment (*** p < 0.0005, ** p = 0.001). (C) Quantification of average
FRET of EGFR-MET interaction performed in xenograft tumors from each H1975 cell line in mice receiving
mock or SGX523 treatment (60 mg/kg) for 12 days (*** p<0.001, * p<0.05). (D) Representative lifetime
images for EGFR:MET FRET in xenograft tumors accompanied by corresponding grayscale donor
(EGFR-Alexa 546) and acceptor (MET-Cyanine 5) intensity images. Scale bar, 50μm.

doi:10.1371/journal.pone.0170798.g003
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Fig 4. In vitro and in vivo effects of MET inhibition on cell proliferation. (A) Representative images of the three
cell lines grown at 60% confluence on coverslips and treated or not with SGX523 (5 μM) for 24 hours. Scale bar,
20μm. The BrdU positive nuclei (red) show the cycling cells, and the Hoechst dye was used to stain all the nuclei of
the cells (in blue). (B) Quantification of the proliferation rates as described in (A) (*p <0.04, **p<0.005,
***p<0.0001). (C) Soft agar colony formation in the H1975 derivate cell lines. The graph shows the number of
colonies after 3 weeks of growing in the presence or absence of SGX523 (5 μM) (*p <0.001). Representative
images of untreated and SGX523 treated colonies are also shown. (D) Graphs showing the fold change in volumes
in 16 xenografts tumors (8 coming frommice subjected to vehicle and 8 from SGX523 treatment) coming from the
three H1975 cell lines during the 12 days of treatment. Tumor volumes were measured at the indicated times using a

MET-EGFR Dimerization in Lung Cancer

PLOSONE | DOI:10.1371/journal.pone.0170798 January 31, 2017 8 / 19



and α-SMA staining (Fig F (iii) in S1 File). We also found that H1975WT and H1975L858R-

derived-tumors showed more angiogenesis than the H1975L858R/T790M-derived tumors (Fig F

(iii) in S1 File). When we compared the untreated vs. the SGX523 treated tumors, we observed

significant reduction in collagen (MT) (Fig 5A), α-SMA (Fig 5B) and cd31 (Fig 5C) staining in

the H1975L858R. SGX523 had no effect on these parameters in H1975L858R/T790M and H1975WT

derived tumors.

These results suggest a paracrine response to MET inhibition only in H1975L858R cells. We

dismiss a different autocrine response, as EGF and HGF secreted by the three cell lines was

similar (Fig 5D).

In vitro and in vivo effects of MET inhibition on ERK, AKT and FAK
phosphorylation

We finally investigated whether there were also differential effects of MET kinase inhibition

on signaling pathways. We treated H1975L858R/T790M, H1975L858R and H1975WT cells with

SGX523 for 24 hours. Phosphorylation of MET was inhibited but we saw no change in the

phosphorylation of EGFR with the SGX523 treatment. We then assessed phosphorylation lev-

els of ERK, AKT and FAK after SGX523. The only significant finding from these studies was a

reduction in ERK phosphorylation in SGX523 treated H1975L858R/T790M cells (Fig 6A and 6C).

We repeated these experiments in the presence of EGF and or HGF in the cells treated or not

with SGX523 to better understand the decrease in the stromal markers in the H1975L858R but

we observed no effect in the phosphorylation of AKT or FAK (Fig G in S1 File). Finally, the

analysis of xenograft tumors obtained from SGX523 or vehicle treated animals also showed

reduction in phosphorylated ERK in H1975L858R/T790M-derived xenografts (Fig 6B and 6C).

These observations provide potential explanation for our observation that SGX523 had anti-

proliferative effect in H1975L858R/T790M-derived tumors but not H1975L858R and H1975WT

cells and tumors.

Discussion

In this study we have demonstrated that the responses to MET inhibition in an in vitro and in

vivo lung cancer model differed depending on the EGFR genotype. Using as a starting point

the H1975 lung adenocarcinoma cell line that harbours double mutated (L858R/T790M dou-

ble mutant) EGFR, we have developed a cellular model to minimise the contribution of con-

founding influences. Using Droplet PCR, WB and EGFR TKI sensitivity, we established that in

each line the dominant EGFR genotype was of greatest functional importance. We considered

the merits of a CRISPR approach to achieve purer cell populations. However, the validation

steps described and the tumour cell heterogeneity inherent to our approach could offer a good

reflection of the clinical situation.

