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Abstract

Background: Identification of QTL with large phenotypic effects conserved across genetic backgrounds and
environments is one of the prerequisites for crop improvement using marker assisted selection (MAS). The
objectives of this study were to identify meta-QTL (mQTL) for grain yield (GY) and anthesis silking interval (ASI)
across 18 bi-parental maize populations evaluated in the same conditions across 2-4 managed water stressed and
3-4 well watered environments.

Results: The meta-analyses identified 68 mQTL (9 QTL specific to ASI, 15 specific to GY, and 44 for both GY and
ASI). Mean phenotypic variance explained by each mQTL varied from 1.2 to 13.1% and the overall average was
6.5%. Few QTL were detected under both environmental treatments and/or multiple (>4 populations) genetic
backgrounds. The number and 95% genetic and physical confidence intervals of the mQTL were highly reduced
compared to the QTL identified in the original studies. Each physical interval of the mQTL consisted of 5 to 926
candidate genes.

Conclusions: Meta-analyses reduced the number of QTL by 68% and narrowed the confidence intervals up to
12-fold. At least the 4 mQTL (mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2) associated with GY under both water-
stressed and well-watered environments and detected up to 6 populations may be considered for fine mapping
and validation to confirm effects in different genetic backgrounds and pyramid them into new drought resistant
breeding lines. This is the first extensive report on meta-analysis of data from over 3100 individuals genotyped
using the same SNP platform and evaluated in the same conditions across a wide range of managed water-
stressed and well-watered environments.
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Background
Globally, maize (Zea mays ssp. mays L.) is an important

source of food and nutritional security for millions of

people in the developing world, especially in sub-Saharan

Africa (SSA) and Latin America [1]. Maize is a staple food

in many of the SSA countries and is commonly grown by

resource poor, small-scale farmers in rural areas. It covers

25 million hectares in SSA that produce 38 million metric

tons [1] but the average maize yield in the region is

estimated at 1.4 tons per hectare, which is about 20%, 37%

and 56% of the average maize yield in developed countries,

Brazil and Philippines, respectively [2]. Several factors,

including high frequency of drought stress, scarcity and

high cost of irrigation, and farmers’ inability to obtain

quality seeds and fertilizers, contribute to such low pro-

ductivity in the region. Given the unpredictable nature of

drought and climate variability over years, breeders must

develop improved maize hybrids that are able to withstand
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drought stress without significant yield penalty under

optimal rainfall conditions [3-5]. For developing drought

tolerant maize, selection can be done directly under water

stress, indirectly under well-watered (optimal) conditions,

or under both optimal and stress conditions [6]. However,

heritability of grain yield under water stress has been

reported to be lower than yield under optimal environ-

ments [7]. Hence, physiologists and breeders have devoted

significant efforts in identifying relevant secondary traits

correlated to grain yield for indirect selection. These

include anthesis silking interval (ASI) between male and

female flowering and several other morpho-physiological

traits [8,9].

The ability to transfer target genomic regions associ-

ated with trait(s) of interest using molecular markers

resulted in extensive QTL mapping experiments in most

economically important crops. Such studies aimed at the

identification of molecular markers for marker assisted

backcrossing (MABC), marker assisted recurrent se-

lection (MARS) and QTL cloning [10]. Using MABC,

Ribaut and Ragot [4] introgressed 5 QTL associated with

yield components and flowering in maize from a donor

parent into a drought susceptible recurrent parent. The

authors reported increased grain yield and reduced ASI

under water-limited conditions. The best MABC pro-

geny outperformed the recurrent parent by two to four

times under severe drought conditions, with no yield

reduction under optimal conditions. However, drought

is a complex trait influenced by genetic background and

other environmental factors; thus, relying on a few QTL

for MABC is unlikely to create optimally drought

tolerant lines for target population of environments. In-

dividual drought associated QTL generally explain a very

small proportion of the phenotypic variance for grain

yield, ASI or barrenness. QTL for drought related traits

are also often cross-specific and remain undetected in

crosses from different genetic backgrounds. Most QTL

are detected under either drought stress or optimal con-

ditions (not both), and there is no assurance that QTL

detected from inbred lines will function in the same

manner in hybrids. Thus, they must be fully validated in

several environmental conditions and hybrid combina-

tions before deployment in a large breeding program.

MARS is another marker based breeding technology

that seeks to accumulate favorable alleles from several

genomic regions within a single population [11]. In

maize, the MARS protocol involves (a) development and

evaluation of testcross performance of bi-parental popu-

lations in multi-location experiments; (b) genotyping of

the F2:3 population (Cycle 0); (c) undertaking an ad hoc

significance test to identify a subset of markers that are

significantly associated with the target trait; and (d) one

generation (cycle) of selection of the best Cycle 0 fam-

ilies based on phenotypic index derived from testcross

performance, followed by 2-3 cycles of selection based

solely on markers with significant effects [12-15].

Currently, the International Maize and Wheat Improve-

ment Center (CIMMYT), in collaboration with the

national agricultural research systems (NARS) from 14

countries in Africa, the International Institute of

Tropical Agriculture (IITA), the African Agricultural

Technology Foundation (AATF), the Monsanto Com-

pany, and several regional and national seed companies

in Africa, is working in large scale projects that aim to

develop and disseminate drought tolerant maize for SSA

using conventional breeding, MARS, and/or transgenic

technology. These include the drought tolerant maize

for Africa (DTMA) and the water efficient maize for

Africa (WEMA) projects. For the MARS component of

the WEMA project, CIMMYT developed and evaluated

18 bi-parental mapping populations, which formed the

base for this study. All these populations have been

phenotyped with common protocols and genotyped

under a common single nucleotide polymorphism (SNP)

platform.

