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dence, especially the truncated p values, reduce this prob-
lem.  Conclusion:  We identified regions modestly linked with 
type 2 diabetes by summarizing results from 23 autosomal 
genome scans.  Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 Linkage studies are widely used to map genetic vari-
ants that predispose to human diseases. However, for 
complex diseases like type 2 diabetes for which many ge-
netic variants together with environmental and behav-
ioral factors are likely involved  [1] , mapping disease pre-
disposing variants has proven to be difficult. To date,  1 20 
genome wide linkage studies have been carried out to lo-
calize type 2 diabetes predisposing variants  [2–28] . In 
only a few cases have individual studies provided signifi-
cant linkage results  [2, 8, 12, 23] .

  A likely explanation for these mixed results is that in-
dividual type 2 diabetes linkage studies are underpow-
ered to detect predisposing variants with small effects. 
One approach to address this limitation is to carry out a 
joint analysis of the primary linkage data from a large 
number of studies. While a joint analysis of primary data 
is in principle an attractive approach to increase sample 
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 Abstract 

  Background:  The International Type 2 Diabetes Linkage 
Analysis Consortium was formed to localize type 2 diabetes 
predisposing variants based on 23 autosomal linkage scans. 
 Methods:  We carried out meta-analysis using the genome 
scan meta-analysis (GSMA) method which divides the ge-
nome into bins of  � 30 cM, ranks the best linkage results in 
each bin for each sample, and then sums the ranks across 
samples. We repeated the meta-analysis using 2 cM bins, 
and/or replacing bin ranks with measures of linkage evi-
dence: bin maximum LOD score or bin minimum p value for 
bins with p value  ! 0.05 (truncated p value). We also carried 
out computer simulations to assess the empirical type I error 
rates of these meta-analysis methods.  Results:  Our analyses 
provided modest evidence for type 2 diabetes-predisposing 
variants on chromosomes 4, 10, and 14 (using LOD scores or 
truncated p values), or chromosome 10 and 16 (using ranks). 
Our simulation results suggested that uneven marker den-
sity across studies results in substantial variation in empirical 
type I error rates for all meta-analysis methods, but that 2 cM 
bins and scores that make more explicit use of linkage evi-
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size and statistical power, it is not always possible to ob-
tain data from all relevant studies. Differences in study 
populations, disease definition, and genetic markers gen-
otyped also might lead to problems with this analytic ap-
proach. Therefore, meta-analysis of study results often is 
chosen as an alternative to joint analysis of the primary 
data to validate regions suggested by one or more smaller 
studies and to localize susceptibility variants suggested 
by weak but consistent evidence across multiple studies.

  In this paper, we describe results of meta-analyses of 
23 autosomal genome scans from the International Type 
2 Diabetes Linkage Analysis Consortium (csg.sph.umich.
edu/consortium/). This Consortium was formed to bring 
together groups around the world who are carrying out 
linkage studies of type 2 diabetes. Sixteen research groups 
have participated in the Consortium and have contrib-
uted autosomal genome scan data on a total of 23 sam-
ples. These studies provided an excellent basis for carry-
ing out a large scale meta-analysis for type 2 diabetes.

  We describe results for a genome scan meta-analysis 
(GSMA)  [29]  of the Consortium data. In GSMA, chromo-
somes are divided into bins of approximately equal length 
( � 30 cM), which are then ranked within each genome 
scan by their maximum linkage signal. The ranks are 
summed across genome scans at each bin to form the test 
statistics, with significance evaluated analytically or by 
permutation.

  GSMA provides a simple means for combining data 
across multiple linkage studies. However,  � 30 cM bins 
provide only limited resolution, and ranking bins results 
in information loss, since the highest ranking bins may 
represent very different levels of linkage evidence across 
studies, and lower ranking bins likely provide limited 
and nearly equivalent linkage evidence within or across 
studies. Therefore, we also describe modifications of 
GSMA that address these limitations by considering 
more direct measures of linkage evidence and smaller 
bins, and report the results of these analyses on the Con-
sortium data. Specifically, we repeat the meta-analysis 
using 2 cM rather than  � 30 cM bins, and use alternative 
scores for a bin’s linkage evidence, including maximum 
bin LOD score and truncated minimum bin linkage p 
value. The latter is a modified version of Fisher’s method 
 [30]  suggested by Zaykin et al.  [31] . Since Fisher’s method 
is known to have low power in the case in which many 
tests are not significant  [32] , Zaykin et al. suggested that 
only p values less than some pre-chosen significance lev-
el be considered. This approach acknowledges that a 
broad range of p values are nearly equivalently uninfor-
mative, notably the approximate half of the genome for 

which the maximum LOD score is zero. Finally, we carry 
out computer simulations under null hypothesis of no 
linkage to compare the type I error rates of these alterna-
tive methods.