Our key novel finding from in vitro and in vivo studies is that MET inhibition by SGX523

reduced proliferation and tumor growth in the H1975L858R/T790M cells and inhibited indices of

stromal deposition in H1975L858R cells. MET inhibition in H1975L858R/T790M cells also sup-

pressed ERK signaling consistent with interference with an autocrine signaling loop. Con-

versely, in H1975L858R cells the effects of SGX523 behavior was more consistent with a

paracrine activity of the MET receptor (see Fig 5D). These variations in SGX523 responses in

calliper and calculated in based of the equation 0.4xAxB^2 (A, the long axis and B, the short axis of the tumor). (E)
Quantification of phospho-histone H3 (P-H3) staining in the xenograft derived tissue in the presence or absence of
SGX523 (**p<0.05) Representative images are also shown. Bar, 250 nm.

doi:10.1371/journal.pone.0170798.g004
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Fig 5. In vitro and in vivo effects of MET inhibition on stroma remodeling.Quantification and representative images of (A) collagen,
(B) α-SMA and (C) cd31 staining of xenografts tumors (FFPE) grown from each H1975 derivate cell line coming frommice treated or not
(mock) with SGX523 (60 mg/kg). Bar 250 nm. Quantification of the staining is shown above the images and was performed using Image
J. (*p<0.05, **p<0.01, ***p<0.001). EGF (D) and HGF (E) quantification assessed by ELISA in each H1975 derivate cell line
supernatants.

doi:10.1371/journal.pone.0170798.g005
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Fig 6. In vitro and in vivo effects of MET inhibition on ERK, AKT and FAK phosphorylation. (A) WB of
phospho- and total EGFR, MET, AKT, ERK and FAK from cell lysates of the different H1975 cell lines treated or not
with SGX523 (5 μM) for 24 hours. Gels shown are representative of three experiments, and were run separately for
each cell line, as indicated by the dotted line, under the same experimental conditions. Hsc70 levels are also shown
as loading control. Values beneath blots are relative levels of each phospho vs total protein comparing the untreated
(UT) and the SGX523 treated conditions for each cell line for 3 independent experiments and for 2 independent
experiments in the case of the P-FAK/FAK +/−SD (*p<0.05, **p<0.001) (B) WB of phospho- and total-ERK in the
extracts coming from the H1975L858R/T790M-derived xenografts tumors in vehicle (mock) and SGX523 treated mice.

MET-EGFR Dimerization in Lung Cancer
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each cell line led us to hypothesize that these differences could be in part a product of the inter-

action between the EGFR and MET.

Existing evidence supports EGFR-MET crosstalk. Our own data showing co-localization

and co-immunoprecipitation of EGFR and MET at the cell membrane is in agreement with

these observations. Importantly, receptor dimerisation is essential for both MET and EGFR

signaling and intracellular effect. EGFR can dimerise with itself and other members of the

HER family. Previous studies have shown that cell proliferation and tumorigenesis are

enhanced in tumor xenografts co-expressing HER family heterodimers compared to those

expressing single receptors.[24] For example, the well-characterized HER2-HER3 pair is the

most oncogenic in breast cancer.[25] It has also been suggested that MET can interact not only

with EGFR but with other proteins that drive receptor activation, such as integrins, [26] plexin

B1, [27] and CD44v6.[28] The relevance of any such interactions in the context of different

EGFR genotypes and in response to MET inhibition has not been explored.

To the best of our knowledge ours is the first study to utilise FRET FLIM imaging to dem-

onstrate EGFR-MET direct dimerisation. Importantly, we observed that the FRET between

EGFR and MET differed according to EGFR genotype, providing a potential novel mechanism

by which responses to MET inhibition can differ. In H1975L858R/T790M cells, SGX523 reduced

EGFR-MET FRET. Conversely FRET was increased by SGX523 in H1975L858R cells but had no

significant effect on FRET in H1975WT cells. SGX523 is known to preferentially bind the less

active, unphosphorylated form of MET.[23] Therefore, the differences observed suggest that

EGFRL858R/T790M favours the phosphorylated form of MET; by contrast, EGFRL858R only

dimerised with MET in the presence of SGX523, which suggests the opposite. No such modu-

lation was seen in H1975WT suggesting that the altered binding by MET in its active or inactive

form was related to the presence of mutated and not WT-EGFR. Altered dimerisation between

MET and mutant EGFR in EGFRL858R/T790M and H1975L858R cells in the presence of SGX523

could be explained by SGX523-induced conformational changes; such conformational changes

following treatment with small molecule kinase inhibitors are recognized and can be associ-

ated with unexpected responses to treatment. For example HER2-HER3 dimer formation

occurs in breast cancer following treatment with Lapatinib.[29] Our studies cannot discrimi-

nate between the binding of MET with an EGFR monomer or homodimer. Dimer formation

may activate one or other of the receptors or indeed both. In the case of higher order oligo-

mers, MET may facilitate or impede EGFR homodimer formation or modulate the kinase

activity of EGFR molecules within the homodimer. EGFR remained phosphorylated after

treatment with SGX523 (Fig 5A). Whether MET is additionally capable of phosphorylating

EGFR or modulating EGFR activity allosterically is not clear.