Comparisons among independent QTL mapping

projects usually attempt to determine if loci identified in

each are the same by comparing the chromosomal

position of a common subset of markers across different

studies and/or indirectly by comparing each mapping

population to a reference map [16]. Co-localized QTL

may not be identical, however, especially when they are

associated with large confidence intervals. Meta QTL

analysis [17] is a better method for combining data

from independent studies to detect consensus QTL and

to shrink the QTL confidence intervals. Meta-analyses

have been used in maize, wheat, rice, rapeseed, potato,

cotton, soybean, barley, cocoa and apricot [18,19]. In

maize, meta QTL (mQTL) for drought tolerance [20],

flowering time [21], grain yield components [22], ear rot

resistance [23,24] and silage quality [19] have been

reported. Hao and colleagues [20] collected published

QTL results and data related to drought tolerance for 12

mapping populations from the MaizeGDB website

(http://www.maizegdb.org) and conducted meta-analyses

on a total of 239 and 160 QTL detected under water

stressed and well watered conditions, respectively. The

authors reported 39 consensus mQTL for drought-

tolerance related traits under water stress and 36 mQTL

under well watered conditions. In most QTL meta-

analyses published so far [19,20,23,24], authors compiled

published linkage maps and QTL results from inde-

pendent studies using different phenotyping protocols,

constructed consensus linkage maps using a subset of

markers common to the different studies, and projected

mQTL positions and their confidence intervals onto the

consensus map. Limitations of those studies are caused

by the use of different phenotyping protocols, different
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QTL mapping methods, too few common markers, or

by too few populations, causing lower confidence in the

mQTL and the delimited intervals. The objectives of

the present study were to identify mQTL for grain yield

and ASI across 18 bi-parental maize populations geno-

typed with a common SNP platform and phenotyped with

a common protocol in multi-location experiments both

under water stressed and well watered environments.

Results
Phenotypic distribution, heritability and correlations

The mean phenotypic distribution for GY and ASI for all

18 bi-parental populations under water stressed and

optimum environments was either normal or approxi-

mately normal (data not shown). Broad-sense heritability

for GY (Table 1) varied from 0 to 0.40 under water

stressed and from 0.23 to 0.58 under optimum environ-

ments. For ASI, heritability under water-stressed and

optimum environments varied from 0 to 0.37 and from

0.08 to 0.54, respectively (Table 2). Populations with

heritability < 0.1 under stressed (6 populations for each

trait, of which 2 were common between the two traits)

and/or < 0.20 under optimum (only 2 pops for ASI)

environments were excluded from QTL analysis. In the

dataset used for QTL mapping, therefore, broad sense

heritability for GY and ASI varied from 0.13 to 0.40

under water stressed and from 0.21 to 0.58 under

optimum conditions. There was significant but low to

moderate negative correlation between GY and ASI

under stressed (-0.09 to -0.51; p <0.001) and optimum

(-0.08 to -0.23; p <0.001) conditions (data not shown).

Linkage and consensus mapping

The map length in the population specific linkage maps

varied from 426 to 1418 cM, with a mean of 1075 cM

(Table 3). The total number of mapped SNPs per

population varied from 118 to 202 with an average of

172.3. The average number of SNPs mapped per

chromosome in the population specific maps was 17.1

(data not shown). Chromosome 10 had fewer markers

(range 4-13; average 9) compared to all other chromo-

somes due to low marker polymorphism in the initial

polymorphism screening between parents (Figure 1).

The mean map distance between markers ranged from 2.8

to 7.8 cM and the overall mean across all 18 populations

was 6.1 cM. The final consensus map consisted of 430

SNPs with a total map length of 1471 cM. As shown in

Figure 1, the number of markers per chromosome in the

Table 1 Summary of the QTL for grain yield detected in 18 bi-parental populations

Population code Water stressed Well watered Heritability Genetic variance per QTL**

No. of QTL R2 (%)* No. of QTL R2 (%)* Water stressed Well watered Water stressed (%) Well watered (%)

6x1008 2 6.10 4 21.60 0.24 0.42 12.76 12.92

6x1015 0 0.00 7 42.70 0.26 0.35 0.00 17.48

6x1016 - - 5 37.90 0.00 0.57 0.00 13.37

6x1017 - - 7 65.70 0.00 0.47 0.00 19.97

6x1018 1 7.70 5 34.00 0.26 0.52 29.96 13.13

6x1019 - - 6 35.20 0.00 0.38 0.00 15.60

6x1020 2 6.10 5 24.00 0.33 0.55 9.27 8.66

6x1021 9 48.80 7 71.70 0.21 0.58 25.34 17.69

6x1023 - - 3 28.50 0.08 0.38 0.00 25.13

6x1024 - - 5 43.70 0.02 0.44 0.00 19.73

6x1028 - - 7 50.00 0.00 0.40 0.00 17.86

6x1115 0 0.00 3 11.10 0.22 0.29 0.00 12.76

6x1116 3 9.30 5 62.40 0.24 0.49 12.92 25.47

6x1117 0 0.00 2 13.70 0.27 0.48 0.00 14.27

6x1118 0 0.00 2 11.70 0.40 0.26 0.00 22.50

6x1120 0 0.00 3 26.30 0.11 0.51 0.00 17.19

6x1121 1 3.90 6 60.60 0.32 0.23 12.19 43.91

6x1122 0 0.00 1 1.50 0.36 0.37 0.00 4.05

Total 18.00 81.90 83.00 642.30 3.32 7.68 102.43 321.69

Mean 1.50 6.83 4.61 35.68 0.18 0.43 5.69 17.87

*R2 = the total phenotypic variance explained by all QTL.