  Materials and Methods 

 Samples and Sample-Specific Maps 
 We carried out meta-analysis on the results of autosomal link-

age genome scans for 23 samples ( table 1 ). Invitations were sent to 
all research groups known to be conducting genome-wide linkage 
studies of Type 2 diabetes, and the 23 samples are from the groups 
that agreed to participate. Detailed information about these sam-
ples is provided in the original references ( table 1 ). These samples 
include a total of 9,455 affected individuals, and there is no known 
overlap between samples. For each sample, study investigators 
provided us with the marker maps (genetic markers and map posi-
tions in cM) used for the evaluation of linkage evidence, and files 
that gave LOD scores and corresponding chromosomal positions. 
LOD scores were evaluated at equally-spaced points along each 
chromosome (15 samples), or at each genetic marker position and 
at a fixed number of equally-spaced points between each marker 
pair (8 samples). There was substantial variability in genetic mark-
ers used and some variability in marker density across the 23 sam-
ples ( table 1 ). Different groups used different statistical methods 
to evaluate the linkage evidence, including ASM LOD scores  [33] , 
NPL LOD scores  [34] , and variance component LOD scores  [35] .

  Map and LOD Score Conversion 
 All meta-analysis methods we applied assume that linkage re-

sults are reported for the same genetic map, or at least that mark-
er maps are well aligned so that a bin corresponds to the same 
chromosomal region in each study. To minimize deviations from 
this assumption, we generated a single master genetic map based 
on the sex-averaged deCODE  [36]  and Marshfield  [37]  genetic 
maps using linear interpolation. For each marker M in a study-
specific map, we determined its position  x  on the master map ac-
cording to the following procedures. First, if M was included in 
the deCODE map at position  d ,  x  =  d . Second, if M was not in the 
deCODE map, but was in the Marshfield map at position  m , we 
identified the nearest flanking markers for M which were in both 
the deCODE and Marshfield maps. If the flanking marker posi-
tions were  d  1   !   d  2  and  m  1   !   m  2  in the deCODE and Marshfield 
maps, respectively, then by linear interpolation,  x  =  d  1  + ( d  2  –  d  1 ) 
( m  –  m  1 )/( m  2  –  m  1 ). Third, if M was in neither the deCODE nor 
Marshfield maps, we used linear interpolation based on base pair 
distance in the August 2001 freeze of the Human Genome Project 
Working Draft  [38] . 3,889 unique markers could be placed using 
this interpolation scheme; 96 markers could not be placed and 
were discarded.

  We rescaled each study’s LOD score evaluation positions in 
the same manner and calculated linear interpolated LOD score 
values at those evaluation positions. To obtain the interpolated 
LOD score  L  at position x, we found the two nearest flanking po-
sitions ( x  1   !   x   !   x  2 ) at which LOD scores  L  1  and  L  2  were reported 
and calculated the interpolated LOD score as  L  =  L  1  + ( L  2  –  L  1 )
( x – x  1 )/( x  2  –  x  1 ). At chromosome ends, we used the LOD score at 
the nearest reported point on that chromosome.
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Table 1. Characteristics of Type 2 diabetes genome scans

Study Population # affected individuals Marker
densitya

cM/marker

Linkage
statistic

Ref. Subgroupb

meta-analysis simulations

FUSION 1 European
(Finland)

1,155 605 8.4 ASM
LOD

11 European/
European
AmericanFUSION 2 European

(Finland)
585 389 8.1 ASM

LOD
25

University of Lund Botnia European
(Finland)

233 110 4.6 NPL 3

University of Lund Sibs European
(Finland)

1,150 507 6.4 NPL 15

Pasteur Institute Lille European
(France)

433 327 8.8 ASM
LOD

13

United Kingdom European
(UK)

