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Abstract

Multiple genetic loci associated with obesity or body mass index (BMI) have been identified 

through genome-wide association studies conducted predominantly in populations of European 

ancestry. We conducted a meta-analysis of associations between BMI and approximately 2.4 

million SNPs in 27,715 East Asians, followed by in silico and de novo replication in 37,691 and 

17,642 additional East Asians, respectively. We identified ten BMI-associated loci at the genome-

wide significance level (P<5.0×10−8), including seven previously identified loci (FTO, SEC16B, 

MC4R, GIPR/QPCTL, ADCY3/RBJ, BDNF, and MAP2K5) and three novel loci in or near the 

CDKAL1,PCSK1, and GP2 genes. Three additional loci nearly reached the genome-wide 

significance threshold, including two previously identified loci in the GNPDA2 and TFAP2B 

genes and a new locus near PAX6, which all had P<5.0×10−7. Findings from this study may shed 

light on new pathways involved in obesity and demonstrate the value of conducting genetic 

studies in non-European populations.

Since 2007, genome-wide association studies (GWAS) have contributed to a major leap 

forward in understanding the genetic basis of obesity1–11. To date, 37 genetic loci associated 

with obesity or body mass index (BMI) have been identified through these GWAS. 

However, virtually all of these studies were conducted in populations of European ancestry 

and included limited data from Asian populations9, 11. Asians, which account for over 60% 

of the world’s population, have a greater percentage of body fat and higher metabolic 
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disease risk than European-ancestry individuals with the same BMI12. Therefore, studies 

conducted in Asian populations not only allow an evaluation of whether genetic markers of 

obesity identified in North American and European populations can be generalized to 

Asians, but also facilitate the dissection of the genetic architecture of obesity and the 

identification of genetic variants of particular importance to Asians.

We began with an initial genome-wide association meta-analysis using BMI as the primary 

outcome based on approximately 2.4 million genotyped or imputed SNPs generated from 

eight GWAS including 27,715 East Asians (stage I). This was followed by an in silico 

replication analysis conducted among 37,691 East Asians from an additional seven GWAS 

(stage II) and subsequently a de novo replication conducted among 17,642 East Asians from 

three studies (stage III). All of these studies were conducted in populations of East Asian 

ancestry; details of the study designs are presented in Supplementary Figure 1 and described 

in the Supplementary Note and Supplementary Tables 1 to 3.

The stage I meta-analysis was performed using the METAL program (http://

www.sph.umich.edu/csg/abecasis/Metal), and study-specific genomic control adjustment 

was applied (see ONLINE METHODS). The Stage I analysis revealed that three well 

established loci (FTO, SEC16B, and MC4R) were associated with BMI at or near the 

genome-wide significance level (P<5×10−8)13 (Table 1, Figure 1).

In stage II, we analyzed 798 SNPs with a P value <1.0×10−4 in stage I and 50 additional 

SNPs that were previously reported to be associated with BMI in studies conducted in 

European-ancestry populations but that did not reach P<1.0×10−4 in stage I. Seven 

additional GWAS conducted in East Asian populations participated in stage II and provided 

regression analysis results for the selected SNPs. These data, along with the stage I meta-

analysis results, were combined again in meta-analyses using methods similar to stage I with 

adjustment for both study-specific genomic control inflation and estimated residual inflation 

for the stage I meta-analysis results, which was 1.056 (see ONLINE METHODS). Analysis 

of combined data from stages I and II revealed that the index SNPs in six previously 

reported loci (FTO, SEC16B, MC4R, GIPR/QPCTL, ADCY3/RBJ, and BDNF) were 

genome-wide significant (P<5.0×10−8) and in three other previously reported loci 

(GNPDA2, TFAP2B, and MAP2K5) were near genome-wide significant (P<5.0×10−7) in 

East Asians (Table 1, Supplementary Table 4). In addition, the index SNPs in nine other 

previously reported loci were associated with BMI in the East Asian data at the nominal 

significance level (P<0.05) (Supplementary Table 4).

We compared two SNPs at each of the three loci GIPR/QPCTL, ADCY3/RBJ, and MAP2K5 

(Supplementary Table 5), one identified by our study and another by the GIANT consortium 

(published during the course of our study)8. The SNPs at ADCY3/RBJ and MAP2K5 

identified in our study are in linkage disequilibrium(LD) with the ones identified by the 

GIANT consortium. At GIPR/QPCTL, the SNP identified by our study, rs11671664, is not 

in LD in Asians (r2 =0.026) and is in weak LD in Europeans (r2=0.264) with the SNP 

identified by the GIANT consortium, rs2287019. The latter was not in a statistically 

significant association with BMI in East Asians (see also Supplementary Table 4). 