** The genetic variance is the percent phenotypic variance explained by a single QTL divided by heritability of a trait.

Maize populations and environments are described in detail in Table 3.
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consensus map ranged from 27 to 66 SNPs (with a mean

of 43); map length per chromosome ranged from 126 to

207 cM, with a mean of 147 cM. The map distance

between markers in the final consensus map ranged from

1.0 to 27.8 cM and the overall mean was 3.5 cM, which is

much smaller than the overall mean distance (6.1 cM) of

the population specific maps. All except 9 intervals had a

map distance < 10 cM (Figure 2).

QTL in individual populations

From the 18 studies, composite interval mapping (CIM)

uncovered a total of 101 QTL for GY and 82 QTL for

ASI (Tables 1, 2 and Additional file 1). Figures 3 and 4

show the frequency distribution of the QTL for GY and

ASI by LOD score and phenotypic variance explained by

each QTL and chromosome. Under stressed environ-

ments, 18 QTL for GY were uncovered (Table 1) in 6 of

the 12 populations with heritability > 0.10 (range: 0-9;

average = 1.5 QTL per population). The proportion of

phenotypic variance explained by each GY QTL under

stress environments varied from 1.3 to 8.4%, and there

were between 1 and 4 QTL per chromosome (except

chromosome 10). The average phenotypic and genotypic

variance explained by each GY QTL under stressed

environments was 4.6% and 17.1%, respectively. In the

optimum environments, a total of 83 QTL for GY were

detected across all 18 populations. The number of GY

QTL per population under optimum environments

varied from 1 to 7 with an average of 4.6 QTL, and

each QTL explained 1.2 to 19.1% of the phenotypic

variance. The QTL were distributed across all chromo-

somes with the number of QTL per chromosome

ranging from 4 to 14, with a mean of 4.8 QTL. The

mean phenotypic and genotypic variance explained by

each GY QTL under optimum environments was 7.7%

and 18.1%, respectively.

For ASI, a total of 33 QTL with heritability > 0.10

were uncovered in 11 populations under stressed

environments (Table 2 and Additional file 1). Each QTL

for ASI explained 0.1 to 12.1% of the phenotypic vari-

ance under water stress, and they were distributed across

all chromosomes with each chromosome containing

from 1 to 6 QTL, (an average of 3.3 QTL per popula-

tion). The mean phenotypic and genotypic variance

explained by each QTL for ASI under stress was 5.0% and

22.7%, respectively. QTL for ASI with heritability > 0.20

were detected in 13 of the 16 populations under

optimum environments, with the number of QTL

Table 2 Summary of the QTL for ASI detected in bi-parental populations

Population code Water stressed Well watered Heritability Genetic variance per QTL**

No. of QTL R2 (%)* No. of QTL R2 (%)* Water stressed Well watered Water stressed Well watered

6x1008 3 13.40 3 21.80 0.27 0.40 16.54 18.17

6x1015 - - 4 26.10 0.00 0.21 0.00 31.07

6x1016 1 1.80 1 4.70 0.13 0.36 13.85 13.06

6x1017 1 8.20 1 12.30 0.19 0.41 43.16 30.00

6x1018 - - - - 0.00 0.08 0.00 0.00

6x1019 0 0.00 2 14.40 0.03 0.33 0.00 21.82

6x1020 5 30.60 4 28.40 0.26 0.33 23.54 21.52

6x1021 2 5.40 4 17.20 0.20 0.34 13.50 12.65

6x1023 3 18.20 5 44.30 0.29 0.45 20.92 19.69

6x1024 - - 5 19.80 0.05 0.51 0.00 7.76

6x1028 6 23.20 5 43.20 0.23 0.37 16.81 23.35

6x1115 - - - - - - - -

6x1116 - - 7 38.70 0.00 0.46 0.00 12.02

6x1117 3 16.70 0 0.00 0.14 0.24 39.76 0.00

6x1118 - - 0 0.00 0.00 0.23 0.00 0.00

6x1120 3 17.20 3 17.10 0.21 0.47 27.30 12.13

6x1121 2 12.90 0 0.00 0.37 0.54 17.43 0.00

6x1122 4 16.60 5 40.80 0.24 0.42 17.29 19.43

Total 33.00 164.20 49.00 328.80 2.61 6.15 250.10 242.65

Mean 2.75 13.68 3.06 20.55 0.15 0.36 14.71 14.27

*R2 = the total phenotypic variance explained by all QTL.

** The genetic variance is the percent phenotypic variance explained by a single QTL divided by heritability of a trait.

Maize populations and environments are described in detail in Table 3.
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Table 3 Summary of the 18 bi-parental mapping populations used in the present study

Population
code

Population
type

Cross Managed water stressed
evaluation sites

Well watered evaluation sites Population
size

No. of SNPs used
for genotyping

Total number
of SNPs mapped

Total map
length (cM)

6x1008 F2:3 CZL00009/CML505 Chisumaban, Isinya, Kibokooko and
Nanga

Embu, Kakamega, Kiboko and
Mtwapa

165 201 195 1400

6x1015 F2:3 CZL04003/CZL00009 Isinya, Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

162 190 179 1227

6x1016 F2:3 CZL00009/CZL99017 Isinya, Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

148 191 171 1342

6x1017 F2:3 CZL00009/CML539 Isinya, Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

184 210 199 1305

6x1018 F2:3 CML505/CZL99017 Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

184 212 177 1333

6x1019 F2:3 CZL04008/CZL0719 Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