1,223 700 9.0 ASM
LOD

17

Washington University Israeli
Ashkenazi

472 307 7.1 NPL 16

University of Arkansas EA European
American

127 127 7.4 NPL 8

GENNID EA1 European
American

188 150 7.5 ASM
LOD

10, 56

GENNID EA2 European
American

225 121 8.5 ASM
LOD

10, 56

Amish Family Diabetes Study European
American

55 55 9.2 NPL 21

AADM West
African

402 402 9.1 NPL 26 African/
African
AmericanUniversity of Arkansas AA African

American
341 113 8.7 NPL

GENNID AA African
American

124 61 8.8 ASM
LOD

10, 56

Wake Forest University African
American

631 407 9.1 ASM
LOD

24

SFBR Mexican
American

74 35 10.2 Variance
component
LOD

55 Mexican
American

University of Chicago 1 Mexican
American

424 206 6.9 NPL 2

GENNID MA1 Mexican
American

173 123 7.4 ASM
LOD

10, 56

GENNID MA2 Mexican
American

137 100 8.9 ASM
LOD

10, 56

U Texas Health Science
Center at San Antonio

Mexican
American

440 64 10.1 Variance
component
LOD

7

NIDDK Phoenix Native
American

625 529 6.5 NPL 5

University of Chicago 2 Japanese 188 188 8.4 NPL 22

GENNID JA Japanese
American

50 19 8.9 ASM
LOD

10, 56

a Marker densities were calculated based on the master genetic maps (see Materials and Methods).
b Subgroup denotes the group of studies on which the subgroup analyses were performed.
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  Linkage Meta-Analysis Methods: GSMA 
 To apply GSMA, we divided the joint autosomal maps into 115 

bins of width  � 30 cM. Ideally, all bins would be of equal width 
and any linkage peak would fall within a single bin. In fact, chro-
mosome map lengths are not even multiples of 30 cM, and given 
23 studies, it is impossible to assign bins without splitting some 
linkage peaks. For simplicity, for a chromosome of length  L  cM, 
we chose bin width  L / b  cM, with  b  chosen to make  L / b  as near to 
30 as possible.  Table 2  displays the numbers of bins and corre-
sponding bin widths for each of the 22 autosomes. Bin widths 
varied from 26.8 cM (chromosome 17) to 36.0 cM (chromosome 
22).

  For each genome scan, we assigned ranks to bins by maximum 
linkage signal, so that the bin with the largest maximum linkage 
signal for that genome scan was assigned rank 115, the second 
highest rank 114, and so forth. To account partially for differ-
ences in study sample sizes, we calculated the score for bin  b  as 
S( b ) =  �  i  w  i  R  i ( b ), where  w  i  is the square root of number of affected 
individuals in study  i  and  R  i ( b ) is the rank of bin  b  in study  i . To 
estimate the significance for a particular bin score S( b ), we used 
a permutation approach. Specifically, we generated a large num-
ber of replicate permutations of the ranks of bins within each 
study, recalculated the scores S( b �  ) over all bins  b �   in the genome, 
and pooled these scores over all permutations and bins to estimate 
the distribution of S( b ). For a bin  b  with observed score S( b ), we 
estimated its p value as the proportion of observed S( b �  ) values 
greater than or equal to the observed S( b ).

  Linkage Meta-Analysis Methods: Alternative Scoring Schemes 
 To reflect the strength of linkage results more directly, we con-

sidered two scoring schemes as alternatives to weighted ranks. 
First, we used the maximum LOD scores of bins and calculated 
S( b ) =  �  i max  LOD  i ( b ), where max  LOD  i ( b ) is the maximum LOD 
score in bin  b  in study  i . Because the reported linkage statistics 
(LOD scores) from the 23 studies ( table 1 ) all have the same as-
ymptotic distribution under the null hypothesis (1/2 : 1/2 mixture  
 of  �  2  distribution with 1   degree of freedom and point mass   at 0, 
divided by 2 ln10  [39] ), we were able to combine the reported LOD 
scores directly from individual studies. Had this not been the 
case, transformation would have been required to put the linkage 
statistics on a common scale.

  Second, we calculated the minimum p values of bins,  p  i ( b ) = 
1/2 {1 –  �  2  [2ln10 max  LOD  i ( b )]}, where  �  2 ( � ) is the cumulative chi-
square distribution with 1 degree of freedom. We then truncated 
the minimum p values bins at 0.05

( )
( ) ( )

( )
, if 0.05

1, if 0.05
i

it

p b p b
p b

p b
=

�

�

  and calculated S( b ) =  �  i  – log 10 [ p  it ( b )]. Truncating p values in this 
way meant that any p  1  0.05 was treated as equally uninformative. 
We evaluated the significance of these two scores by permutation 
as described above for ranks. 