We observed clear phenotypic differences between the three cell lines. This may result from

different tendency to activation or affinity for substrate. For example L858R and L858R/

T790M have increased ligand-activated signaling activity compared with WT-EGFR, particu-

larly with respect to downstream effectors involved in cell survival and activation of transcrip-

tion.[30] This is in agreement with published work showing that the EGFRmutants mediate

significantly increased ligand-independent activation of the receptor.[31] This could explain

that the presence of EGFR L858R mutant increases proliferation in the cells and tumors, and

the novel finding that these cells also produce tumors with higher stromal markers. Alterna-

tively, the EGFR-MET dimer offers a novel interpretation of the differences between the lines.

hsc70 is also shown as loading control. (C) Quantification of the P-ERK vs T-ERKWBs shown in (A) and in (B)
(*p<0.05). (D) Schematic model demonstrating effect of SGX523 on EGFR-MET dimerization pattern and
consequences for tumor characteristics following treatment.

doi:10.1371/journal.pone.0170798.g006
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In the H1975L858R/T790M cells, where the EGFR-MET dimer is present at baseline, downstream

signals may be driven by this heterodimer. The addition of SGX523 resulted in loss of EGFR-

MET heterodimer and reduction in phosphorylated ERK in the H1975L858R/T790M cells and

derived tumours, in agreement with this hypothesis. In the cells expressing EGFR L858R

there is no EGFR-MET dimer at baseline. The addition of SGX523 increases the dimerisation

between the receptors, which resulted in the decrease of stromal markers such as % of collagen,

SMA or cd31 staining, in the absence of inhibition in any of the typical signaling pathways

analysed. However, as previously suggested, the interplay of EGFR with MET could provide a

secondary set of effectors molecules through MET binding sites and furthermore through

other receptors with which MET is reported to interact, such as HER3.[13] It is therefore likely

that additional as yet unidentified pathway is active whilst the AKT/FAK pathway may not

dominate in MET inhibition in this model.

What is the implication of our findings on the potential role of MET inhibition in lung can-

cer? Current emphasis is on the role of MET amplification as biomarker to select patients for

MET inhibitor therapy in both treated or untreated NSCLC.[15, 16, 32, 33, 34]. Our observa-

tions that the effects of MET inhibition are influenced by EGFR-MET dimerisation and in

turn EGFR genotype, suggest novel mechanisms to understand how best to target MET in

NSCLC and highlight the importance of understanding the interaction between multiple

driver mutations when facing treatment resistance. Designing a FRET-FLIM assay that mea-

sures EGFR-MET heterodimerisation could potentially play a role in patient selection for

MET targeted therapy. It is also interesting to speculate how our observations on the effects of

SGX523, a MET kinase inhibitor, may influence treatment options in NSCLC. Whether it

would be preferable in the future to target MET with a monoclonal antibody or through direct

targeting of its kinase domain is unknown. A better understanding of crosstalk between thera-

peutic targets, which could be targeted in parallel, may also be of benefit to treatment efficacy

and cost-effective use.

In summary, we have demonstrated using FRET that we can measure the interaction

between EGFR and MET and we have made the important observation that response to MET

inhibition correlates with EGFR-MET dimerisation, which is influenced by EGFR genotype.

This could result from the different EGFR-MET dimers that arise following treatment with

SGX523. The next important steps will be to determine how this information can be used to

select effective therapies targeting MET.

Materials andmethods

Reagents and antibodies

Recombinant Human Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF)

were purchased from Peprotech. SGX523 was purchased from GE and Erlotinib from Cayman

chemicals; both were solubilised in DMSO. All antibodies (Abs) were purchased from com-

mercial sources as indicated. For tissue and cell staining, Phospho-Histone H3 was fromMilli-

pore, α-SMA from AnaSpec Inc., cd31 from Abcam, total cMET (D1C2) from Cell Signaling

Technology and EGFR Ab from Novocastra/Leica. For immunoprecipitation, the EGFR Ab

was from Santa Cruz Biotechnology (sc-120). For Western Blot, phospho-EGFR (Y1173), total

EGFR phospho-MET (Y1234), total MET, phospho-ERK (Thr202/Tyr204), total ERK, pho-

pho-AKT (Ser473), total AKT, phosphor-FAK (Tyr397) and total FAK were from Cell Signal-

ing Technology; tubulin was fromMillipore and hsc70 from Santa Cruz Biotechnology. For

proliferation assays, anti-Brdu was purchased from Abcam.
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Plasmid construction

Plasmid encoding non-tagged pcDNA3-EGFR was a kingly gift from Dr. Tai Kiuchi (Tohoku

University, Aoba-ku, Sendai, Miyagi, Japan). For control transfections, pEGFP-N3 vector

from Clontech was used. Plasmid for L858R EGFR mutant was created by site-directed muta-

genesis, using the following forward primer: GTC AAG ATC ACA GAT TTT GGG cgg GCC AAA
CTG CTG GGT GCG and reverse primer: CGC ACC CAG CAG TTT GGC ccg CCC AAA ATC
TGT GAT CTT GAC. The reaction was made using a site-directed mutagenesis kit from Strata-

gene and following manufacturer’s instructions.