173 202 182 1344

6x1020 F2:3 CZL0723/CZL0724 Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

181 218 196 1418

6x1021 F2:3 CZL0723/CZL0719 Isinya, Kibokooko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

184 217 202 1376

6x1023 F2:3 CZL0618/VL062655 Chisumaban, Isinya, Kibokooko and
Nanga

Embu, Kakamega, Kiboko and
Mtwapa

184 225 200 1351

6x1024 F2:3 CZL02001/VL062590 Chisumanje, Kiboko and Nanga Embu, Kakamega, Kiboko and
Mtwapa

181 204 176 1246

6x1028 F2:3 CZL074/VL062645 Chisumabans and Kibokooko Embu, Kakamega, Kiboko and
Mtwapa

174 205 184 1166

6x1115 BC1F3 CKL09004/CZL00003//
CKL09004

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 184 166 144 1034

6x1116 BC1F3 CKL09007/CML395//
CML395

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 184 185 145 426

6x1117 BC1F3 CKL09007/CML444//
CML444

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 160 163 152 459

6x1118 BC1F3 CKL09001/CML444//
CML444

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 178 177 164 502

6x1120 F2:3 CKL09008/CML395 Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 173 166 164 1180

6x1121 BC1F3 CKL09002/CZL03011//
CKL09002

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 176 173 118 656

6x1122 BC1F3 CKL09006/CZL03011//
CKL09006

Isinya, Chiredzi, Chisumanje, Kiboko and
Mtwapa

Kiboko, Kti and Kakamega 155 185 153 581
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varying from 1 to 7 and an average of 3.8 QTL per

population. Each QTL for ASI explained 1.1 to 17.3% of

the phenotypic variance under optimum environments.

The QTL for ASI under optimum environments were

distributed across all chromosomes with the number of

QTL per chromosome ranging from 2 to 8 and an aver-

age of 5.1 per chromosome. The average phenotypic

and genotypic variance explained by each QTL for ASI

under optimum environments was 6.7% and 18.7%,

respectively. Several QTL for GY and ASI had overlap-

ping confidence intervals, and they appeared in clusters

in the linkage maps (Additional files 1 and 2).

Meta-analyses

All QTL identified in individual populations were

projected on the consensus map separately for GY and

ASI first, and then for the combined QTL results of

both traits (Additional file 2). The analysis of the

combined traits increased the number of QTL per

chromosome from a range of 4-17 to a range of 8-27.

The statistical power via single trait-analysis and com-

bined traits analyses was the same (data not shown).

The meta-analysis sharply reduced the total number of

QTL from 183 to 68 mQTL, compared to individual

populations (Figure 4). Nine of these mQTL were

specific to ASI, 15 to GY, and the remaining 44 were

common to both GY and ASI (Figures 4 and 5). Table 4

and Additional file 3 present information about each

mQTL, including chromosomal position, genetic and

physical confidence interval, R2, flanking markers, and

number of candidate genes in the interval. Eight of the

68 mQTL were associated either with ASI (5 mQTL) or

both ASI and GY (3 mQTL) under water stressed envi-

ronments only. The other 28 mQTL were detected both
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under stressed and optimum environments and the

remaining 32 mQTL were associated with GY, ASI or

both traits under optimum environments only.

The number of mQTL identified on each chromosome

varied from 4 on chromosome 10 to 9 on chromosome

1, with an average of 6.8 mQTL per chromosome. The

low marker density on chromosome 10 may have

reduced the number of mQTL uncovered on this chro-

mosome. The mean phenotypic variance explained by

each mQTL varied from 1.2 to 13.1% and the overall

average was 6.5%. The 95% genetic confidence intervals

for the mQTL varied between 0.6 and 12.5 cM, with an

average of 5.4 cM, which is half the sizes of their

respective original QTL (range = 4.0-21.0 cM; average =

10.7 cM). The 95% physical confidence intervals ranged

from 313 to 46,898 kb with an average of 7,574 kb. The

total number of candidate genes within the physical

intervals varied from 5 to 926, with an average of 239

candidate genes per mQTL (Table 4). The physical to

genetic distance ratio varied from 64 to 13,554 kb/cM,

and the average was 7,574 kb/cM.

Eighteen of the 68 mQTL were detected in only a sin-

gle population, 20 mQTL in 2 populations, 21 mQTL in

3 populations, 5 mQTL in 4 populations, 2 mQTL in 5

populations, and 2 mQTL in 6 populations (Table 4). No

mQTL was detected in more than 6 of the 18 populations.

Among the 9 mQTL mapped in 4-6 populations, four

mQTL (mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2)

were associated with GY under both stress and optimum

conditions; 2 mQTL (mQTL1.3 and mQTL5.2) were asso-

ciated with GY only under optimum conditions; and the

remaining 3 mQTL (mQTL2.1, mQTL3.3 and mQTL8.3)

were associated with GY under optimum and ASI under

water stressed and/or optimum environments. MQTL2.2

is located on chromosome 2 between 28.6 and 31.8 cM

and has a physical interval of 816 kb. This QTL explains

on average 5.8% of the phenotypic variance for GY both

under water stress and optimum environments and
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encompassed 48 candidate genes. MQTL6.1 is located at

the proximal end of chromosome 6 and has a physical

interval of 2,120 kb; it accounted on average for 4.0%

of the phenotypic variance for GY both under water

stress and optimum environments and encompassed 66

candidate genes. MQTL7.5 is located on chromosome

7 between 59.4 and 67.5 cM and has a physical interval

of 1,069 kb; this QTL explains on average 6.8% of the

phenotypic variance for GY both under water stress

and optimum environments and encompassed 289 can-

didate genes. MQTL9.2 is located on chromosome 9

between 27.4 and 29.8 cM and has a physical interval

of 12,569 kb. The latter mQTL explains on average

3.5% of the phenotypic variance for GY both under water

stress and optimum environments and encompassed 107

candidate genes.