Conditional analyses (see ONLINE METHODS) with the two SNPs in each locus included 
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in the same model for mutual adjustment showed that a statistically significant association 

with BMI remained only for the SNP identified by our study (Supplementary Table 5), 

suggesting that the SNP we identified may represent an independent association signal at the 

same locus in Asians.

The reported effect sizes for BMI-related SNPs in studies of European ancestry populations 

are usually greater than 3% of the standard deviation of BMI 4. Given the sample sizes of 

our study (N=27,715 for stage I and N=65,406 for stages I and II combined), we had 

adequate statistical power (>0.8) to detect a SNP with such an effect size and with a 

MAF>0.2 in stage I or a MAF>0.08 in the combined stage I and II data at a significance 

level of P<0.05. The index SNPs in the 19 previously identified loci that were not replicated 

in our study at P<0.05 had either very small effect sizes or very low MAFs (two were not 

available, seven were monomorphic according to the HapMap Asian data) in East Asians 

(Supplementary Table 4).

We selected one representative SNP from each of seven loci for further replication, 

including the four loci at or near the CDKAL1, PCSK1, PAX6, and GP2 genes that have not 

previously been reported to be associated with BMI and the three loci at the GIPR/

QPCTL,ADCY3/RBJ, and MAP2K5 genes that were reported by the GIANT consortium (the 

selection of these SNPs was completed before the publication of the GIANT 

paper)8(Supplementary Table 4). Replication for these seven SNPs was conducted in stage 

III using de novo genotyping data from three study sites that included a total of 17,642 

subjects (Supplementary Table 1 and 2). SNPs at other reported BMI loci that were genome-

wide significant in stage I and II data were not included in the stage III de novo replication 

study for cost saving purposes. Stage III analyses found that the direction of the associations 

between BMI and the seven SNPs were consistent with stages I and II. The final results 

derived from a meta-analysis of data from all three stages combined, with adjustment for 

both study-specific genomic control inflation and estimated residual inflation for the stage I 

meta-analysis results, showed that six SNPs at or near GIPR/QPCTL,ADCY3/RBJ, 

MAP2K5, CDKAL1,PCSK1, and GP2 were associated with BMI at the genome-wide 

significance level (P=1.02×10−8 to 5.93×10−14) (Table 1) and SNP rs652722 near the PAX6 

gene nearly reached the genome-wide significance threshold (P=7.65×10−8) (Supplementary 

Table 6). The explained variances of these SNPs are also presented in Table 1.

We also evaluated the association of BMI with these seven SNPs in data obtained from the 

GIANT consortium. Three of these SNPs (rs654581, rs4776970, and rs1167166) at the three 

loci that were recently reported by the GIANT consortium8 (AGCY3/RBJ, MAP2K5, and 

GIPR/QPCTL) and one newly identified SNP (rs261967) near the PCSK1 gene exhibited a 

significant association with BMI at P<0.007 (=0.05/7, to account for seven tests for seven 

SNPs) (Supplementary Table 7). Although the effect sizes of these seven loci were smaller 

than those of the well established variants in the FTO, MC4R, and SEC16B loci (2.55–4.22 

percentile of standard deviation of normal deviate versus 5.51–7.92, Table 1), their effect 

sizes were larger and the explained variances were bigger among East Asians than among 

Europeans (Supplementary Table 7, data obtained from the GIANT consortium), with the 

exception of SNP rs4776970 in the MAP2K5 gene, which was independently identified by 
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both our study and the GIANT consortium. The explained variance of this SNP is 0.03% in 

Europeans (Supplementary Table 7) and 0.02% in Asians (Table 1).

As shown in Table 1, the FTO SNP had the biggest effect on BMI and accounted for the 

largest proportion of the variance (0.18%) in our study population, as compared with 0.34% 

estimated from the GIANT consortium8. Together, the 10 BMI loci that reached the 

genome-wide significance level explained 0.87% of the inter-individual variation in BMI. In 

order to provide a comparison with data from the GIANT consortium, we also estimated the 

inter-individual variation in BMI explained by all 22 loci that were associated with BMI at 

P<0.05, including the above 10 SNPs with a genome-wide significant association 

(Supplementary Table 4). These 22 loci explained 1.18% of the inter-individual variation in 

BMI in our study population (see ONLINE METHODS). These explained variances are 

lower than those reported by the GIANT consortium (1.45% for overall and 0.34% for 

FTO)8. Even after excluding SNPs within these 22 loci associated with BMI at P<0.05, the 

number of SNPs with small observed P values for an association with BMI still appeared to 

exceed the expected number (Figure 2), suggesting that additional BMI-related loci remain 

to be uncovered in these East Asian populations.