Cell lines, cell culture and transfection

All cell lines were cultured at 37˚C and 5% CO2. Phoenix Ampho HEK293T cells were main-

tained in Dulbecco´s modified Eagle medium and the NCI-H1975 cells lines in RPMI-

1640 (Invitrogen), both mediums with 10% fetal bovine serum (FBS, Gibco). To generate

H1975L858R and H1975WT cells, shRNA against 5’ UTR EGFR GFP tagged was obtained from

Sigma (siMission) and used to produce lentiviral particles in HEK293T cell line. Stable cells

expressing shEGFR-GFP were selected with puromycin (1.5 μg/ml) for 5 days. After selection,

pcDNA3 constructs containing WT or L858R EGFRwere transfected in the cells with Fugene

HD following manufacturer’s instructions. Selection was performed for 5 days with G418

(50 μg/ml). EGFR total, L858R EGFR, and L858R + T790M EGFR levels were analysed by WB

and Droplet PCR. For experiments requiring growth factor stimulation serum-starved cells

were treated with 100 ng/ml EGF or 250 ng/ml HGF.

Droplet polymerase chain reaction

Cells were plated for confluence and DNA extracted from cells using a DNeasy Blood and Tis-

sue Kit (Qiagen) according to manufacturer’s protocol. Digital Droplet PCR was performed

using reference primers/probe sets validated on the BioRAD QX100 mdPCR system (Biorad)

using commercially available reference standards. Data was analysed using Quantasoft

(Biorad) software. Droplets were scored as positive or negative based on relative fluorescence

intensity in FAM or VIC/HEX channels.

Western blotting (WB)

Cells were lysed in buffer (0.05 M Tris-HCl, 0.15 M NaCl, 1% Triton X-100, pH 7.2), contain-

ing protease and phosphatase inhibitors. After centrifugation, proteins in the supernatant were

quantified, boiled with Laemmli buffer, resolved by SDS-PAGE and transferred to a nitrocellu-

lose membrane. WB was performed using standard procedures.

Immunofluorescence microscopy

Cells cultured on cover slips were fixed using 2% PFA in PBS for 15 min and then permeabi-

lised with 0.25% Triton X-100. After blocking with 1% BSA and 1% FBS in PBS, cells were

incubated with the primary antibodies ON at 4˚C. Cells were then washed and incubated with

secondary antibodies (all from Jackson ImmunoResearch Laboratory). Confocal images were

obtained with an LSM510 microscope (Carl Zeiss) and analysed using LSM Viewer software.

Fluorescence in situ hybridization (FISH)

Cells were plated on coverslips and fixed with Carnoy’s fixative (3:1 methanol to acetic acid).

After washing with PBS, incubation with the MET/cep7 FISH probe was performed for 16

hours at 36˚C after a 5minute denaturation at 72˚C. The coverslips were washed in 0.4xSSC at
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72˚C for 5 minutes, followed by 2 minutes in 4xSSC/Tween and two rounds of 2 minutes in

PBS at room temperature. The coverslips were then mounted onto slides with DAPI counter-

stain and analysed using a fluorescence microscope.

Immunoprecipitation

Cells were lysed in lysis buffer (50 mM Tris-HCl pH 7.4, 150 mMNaCl, 1 mM EDTA, 1 mM

EGTA, 10% glycerol, 1% Triton X-100, 10 mMNaF, 1 mMNa3VO4, 10 mMN-ethylmalei-

mide, 0.01 μMCalyculin A) with Protease inhibitor cocktail set I (Roche). After centrifugation,

the supernatants were incubated overnight at 4˚C with anti-EGFR or an irrelevant IgG, and

subsequently for an additional hour with protein A/G-Agarose beads (Alpha Diagnostic Inter-

national Inc.). After centrifugation, the immunoprecipitates were washed and subjected to

SDS-PAGE and analysed byWB.

BrdU incorporation

Cell proliferation was determined by 5’-Bromo-Uridine (BrdU) based assay. Cells were plated

for sub-confluence on coverslips in a 24-well plate and BrdU was added to the cells for 3

hours. Coverslips were then prepared for immunofluorescence staining as described below

with an additional 15 minutes DNA denaturation step using 1.5M Hydrochloric Acid (HCl)

and using a BrdU Ab. Hoechst was used to stain all the cell nuclei. Images were obtained

LSM510 microscope (Carl Zeiss) and quantified in ImageJ using a macro to automate cell

counting for red vs blue nuclei.