Discussion
The projection of many QTL on a consensus map for

meta-analysis allows to ascertain whether the QTL

detected under water stressed conditions are a subset of

those detected under optimal conditions, and if the QTL

are common across different mapping populations

(genetic backgrounds). Our study clearly demonstrated

four times as many mQTL expressed under optimum

conditions than under stressed environments. There was

lower broad-sense heritability both for GY and ASI

under stressed (0.13 to 0.40) than under optimum (0.21

to 0.58) environments, which may be an indication of a

larger environmental component to the variance associ-

ated with stressed compared to optimum conditions.

Although heritability under stress is sometimes compar-

able with heritability under optimum conditions, many

studies [25-27] have also reported lower heritability

under water stress than under optimum conditions. The

mQTL were very specific to genetic background, but 8

of the 9 mQTL (MQTL1.3, MQTL2.1, MQTL2.2,

MQTL3.3, MQTL5.2, MQTL6.1, MQTL8.3 and MQTL9.2;

Table 4) found in 4 to 6 populations had small to me-

dium genetic (1.9-8.2 cM) and physical (313-3368 kb)
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Figure 5 (See legend on next page.)
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intervals and may be important regions for marker

assisted backcrossing, QTL cloning for transformation,

and/or functional analysis. Four of these mQTL

(mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2) seem

the most suitable for future studies and eventual incorp-

oration into breeding lines because (a) they were associ-

ated with GY under both water stressed and optimum

environments; (b) they were detected up to 6 genetic

backgrounds; (c) they accounted on average 3.5 to 6.8%

of the phenotypic variance for GY under stress and

optimum conditions, and (d) they encompassed lower

number (48 to 289) of candidate genes.

Candidate genes can be identified through positional

cloning using QTL confidence intervals [10], but confi-

dence intervals need to be as small as possible. Combin-

ing results from several genome-wide surveys [28] and/

or by merging QTL data from different studies [29] can

help accomplish this. Our results from meta-analysis

clearly demonstrated a gain in precision, reaching up to

12-fold smaller confidence interval in the mQTL, as

compared with the population specific maps (Table 4).

Similar results have been reported in other studies

[20,23,24,30,31]. As shown in Table 4, the number of

candidate genes within the 4 most conserved mQTL as-

sociated with GY both under water stressed and

optimum environments varied from 48 to 289, and will

thus require a further shrinking by fine mapping. This

can most easily be done by increasing marker density

evenly in the target regions, for example via genotyping-

by-sequencing (GBS), which will generate nearly a

million SNPs per sample at a cost of about $22 to $38

(http://igd.cornell.edu/index.cfm/page/GBS/GBSpricing.

htm). At least 10% of these SNPs are expected to be

polymorphic between parents in a given cross, and will

thus generate at least 100 thousand polymorphic SNPs

for fine mapping. The mapping populations presented

in this study have been submitted for GBS, which may

narrow down the physical confidence interval of the

mQTL. Further fine mapping and/or QTL validation can

also be done by increasing the size of the mapping popu-

lations. The four mQTL for GY detected in multiple

populations under both stressed and optimum environ-

ments were also associated with ASI under stress and/or

optimum conditions. However, we are unsure if this was

due to the pleiotropic action of a single gene or multiple

linked genes [16,32]. If the cause is tight linkage of

multiple genes, fine mapping of large numbers of

recombinants will break up the linkage. Although this is

a labor and time-consuming process, it will be proposed

for the conserved mQTL of large phenotypic effect.

Some of the mQTL detected in this study explained

up to 13% of the phenotypic variance for GY and ASI

under stress and/or optimum conditions. Because each

mapping populations had an average of 174 progenies, it

is possible that some of the mQTL of large effect may

showed upward biased estimation (Beavis effect) of the

phenotypic effects [33,34]. MQTL with large physical

intervals may also contain several linked genes influen-

cing the same trait. This has been reported even in cases

where QTL effects have been fine mapped to more than

one specific gene [32]. As far as we are aware, this is the

first study that reports extensive mQTL results using

over 3100 individuals that were genotyped using the

same SNP platform and phenotyped in the same way

across a wide range of managed water stressed and well

watered environments. Future investigations may

involve fine mapping and/or verification of some of the

mQTL regions detected across 4-6 populations using

large population size and high marker density. The

results from this study provide highly valuable informa-

tion for researchers working on QTL mapping for

possible use in marker assisted selection and/or QTL

cloning.

Conclusions
Meta-analyses reduced the number of QTL by 68% and

narrowed the confidence intervals up to 12-fold, but

none of the mQTL were detected in more than 6 popu-

lations, confirming the uniqueness of QTL from differ-

ent populations. Nevertheless, at least 4 of the 68 mQTL

were detected at least in 4 populations and may be con-

sidered for fine mapping and validation using large popu-

lation sizes and high marker density, such as GBS. These

four mQTL were located on chromosomes 2 (mQTL2.2),

chromosome 6 (mQTL6.1), chromosome 7 (mQTL7.5) and

chromosome 9 (mQTL9.2). About 65% of the mQTL

uncovered under water stressed and/or optimum envi-

ronments coincided between grain yield and ASI but it is

unclear whether such large number of coincident mQTL

was due to pleiotropic effect or tight linkage.