As shown in Supplementary Table 6, the associations with BMI for the SNPs in the four 

new loci at or near the CDKAL1, PCSK1, PAX6, and GP2 genes were consistent across 

studies. Stratified analyses by sex and population showed that associations for all four loci 

were similar between men and women (P for homogeneity test ≥0.0837) and across Chinese, 

Japanese, Korean, and Malay populations (P for homogeneity test ≥0.185). Meta-analyses 

performed after excluding 23,093 subjects with chronic disease (cancer or diabetes), found 

similar associations, although with less significant P values due to the decreased sample 

size. Meta-analyses of obesity as a dichotomous outcome (BMI≥27.5)14 also showed similar 

associations with odds ratios per allele ranging from 1.05 to 1.10, although the statistical 

power for this analysis was lower (Supplementary Table 8). Of the studies participating in 

our analyses, one stage II study (SCORM) was based on children (aged 9 years). Analysis of 

data from the SCROM study showed that all the four loci had an association with BMI 

consistent with the meta-analysis, and SNP rs652722 near the PAX6 gene was nominally 

significant (P=0.0335) (Supplementary Table 6). Additional analysis excluding the SCORM 

study showed little change in the results.

The consistency of the findings across studies and populations suggests that population 

structure alone cannot account for the significant associations we identified. In addition, 

multiple SNPs in LD with each other showed similar associations in the combined stage I 

and II data at each locus (Figure 3, Supplementary Table 9). This plus the finding of similar 

associations in the de novo replication suggest that our results are unlikely to have been 

caused by genotyping or imputation errors.

The locus represented by SNP rs9356744 (6p22.3) contains the CDKAL1 gene, which has 

been reported to affect type 2 diabetes risk in a number of studies15–17. A recent study 

reported an association between a CDKAL1 SNP, rs4712526, and BMI at age 8 years18. 

SNP rs4712526 was not included in our stage II replication set, but our stage I data for this 

SNP showed results consistent with the previous report (the minor allele A was associated 
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with lower BMI, P=1.75×10−4, Supplementary Table 10). The SNP we identified, 

rs9356744, is in strong LD with rs4712526 (r2 =0.87) in Asians. To date, no study has 

reported an association between CDKAL1 variants and adult BMI. Given the strong link 

between type 2 diabetes and obesity, we carried out additional analyses and reevaluated the 

association with BMI after excluding participants with type 2 diabetes. A similar association 

was observed, although the P value (P=4.01×10−8) was less significant (Supplementary 

Table 6). These results indicate that the association of rs9356744 with BMI cannot be 

explained by the inclusion of subjects with diabetes. Additionally, two SNPs in the CDKAL1 

gene (rs9356744 and rs9368222, Supplementary Table 9) are cis-expression quantitative 

trait loci (eQTLs) for the nearby E2F3 gene, a transcription factor and tumor suppressor19. 

Okada et al20 identified another SNP (rs2206734) in the CDKAL1 gene. While the data 

obtained from the GIANT consortium showed no significant association of our identified 

SNP rs9356744 with BMI (P=0.186, Supplementary Table 7), a nominally significant 

association (P=0.0049, Table 1 in Okada et al20) between rs2206734 and BMI was observed 

in the GIANT consortium data. This discrepancy could be explained by differences in 

genetic architecture between East Asians and Europeans. SNPs rs9356744 and rs2206734 

are in strong LD in Asians (r2=0.932) and in weaker LD in Europeans (r2=0.396). Taken 

together, the findings of our study and those of Okada et al, suggest that the functional SNP 

encoding risk for obesity is in LD with both rs9356744 and rs2206734 in East Asians but 

only with rs2206734 in populations of European ancestry. These differences in patterns of 

LD may facilitate further fine mapping to identify the functional variant by combining data 

across ethnic groups.

At the chromosome 5 locus (5q15), the top SNP, rs261967, along with 13 other SNPs that 

are in strong LD (r2=1.0) with it, all reached the genome-wide significance threshold in the 

combined stage I and II data (Supplementary Table 9). The nearest gene to this locus is 

PCSK1 (81.3kb away). A study using the candidate-gene approach reported two common 

non-synonymous coding variants (rs6234, rs6235) in the PCSK1 gene that were associated 

with obesity21. However, these two SNPs showed no association with BMI in our study 

(Supplementary Table 10). None of the 14 SNPs identified at this locus by our study are in 

LD with the previously reported PCSK1 SNPs (r2=0) according to HapMap Asian data. 

Although SNP rs261967 was not statistically significant in the stage III replication, it 

showed an association with BMI (P=0.00158, Supplementary Table 7) in the data provided 

by the GIANT consortium8. Therefore, we believe that 5q15 represents a novel genetic locus 

for BMI and the association is unlikely to be a false positive finding.