Soft-agar growth assay

Anchorage-independent growth was evaluated as described before.[35] Briefly, 1x104 cells

were plated in complete DMEM containing 0.3% soft agar in 6-cm plates over a solidified

DMEM plated in containing 0.7% soft agar layer. Medium was added twice a week to maintain

humidity. After 3 weeks, colonies were stained with crystal violet (0.02%) for 1 hour and

counted.

Wound healing experiments

Cells were seeded to confluence. A horizontal wound was made through the middle of the

wells using a micropipette tip. Cells were allow to migrate (heal the wound) for different times

(0, 2, 8, 20 and 28 hours). Images were taken and the wound closure was quantified using

Image J software analysis.

In vivo tumorigenicity assay

H1975WT, H1975L858R and H1975L858R/T790M cell lines (3x106) were injected subcutaneously

into the two posterior flanks of BALB/c nude mice (Charles River Laboratories). For each cell

line, 16 female 5 weeks old mice were used. Mice were followed weekly and tumors allowed

growing for 13 days after injection. Tumors were measured with a caliper in long and short

axes and volume was determined in based of the equation 0.4xAxB^2 (A, the long axis and B,

the short axis of the tumor). At day 14th after injection mice were divided randomly in two

groups (6 animals/group) and vehicle or SGX523 (drug treatment) was started. 60 mg/kg of

SGX523 (equilibrated suspensions in 0.5%Methocell A4M) was administered for 12 days,

daily, by oral gavage. At day 25th after injection mice were culled using CO2 and tumours

were removed aseptically with dissecting scissors and weighed. All animals were maintained

under specific pathogen-free conditions and handled in accordance with the Institutional
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Committees on Animal Welfare of the UK Home Office (The Home Office Animals Scientific

Procedures Act, 1986). All animal experiments were approved by the Ethical Review Process

Committee at King’s College London and carried out under license from the Home Office,

UK.

Tissue samples, immunohistochemistry and histopathological analysis

Tissue samples obtained from xenografts were fixed with formalin and paraffin-embedded.

Immunohistochemical analyses were performed using 3 μm sections. Briefly, slides were

dewaxed and antigen retrieval was performed using 0.1M citrate pH 6.0 buffer at 120˚C for 10

min, followed by blocking in TBS-Tween 0.1% + 1% BSA + 1% FBS. Primary antibodies were

added overnight at 4˚C. As secondary antibodies, peroxidase-conjugated (Envision+) anti-rab-

bit and anti-mouse Ig reagents from Dako were used for 1h. Non-immune (Santa Cruz Bio-

technology) or pre-immune rabbit serum was used as negative controls. Reactions were

developed using diaminobenzidine (DAB) as chromogenic substrate. Images from digitalized

scans of the glass slide specimens were obtained at magnification ×20 (0.45 μm/pixel resolu-

tion) using a Hamamatsu Nanozoomer 2.0 HT. All quantifications were done using Image J.

FRET determination by FLIMmeasurements

Coverslips or FFPE tissue was prepared as described as above for immunofluorescence except

for the added step of quenching of autofluorescence by 15 minutes immersion in NaBH4 (1

mg/mL). FLIM was performed using time-correlated single-photon counting (TCSPC) with a

multiphoton microscope system as described previously.[19] Analysis was performed in Tri2

for time resolved analysis. To analyze FRET in tissue xenografts samples, a dedicated algorithm

was used that masks autofluorescent lifetime measurements to reveal true FRET.[20]

Enzyme-linked immunosorbent assay (ELISA)

Cells were plated in 6 well plates and incubated overnight. Supernatant was collected and EGF

and HGF ligands were measured by sandwich enzyme-linked immunosorbent assay manufac-

turer’s instructions.

Statistical analysis

Student t test for parametric data, with ANOVA comparison for more than two groups, deter-

mined statistical differences. Probability of p<0.05 was considered significant. Graphs were

prepared in Excel or in Prism (GraphPad) software.

Supporting information

S1 File.

(DOCX)

Acknowledgments

We are grateful to Dorota Dudka and Hassan Farah for technical support and Maddy Parsons

and Penny Morton for critical discussion of the work. This work was supported by a BBSRC

Program grant to GS, PP and TN, an MRC Clinical Training Research Fellowship to RL, a

grateful patient to GS and the National Institute of Health Research Comprehensive Biomedi-

cal Research Centre at King’s College London in collaboration with Guy’s & St Thomas’

National Health Service Foundation Trust and the Crick Institute (GS andWO).