Methods
Population development, phenotyping and genotyping

A total of 25 MARS populations were initiated in 2008

and 2009. Quality control (QC) genotyping [35] of F1s

(See figure on previous page.)
Figure 5 The positions of the 68 mQTL for grain yield and anthesis silking interval. The 95% genetic confidence interval of mQTL for grain
yield and anthesis silking interval are shaded in green and pink colors, respectively, while those shaded in black coincided for both traits. The
mQTL detected in >4 populations are indicated on the right side of each chromosome.
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Table 4 Summary of the 68 meta QTL (mQTL) for grain yield and anthesis-silking interval detected across 18 maize populations

Chromosome Meta
QTL name

K Predicted
meta QTL

position (cM)

Meta QTL
95% genetic
confidence
interval (cM)

Initial
number
of QTL

Mean initial
confidence
interval (cM)

Mean LOD
score of the
initial QTL

Mean R2 for
the initial

QTL

Δ in the
95%

confidence
interval (cM)

95% physical
confidence
interval (kb)

Physical
distance
(kb)

No. of
candidate
genes within
the physical
interval

No. of
populations
where the

meta
QTL was
uncovered

1 MQTL1.1 1 4.3 5.3 3 9.3 3.5 7.7 4.0 3639-4732 1,093.0 59 3

1 MQTL1.2 2 20.5 5.0 3 12.7 2.9 4.3 7.7 10061-14464 4,402.1 213 3

1 MQTL1.3 3 42.2 3.8 5 14.4 3.3 9.3 10.6 28552-30583 2,031.9 72 5

1 MQTL1.4 4 53.9 7.5 3 13.3 3.5 7.8 5.8 45277-46989 1,711.8 73 3

1 MQTL1.5 5 64.0 4.0 1 4.0 4.3 5.9 0.0 51515-58369 6,854.6 227 1

1 MQTL1.6 6 78.5 9.1 2 16.0 3.2 6.8 7.0 70862-79893 9,031.5 257 2

1 MQTL1.7 7 100.8 7.1 4 16.0 3.5 7.1 8.9 191405-
198269

6,864.1 227 3

1 MQTL1.8 8 128.0 9.0 1 18.0 2.5 12.3 9.0 223836-
229962

6,125.7 234 1

1 MQTL1.9 9 180.8 3.3 2 12.0 2.9 4.0 8.7 284698-
288173

3,475.7 145 1

2 MQTL2.1 1 12.4 4.5 6 14.0 3.9 8.0 9.5 3534-3847 313.2 25 6

2 MQTL2.2 2 30.2 3.3 5 10.8 3.1 5.8 7.6 6141-6957 815.7 48 5

2 MQTL2.3 3 42.2 4.7 2 6.0 5.8 9.6 1.3 9969-11272 1,302.3 71 2

2 MQTL2.4 4 56.2 3.5 3 8.7 3.8 6.6 5.2 18063-19837 1,774.0 68 3

2 MQTL2.5 5 65.7 4.4 4 11.0 4.1 7.1 6.6 28812-37684 8,871.8 322 3

2 MQTL2.6 6 116.7 5.1 3 13.3 3.4 4.4 8.3 209512-
214904

5,391.9 268 3

2 MQTL2.7 7 135.4 0.6 4 8.0 3.5 2.8 7.4 226386-
230734

4,347.5 287 2

3 MQTL3.1 1 2.0 3.6 2 6.0 4.0 4.5 2.4 1384-1699 315.4 32 2

3 MQTL3.2 2 20.7 12.5 2 21.0 4.4 6.4 8.5 3266-5558 2,291.9 108 2

3 MQTL3.3 3 42.7 7.3 5 20.8 3.5 5.8 13.5 7218-10471 3,253.7 138 4

3 MQTL3.4 4 54.5 4.7 2 7.0 3.3 7.2 2.3 27986-53834 25,847.8 619 2

3 MQTL3.5 5 74.6 10.5 2 15.0 3.5 7.3 4.5 141780-
165485

23,704.8 660 2

3 MQTL3.6 6 93.5 4.6 3 10.7 3.8 6.5 6.1 175055-
197483

22,428.3 926 3

3 MQTL3.7 7 108.0 4.0 1 4.0 3.6 6.7 0.0 208947-
211212

2,264.7 92 1

3 MQTL3.8 8 120.0 9.4 1 12.0 3.9 3.6 2.6 211133-
218712

7,578.4 308 1
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Table 4 Summary of the 68 meta QTL (mQTL) for grain yield and anthesis-silking interval detected across 18 maize populations (Continued)