The nearest genes flanking the chromosome 16 locus (16p12.3) are GPR139 and GP2. 

Although only one SNP at this locus, rs12597579, reached the significance threshold of 

1×10−4 for stage I screening and was therefore included in our stage II replication, multiple 

SNPs in this region showed an association with BMI that nearly met this significance 

threshold (Figure 3d). One of those SNPs, rs12598578 (P=1.63×10−4, Supplementary Table 

10), which is in LD (r2=0.968 in Asians) with the identified SNP rs12597579, is highly 

conserved across species according to the TRANSFAC database22 and the common G allele 

creates a Ying-Yang transcription factor binding site (CONSITE http://www.phylogood.org/

consite).
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The top SNP at the chromosome 11 locus (11p13), rs652722, is approximately 66.0kb from 

the nearest gene, PAX6. However, SNP rs652722 exhibits no significant LD with SNPs in 

the PAX6 gene or its 5′ region according to HapMap and 1000 Genomes Project data. 

Nevertheless, rs652722 is in LD with several SNPs that are predicted to be eQTLs, 

according to the SCAN database23, for a number of genes potentially important in the 

regulation of body weight. Among them is expression of the MIF gene based on HapMap 

lymphoblastoid cell lines. High plasma levels of MIF are related to higher BMI24. Another 

gene associated with this eQTL is the PFKP gene, which, along with the FTO gene, has 

been associated with increased BMI, hip circumference, and weight2. The association of 

BMI with rs652722 did not reach the conventional genome-wide significance level; thus, 

additional replication is needed.

Among the multiple hits at the ADCY3/RBJ locus (Supplementary Table 4), SNP 

rs11676272 (P=5.88×10−10) is a predicted missense mutation and causes a Ser107Pro 

change in the ADCY3 gene. This change is predicted to be potentially deleterious by 

Polyphen (http://genetics.bwh.harvard.edu/pph/). This locus is also associated with 

expression of the POMC gene, which regulates energy balance, thus, the susceptibility to 

obesity8. In addition, SNPs rs11676272 and rs6545814 at this locus (r2 =0.98 for LD 

between the two SNPs in Asians) are both eQTLs for the ADCY3 gene25.

In conclusion, our study identified 10 BMI-associated loci at the genome-wide significance 

level (P<5.0×10−8), including seven loci previously identified by studies conducted among 

European-ancestry populations (FTO, SEC16B, MC4R, GIPR/QPCTL, ADCY3/RBJ, BDNF, 

and MAP2K5) and three novel loci in or near the CDKAL1,PCSK1, and GP2 genes. Three 

additional loci nearly reached the genome-wide significance threshold, including two 

previously identified loci in the GNPDA2 and TFAP2B genes and a new locus near PAX6, 

which all had P<5.0×10−7.Of the three previously reported loci at GIPR/QPCTL, ADCY3/

RBJ, and MAP2K5), conditional analyses with both SNPs at the same locus included in the 

same models showed that only the SNPs identified by our study were associated with BMI 

in East Asian populations. The representative SNP (rs261967) near the newly identified 

PCSK1 gene exhibited a significant association (P=0.00158) with BMI in a European 

population. As expected, the explained variances of the previously reported loci were 

generally lower in East Asians compared with those in Europeans, while the explained 

variances for the newly identified loci from this study were generally larger in East Asians 

than in Europeans. Although the specific mechanisms through which these loci affect BMI 

and obesity require further study, the identification of new loci may shed light on new 

pathways involved in obesity. In addition, fine mapping of multi-ethnic populations could 

lead to identification of causal links.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot showing the significance of associations between BMI and SNPs in the stage 

I data. The SNPs in previously reported genes showing significant associations with BMI 

are highlighted in red. The SNPs in newly identified loci are highlighted in blue.
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Figure 2. 
Quantile-quantile plot for the association of BMI with SNPs in all stage I data (black) and 

after excluding SNPs in the 22 loci (red) with an association at P<0.05 as shown in 

Supplementary Table 4.
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Figure 3. 
Regional plots of four novel loci identified in this study. SNPs are plotted by their position 

on the chromosome against their association (-log10 P value) with BMI using stage 1 

(GWAS meta-analysis) data. The name and P value for the top SNP shown on the plots is 

based on all combined data with full genomic control adjustment (Table 1). The P value in 

stage I for the same SNP is denoted by a purple circle and indicated with an arrow. 

Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD 

structure. The SNPs surrounding the top SNP are color-coded (see inset) to reflect their LD 

with the top SNP (using pair-wise r2 values from HapMap CHB + JPT). Genes and positions 

of exons, as well as directions of transcription, are shown below the plots (using data from 

the UCSC Genome Browser, genome.ucsc.edu). Plots were generated using LocusZoom.
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