MET-EGFR Dimerization in Lung Cancer

PLOSONE | DOI:10.1371/journal.pone.0170798 January 31, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0170798.s001


Author Contributions

Conceptualization: EOZ GF PP TN GS.

Data curation: EOZ RWL GS.

Formal analysis: EOZ RWL GW.

Funding acquisition: PP TN GS.

Investigation: EOZ RWLWOGF GWRGD.

Methodology: EOZ RWLWO.

Project administration: EOZ GS.

Resources: RGDMJN.

Software: EOZ.

Supervision: EOZ PP TN GS.

Validation: EOZ FMcCMJN PP TN GS.

Visualization: EOZ RWL GS.

Writing – original draft: EOZ RWL GS.

Writing – review & editing: EOZ RWLWO TN PP GS.

References
1. Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, et al. A prospective, molecular epide-

miology study of EGFRmutations in Asian patients with advanced non-small-cell lung cancer of adeno-
carcinoma histology (PIONEER). J Thorac Oncol 2014; 9:154–62. doi: 10.1097/JTO.
0000000000000033 PMID: 24419411

2. Yun C-H, Boggon TJ, Li Y, Woo MS, Greulich H, MeyersonM, et al. Structures of Lung Cancer-Derived
EGFRMutants and Inhibitor Complexes: Mechanism of Activation and Insights into Differential Inhibitor
Sensitivity. Cancer Cell 2007; 11:217–27. doi: 10.1016/j.ccr.2006.12.017 PMID: 17349580

3. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung can-
cer. Cancer 2007; 7:169–81.

4. Olivero M, Rizzo M, Madeddu R, Casadio C, Pennacchietti S, Nicotra MR, et al. Overexpression and
activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Can-
cer 1996; 74:1862–8. PMID: 8980383

5. Beau-Faller M, Ruppert AM, Voegeli AC, Neuville A, Meyer N, Guerin E, et al. MET gene copy number
in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naive cohort. J
Thorac Oncol 2008; 3:331–9. doi: 10.1097/JTO.0b013e318168d9d4 PMID: 18379349

6. Cappuzzo F, Janne PA, SkokanM, Finocchiaro G, Rossi E, Ligorio C, et al. MET increased gene copy
number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol
2009; 20:298–304. doi: 10.1093/annonc/mdn635 PMID: 18836087

7. Cappuzzo F, Marchetti A, SkokanM, Rossi E, Gajapathy S, Felicioni L, et al. IncreasedMET gene copy
number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin
Oncol 2009; 27:1667–74. doi: 10.1200/JCO.2008.19.1635 PMID: 19255323

8. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, VandeWoude GF, et al. Identification of the
hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251:802–4.
PMID: 1846706

9. Benedettini E, Sholl LM, Peyton M, Reilly J, Ware C, Davis L, et al. Met activation in non-small cell lung
cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metasta-
sis. The American journal of pathology 2010; 177:415–23. doi: 10.2353/ajpath.2010.090863 PMID:
20489150

MET-EGFR Dimerization in Lung Cancer

PLOSONE | DOI:10.1371/journal.pone.0170798 January 31, 2017 17 / 19

http://dx.doi.org/10.1097/JTO.0000000000000033
http://dx.doi.org/10.1097/JTO.0000000000000033
http://www.ncbi.nlm.nih.gov/pubmed/24419411
http://dx.doi.org/10.1016/j.ccr.2006.12.017
http://www.ncbi.nlm.nih.gov/pubmed/17349580
http://www.ncbi.nlm.nih.gov/pubmed/8980383
http://dx.doi.org/10.1097/JTO.0b013e318168d9d4
http://www.ncbi.nlm.nih.gov/pubmed/18379349
http://dx.doi.org/10.1093/annonc/mdn635
http://www.ncbi.nlm.nih.gov/pubmed/18836087
http://dx.doi.org/10.1200/JCO.2008.19.1635
http://www.ncbi.nlm.nih.gov/pubmed/19255323
http://www.ncbi.nlm.nih.gov/pubmed/1846706
http://dx.doi.org/10.2353/ajpath.2010.090863
http://www.ncbi.nlm.nih.gov/pubmed/20489150


10. Tanaka A, Sueoka-Aragane N, Nakamura T, Takeda Y, Mitsuoka M, Yamasaki F, et al. Co-existence of
positive MET FISH status with EGFRmutations signifies poor prognosis in lung adenocarcinoma
patients. Lung cancer (Amsterdam, Netherlands) 2012; 75:89–94.

11. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification occurs with or without
T790Mmutations in EGFRmutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc
Natl Acad Sci U S A 2007; 104:20932–7. doi: 10.1073/pnas.0710370104 PMID: 18093943

12. Chen H-J, Mok TS, Chen Z-H, Guo A-L, Zhang X-C, Su J, et al. Clinicopathologic and molecular fea-
tures of epidermal growth factor receptor T790Mmutation and c-MET amplification in tyrosine kinase
inhibitor-resistant Chinese non-small cell lung cancer. Pathology & Oncology Research 2009; 15:651–
8.

13. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to
gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316:1039–43. doi: 10.
1126/science.1141478 PMID: 17463250

14. Drilon A, Cappuzzo F, Ignatius Ou SH, Camidge DR. Targeting MET in lung cancer: will expectations
finally be MET? Journal of Thoracic Oncology 2016; 16:31179–0.

15. Menis J, Giaj Levra M, Novello S. MET inhibition in lung cancer. Transl Lung Cancer Res 2013; 2:23–
39. PMID: 25806202

16. Tang Z, Du R, Jiang S, Wu C, Barkauskas DS, Richey J, et al. Dual MET-EGFR combinatorial inhibition
against T790M-EGFR-mediated erlotinib-resistant lung cancer. British journal of cancer 2008; 99:911–
22. doi: 10.1038/sj.bjc.6604559 PMID: 19238632

17. Jo M, Stolz DB, Esplen JE, Dorko K, Michalopoulos GK, Strom SC. Cross-talk between Epidermal
Growth Factor Receptor and c-Met Signal Pathways in Transformed Cells. Journal of Biological Chem-
istry 2000; 275:8806–11. PMID: 10722725

18. Wang X, Li K, Chen H, Wang D, Zhang Y, Bai C. Does hepatocyte growth factor/c-Met signal play syn-
ergetic role in lung cancer? Journal of cellular and molecular medicine 2010; 14:833–9. doi: 10.1111/j.
1582-4934.2010.01040.x PMID: 20178463

19. Festy F, Ameer-Beg SM, Ng T, Suhling K. Imaging proteins in vivo using fluorescence lifetimemicros-
copy. Mol Biosyst 2007; 3:381–91. doi: 10.1039/b617204k PMID: 17533451

20. Ng T, Parsons M, HughesWE, Monypenny J, Zicha D, Gautreau A, et al. Ezrin is a downstream effector
of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J 2001; 20:2723–41.
doi: 10.1093/emboj/20.11.2723 PMID: 11387207

21. Ng T, Squire A, Hansra G, Bornancin F, Prevostel C, Hanby A, et al. Imaging protein kinase Calpha acti-
vation in cells. Science 1999; 283:2085–9. PMID: 10092232

22. ParsonsM, Keppler MD, Kline A, Messent A, HumphriesMJ, Gilchrist R, et al. Site-directed perturbation
of protein kinase C- integrin interaction blocks carcinoma cell chemotaxis. Mol Cell Biol 2002; 22:5897–
911. doi: 10.1128/MCB.22.16.5897-5911.2002 PMID: 12138200

23. Buchanan SG, Hendle J, Lee PS, Smith CR, Bounaud PY, Jessen KA, et al. SGX523 is an exquisitely
selective, ATP-competitive inhibitor of the MET receptor tyrosine kinase with antitumor activity in vivo.
Mol Cancer Ther 2009; 8:3181–90. doi: 10.1158/1535-7163.MCT-09-0477 PMID: 19934279

24. Alaoui-Jamali MA, Song DJ, Benlimame N, Yen L, Deng X, Hernandez-Perez M, et al. Regulation of
multiple tumor microenvironment markers by overexpression of single or paired combinations of ErbB
receptors. Cancer Res 2003; 63:3764–74. PMID: 12839972

25. Holbro T, Beerli RR, Maurer F, KoziczakM, Barbas CF 3rd,Hynes NE. The ErbB2/ErbB3 heterodimer
functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl
Acad Sci U S A 2003; 100:8933–8. doi: 10.1073/pnas.1537685100 PMID: 12853564

26. Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ
regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11:834–48. doi: 10.1038/nrm3012 PMID:
21102609

27. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, et al. The semaphorin 4D receptor
controls invasive growth by coupling with Met. Nat Cell Biol 2002; 4:720–4. doi: 10.1038/ncb843 PMID:
12198496

28. Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H. CD44 is required for two consecutive
steps in HGF/c-Met signaling. Genes Dev 2002; 16:3074–86. doi: 10.1101/gad.242602 PMID:
12464636

29. Claus J, Patel G, Ng T, Parker PJ. A role for the pseudokinase HER3 in the acquired resistance against
EGFR- and HER2-directed targeted therapy. Biochem Soc Trans 2014; 42:831–6. doi: 10.1042/
BST20140043 PMID: 25109965

30. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFRmutations in lung cancer activate
anti-apoptotic pathways. Science 2004; 305:1163–7. doi: 10.1126/science.1101637 PMID: 15284455

MET-EGFR Dimerization in Lung Cancer

PLOSONE | DOI:10.1371/journal.pone.0170798 January 31, 2017 18 / 19

http://dx.doi.org/10.1073/pnas.0710370104
http://www.ncbi.nlm.nih.gov/pubmed/18093943
http://dx.doi.org/10.1126/science.1141478
http://dx.doi.org/10.1126/science.1141478
http://www.ncbi.nlm.nih.gov/pubmed/17463250
http://www.ncbi.nlm.nih.gov/pubmed/25806202
http://dx.doi.org/10.1038/sj.bjc.6604559
http://www.ncbi.nlm.nih.gov/pubmed/19238632
http://www.ncbi.nlm.nih.gov/pubmed/10722725
http://dx.doi.org/10.1111/j.1582-4934.2010.01040.x
http://dx.doi.org/10.1111/j.1582-4934.2010.01040.x
http://www.ncbi.nlm.nih.gov/pubmed/20178463
http://dx.doi.org/10.1039/b617204k
http://www.ncbi.nlm.nih.gov/pubmed/17533451
http://dx.doi.org/10.1093/emboj/20.11.2723
http://www.ncbi.nlm.nih.gov/pubmed/11387207
http://www.ncbi.nlm.nih.gov/pubmed/10092232
http://dx.doi.org/10.1128/MCB.22.16.5897-5911.2002
http://www.ncbi.nlm.nih.gov/pubmed/12138200
http://dx.doi.org/10.1158/1535-7163.MCT-09-0477
http://www.ncbi.nlm.nih.gov/pubmed/19934279
http://www.ncbi.nlm.nih.gov/pubmed/12839972
http://dx.doi.org/10.1073/pnas.1537685100
http://www.ncbi.nlm.nih.gov/pubmed/12853564
http://dx.doi.org/10.1038/nrm3012
http://www.ncbi.nlm.nih.gov/pubmed/21102609
http://dx.doi.org/10.1038/ncb843
http://www.ncbi.nlm.nih.gov/pubmed/12198496
http://dx.doi.org/10.1101/gad.242602
http://www.ncbi.nlm.nih.gov/pubmed/12464636
http://dx.doi.org/10.1042/BST20140043
http://dx.doi.org/10.1042/BST20140043
http://www.ncbi.nlm.nih.gov/pubmed/25109965
http://dx.doi.org/10.1126/science.1101637
http://www.ncbi.nlm.nih.gov/pubmed/15284455


31. Godin-Heymann N, Bryant I, Rivera MN, Ulkus L, Bell DW, Riese DJ 2nd, et al. Oncogenic activity of
epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance
mutation. Cancer Res 2007; 67:7319–26. doi: 10.1158/0008-5472.CAN-06-4625 PMID: 17671201

32. Zhang YW, Staal B, Essenburg C, Su Y, Kang L, West R, et al. MET kinase inhibitor SGX523 syner-
gizes with epidermal growth factor receptor inhibitor erlotinib in a hepatocyte growth factor-dependent
fashion to suppress carcinoma growth. Cancer Res 2010; 70:6880–90. doi: 10.1158/0008-5472.CAN-
10-0898 PMID: 20643778

33. Camidge D, Ou S, Shapiro G, Otterson G, Villaruz L, Villalona-Calero M, et al. Efficacy and safety of cri-
zotinib in patients with advanced c-MET-amplified non-small cell lung cancer (NSCLC). J Clin Oncol
2014; 32.

34. Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for
completely resected non-small cell lung cancer. Cancer science 2008; 99:2280–5. doi: 10.1111/j.1349-
7006.2008.00916.x PMID: 19037978

35. Rizzino A. Behavior of transforming growth factors in serum-free media: an improved assay for trans-
forming growth factors. In Vitro 20, 815–822 PMID: 6335125

MET-EGFR Dimerization in Lung Cancer

PLOSONE | DOI:10.1371/journal.pone.0170798 January 31, 2017 19 / 19

http://dx.doi.org/10.1158/0008-5472.CAN-06-4625
http://www.ncbi.nlm.nih.gov/pubmed/17671201
http://dx.doi.org/10.1158/0008-5472.CAN-10-0898
http://dx.doi.org/10.1158/0008-5472.CAN-10-0898
http://www.ncbi.nlm.nih.gov/pubmed/20643778
http://dx.doi.org/10.1111/j.1349-7006.2008.00916.x
http://dx.doi.org/10.1111/j.1349-7006.2008.00916.x
http://www.ncbi.nlm.nih.gov/pubmed/19037978
http://www.ncbi.nlm.nih.gov/pubmed/6335125