4 MQTL4.1 1 9.5 4.5 3 8.7 3.1 4.2 4.2 1613-4989 3,376.2 206 3

4 MQTL4.2 2 30.8 4.1 3 7.3 3.2 6.1 3.2 11272-13790 2,518.2 87 3

4 MQTL4.3 3 40.0 6.0 1 6.0 3.6 1.2 0.0 14511-18502 3,991.4 125 1

4 MQTL4.4 4 53.4 3.3 2 5.0 6.2 12.7 1.7 41714-81616 39,902.1 851 1

4 MQTL4.5 5 98.0 6.0 1 6.0 4.0 6.5 0.0 196386-
203074

6,688.0 238 1

4 MQTL4.6 6 118.2 6.0 2 14.0 3.0 4.4 8.0 240863-
242930

2,067.0 18 2

5 MQTL5.1 1 4.2 3.3 3 13.3 2.7 3.4 10.0 887-2799 1,911.3 189 2

5 MQTL5.2 2 28.9 3.1 4 8.0 3.9 8.5 5.0 6821-9201 2,379.9 128 4

5 MQTL5.3 3 42.0 6.0 1 6.0 3.9 5.3 0.0 11666-13316 1,650.1 83 1

5 MQTL5.4 4 52.0 5.7 2 8.0 2.6 5.9 2.3 21458-42985 21,527.0 645 2

5 MQTL5.5 5 60.0 4.0 1 4.0 4.9 9.9 0.0 46400-75946 29,545.5 863 1

5 MQTL5.6 6 76.4 6.3 3 11.3 3.7 7.7 5.0 158664-
169720

11,056.0 324 3

5 MQTL5.7 7 116.4 4.7 3 9.3 3.4 5.0 4.6 199917-
203728

3,810.3 191 3

5 MQTL5.8 8 128.6 3.2 5 20.5 4.3 5.5 17.3 204095-
208963

4,867.9 305 3

6 MQTL6.1 1 0.4 1.9 4 8.0 3.1 4.0 6.1 1535-3654 2,119.7 66 4

6 MQTL6.2 2 16.0 10.0 1 10.0 3.7 6.0 0.0 7800-21710 13,909.7 301 1

6 MQTL6.3 3 45.8 1.9 3 8.0 4.2 10.5 6.1 109410-
109818

407.2 5 3

6 MQTL6.4 4 58.0 12.0 1 12.0 2.7 5.2 0.0 115280-
138426

23,145.6 829 1

6 MQTL6.5 5 80.6 4.7 4 12.5 4.6 8.8 7.8 153123-
156645

3,521.2 201 3

6 MQTL6.6 6 94.2 5.4 4 11.0 4.6 9.6 5.6 160735-
161977

1,241.9 77 2

6 MQTL6.7 7 116.0 6.5 1 10.0 2.9 1.5 3.5 163973-
165726

1,753.2 116 1

7 MQTL7.1 1 11.6 7.2 2 12.0 6.4 11.5 4.8 1977-3000 1,023.8 71 2

7 MQTL7.2 2 33.9 3.7 4 15.0 3.2 5.3 11.3 7344-8456 1,112.2 51 3

7 MQTL7.3 3 45.6 4.0 3 8.0 4.1 8.7 4.0 11348-17346 5,998.1 177 2

7 MQTL7.4 4 51.5 3.3 2 5.0 3.1 5.8 1.7 92209-111874 19,664.7 387 2

7 MQTL7.5 5 63.4 8.2 4 16.5 3.4 6.8 8.3 119475-
128209

8,734.7 289 4
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Table 4 Summary of the 68 meta QTL (mQTL) for grain yield and anthesis-silking interval detected across 18 maize populations (Continued)

7 MQTL7.6 6 86.4 9.6 2 14.0 3.4 4.4 4.4 155968-
156660

692.0 28 1

7 MQTL7.7 7 102.0 2.3 1 6.0 3.6 4.2 3.7 162969-
163528

559.5 23 1

8 MQTL8.1 1 14.0 4.0 1 4.0 2.6 2.2 0.0 8255-12884 4,628.6 174 1

8 MQTL8.2 2 28.2 8.7 2 14.0 7.0 12.9 5.3 12884-16036 3,152.4 118 2

8 MQTL8.3 3 45.8 4.0 5 11.6 4.0 7.8 7.7 19226-22594 3,368.0 112 4

8 MQTL8.4 4 56.6 4.9 3 11.3 3.4 7.3 6.4 94597-114908 20,310.3 572 3

8 MQTL8.5 5 68.0 4.2 2 6.0 4.1 11.2 1.8 130389-
136848

6,459.5 238 2

8 MQTL8.6 6 90.5 10.1 2 15.0 4.2 7.9 4.9 161536-
162181

645.2 39 2

8 MQTL8.7 7 109.2 3.7 3 14.7 3.2 4.7 11.0 165872-
166992

1,119.5 67 3

9 MQTL9.1 1 4.9 6.7 3 12.0 3.0 4.1 5.4 558-1039 480.9 17 2

9 MQTL9.2 2 28.6 2.5 6 10.7 3.4 3.5 8.3 12863-15939 3,076.3 107 6

9 MQTL9.3 3 48.9 10.7 2 16.0 3.3 4.7 5.3 78943-107127 28,183.8 676 2

9 MQTL9.4 4 64.9 8.3 3 14.7 4.2 7.1 6.4 122950-
134502

11,552.0 424 3

9 MQTL9.5 5 85.6 2.5 4 13.0 3.8 5.2 10.5 139422-
142013

2,590.7 118 3

10 MQTL10.1 1 0.0 4.0 1 4.0 2.9 1.5 0.0 5116-5692 576.2 27 1

10 MQTL10.2 2 12.0 2.7 3 5.3 4.3 9.4 2.6 7133-13608 6,475.7 192 2

10 MQTL10.3 3 24.7 3.5 3 6.0 7.0 13.1 2.5 15276-62174 46,897.5 857 3

10 MQTL10.4 4 46.0 4.2 1 8.0 4.0 6.5 3.8 127259-
131505

4,245.7 160 1

See Additional file 3 for more information.
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and their parents with 100 SNP markers identified all

F1s with true-to-type parental alleles for ≥ 95% of the

polymorphic SNPs for advancement either to F2:3 or

BC1F3, while those with >5% non-parental alleles were

discarded. Seven of the 25 MARS populations either

failed to pass the quality control genotyping criteria or

had broad sense heritability < 0.10 and/or < 0.20 in the

combined analyses of all the stressed and optimum

environments, respectively, and were excluded from

analyses. Phenotypic evaluations were performed on

testcrosses derived by crossing either the F2:3 or BC1F3
families with one single cross tester from opposite heter-

otic group. The parents crossed with the same tester,

and selected commercial checks were included in each

of the trials. Each population was planted using an alpha

lattice design, with 2 replications per location, and evalu-

ated in 2-4 managed water stressed and 3-4 well watered

locations (Table 3). Each entry was planted in a 5 m

long row with spacing of 0.75 m between rows and 0.25

m between plants. In maize, it is well known that grain

yield is often reduced 2-3 times more when water

deficits coincide with flowering, compared with other

growth stages [36]. Therefore, water stress evaluation

was conducted during the dry (rain free) season in

Kenya, Zimbabwe and Zambia by withdrawing irrigation

two weeks before flowering. Irrigation was resumed at

the end of the flowering stage, corresponding to the end

of silk emergence, and maintained until harvest to allow

grain filling. Evaluation under optimum conditions in

the 3 countries was carried out during the long rainy

season.

Each population was evaluated for 12-17 different

traits, including grain yield, anthesis date, number of

ears per plant, and leaf senescence, which are commonly

associated with drought tolerance. Only grain yield and

ASI were selected as the main target traits in the present

study. ASI was computed as the difference between days

to silking and anthesis. Each trial was harvested when all

leaves had senesced. Ears were dried and shelled, grain

was weighed, and grain moisture determined by a

capacitance meter. SAS program v9.2 was used for

phenotypic data analyses, including calculating Best

Linear Unbiased Predictor (BLUP), variance components

and heritability under stressed and optimum environments.

Linkage and QTL mapping in individual populations

All mapping populations were genotyped by the

Monsanto Company using a TaqMan assay (http://www.

appliedbiosystems.com). For each segregating SNP, a χ2

goodness-of-fit analysis was performed to test for devi-

ation from the expected segregation ratio. The chromo-

somal position and locus order of all SNPs used in the

present study was provided by the Monsanto Company

and this a priori information was used as a reference for

determining locus order in our mapping populations.

Linkage groups were established using LOD scores ran-

ging between 3 and 15, and recombination frequency of

0.30. The order of the SNPs on each chromosome was

determined as described elsewhere [37] using the

Kosambi mapping function. χ2 analyses and linkage

mapping were performed using JoinMap version 4.0

[38]. The number of polymorphic SNPs used for geno-

typing the populations varied from 163 to 225 (Table 3).

Final linkage maps were constructed after excluding a

total of 389 non-informative SNPs (an average of 22

SNPs per population) because they i) did not meet the

threshold value for goodness-of-fit, ii) contributed to

negative distance in the final map, iii) changed the

expected marker order, or iv) mapped to unexpected

chromosomal locations compared to the a priori

information. QTL mapping was performed with BLUP

values obtained across the combined analyses of all the

stressed and optimum environments for each popula-

tion. Composite interval mapping (CIM) was conducted

as described elsewhere [39] using a minimum LOD

score of 2.5 and the PLABQTL software, version 1.2

[40,41].

Map projection and QTL meta-analyses

For the same chromosome across multiple populations,

a consensus linkage map of all SNPs was constructed

from the population specific maps using BioMercator

version 2.1 as described by Arcade et al. [42]. Markers

that showed inversions in the consensus map were

discarded. The initial consensus map consisted of 961

markers but about 55% of the SNPs (531 of the 961

SNPs) had a map distance < 1 cM to adjacent markers,

so they were excluded from the final consensus map. All

QTL identified in individual populations using PlabQTL

were projected on the consensus map separately for GY

and ASI first, and then for the combined QTL results of

both traits. The information on the original chromo-

somal position, LOD score, confidence interval (CI) and

proportion of phenotypic variance (R2) explained by

each QTL (as summarized in Additional file 1) were

used for the projection. For each chromosome, meta-

analysis was used to estimate the numbers, positions,

and 95% confidence interval of the mQTL using

BioMercator version 3.0 software (http://moulon.inra.

fr/index.php/en/scientific-output/software/doc_details/

15-biomercator-v-3) [43]. The meta-analysis first deter-

mines the best model based on model choice criteria of

the following: AIC (Akaike information criterion), AICc,

AIC3, BIC (Bayesian information criterion) and AWE

(average weight of evidence). The best QTL model was

selected when values of the model selectin criteria were

the lowest at least in 3 of the 5 models (Additional file 4).

The best model was then used in the MQTLView
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method. QTL with probability of membership in a

given mQTL > 60% were assigned to the same mQTL.

The 95% confidence intervals of the mQTL were drawn

using the MapChart program, version 2.1 [44].

Candidate genes

Flanking markers of each mQTL were used to search for

candidate genes within each mQTL interval. The genetic

map of all proprietary SNPs used in this study, along

with over 52,000 public markers, was provided by the

Monsanto Company. The map was created using the

company’s proprietary mapping population. For each

mQTL, the public markers with known physical posi-

tions that were closest to the two flanking SNPs found

in this study were chosen to define the interval. The

physical positions of these flanking public markers were

then used to search for candidate genes using the

Maize Sequence database (http://www.maizesequence.

org/index.html). This browser provides the latest

sequence and annotation of the Zea mays ssp. mays

genome from the Maize Genome Sequencing Project.

Additional files

Additional file 1: Summary of the population-specific QTL detected

by Composite Interval Mapping for grain yield (GY) and anthesis-silking

interval (ASI) for 18 maize populations evaluated under managed

water stressed (WS) and well-watered (WW) environments.

Additional file 2: Summary of the projected position of the 183

QTL for grain yield (GY) and anthesis-silking interval (ASI) using

BioMercator version 3.0.

Additional file 3: Additional information to the meta QTL described

in Table 4.

Additional file 4: Summarizes the model selection criteria in the

meta-analyses.
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