 Linkage Meta-Analysis Methods: Bin Width 
 To obtain higher resolution than that provided by  � 30 cM 

bins, we repeated all three meta-analysis methods using bins of 
width 2 cM, yielding 1,758 bins for the autosomal genome ( ta-
ble 2 ).

  Subgroup Meta-Analysis 
 We carried out subgroup analyses on subsets of studies de-

fined by the historical geographic ancestry of their samples. We 
did so for European/European American, African/African Amer-
ican, and Mexican American ( table 1 ).

  Simulation 
 To compare the meta-analysis methods, we obtained family 

structures, genotypes, marker maps, and marker allele frequen-
cies for each genome scan from each of the participating research 
groups. We then used gene dropping to evaluate the validity of 
the six combinations of three scoring schemes and two bin 
widths, and to evaluate the impact of differing sets of markers 
used in the different studies and uneven marker densities within 
each study.

  We simulated pedigree data for the 23 studies under the null 
hypothesis of no linkage using MERLIN version 0.10.3  [40] . To 
reduce the computation load, we reduced the complexity of some 
family sets. Specifically, we restricted samples to nuclear families, 
and deleted unaffected siblings as needed so that no nuclear fam-
ily had  1 8 siblings. The numbers of individuals used in the simu-
lations for each of the 23 studies are listed in  table 1 . We consid-
ered three simulation conditions. In simulation 1, to evaluate the 
type I error rates in our meta-analysis, we generated genotype 
data for each study based on the marker map for that study. In 

Table 2. Estimated chromosome lengths in the master map and 
numbers of bins

Chromo-
some

Chromosome
length, cM

�30 cM bins 2 cM bins

number
of bins

bin width
cM

number
of bins

1 275 9 30.6 138
2 260 9 28.9 130
3 224 7 32.0 112
4 210 7 30.0 105
5 206 7 29.4 103
6 190 6 31.7 95
7 184 6 30.7 92
8 168 6 28.0 84
9 162 5 32.4 81

10 178 6 29.7 89
11 154 5 30.8 77
12 172 6 28.7 86
13 130 4 32.5 65
14 124 4 31.0 62
15 134 4 33.5 67
16 132 4 33.0 66
17 134 5 26.8 67
18 122 4 30.5 61
19 116 4 29.0 58
20 100 3 33.3 50
21 68 2 34.0 34
22 72 2 36.0 36

Total 3,515 115 30.6 1,758
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simulation 2, we generated genotype data for all 23 studies based 
on the marker map for one study (FUSION 1  [11] ) to eliminate the 
difference between individual studies. In simulation 3, we gener-
ated genotype data for all 23 studies based on an artificial map in 
which each autosome is 150 cM long, markers are evenly spaced 
at 10 cM, and each marker has four equally-frequent alleles. Com-
pared to results in simulation 2, simulation 3 allows us to further 
assess the impact of (uneven) marker density and informativeness 
on type I error rates.

  For each of the three simulation settings, we generated 1,000 
simulated datasets, each comprised of 23 samples, as in the Con-
sortium study. We carried out affected sibling pairs (ASP) linkage 
analysis with LOD scores evaluated every 2 cM based on the linear 
model of Kong and Cox  [33]  using MERLIN, version 0.10.3  [40] . 
We carried out meta-analysis for each of our statistics computed 
for  � 30 and 2 cM bins, and estimated significance levels (P i ) by 
permutation using 1,000 permutation iterates per simulated data-
set. We estimated the empirical p values for each bin as the pro-
portion of the P i ’s less than 0.05 at the corresponding bin for the 
1,000 simulation replicates.

  Results 

 Meta-Analysis of Consortium Data 
 We first carried out meta-analyses using  � 30 cM bins. 

In this analysis, two regions showed significant results at 
the 0.01 level: chromosome 10 at 119–148 cM (p TP  = 
0.0020) and chromosome 14 at 31–62 cM (p LOD  = 0.0051, 
p TP  = 0.0068). All positions here and later are in the de-
CODE map. Although the signals did not meet genome-
wide significance, they did meet genome-wide suggestive 
significance, that is, one false positive per genome scan, 
based on Bonferroni correction. Interestingly, the chro-
mosome 10 region includes the transcription factor 7-like 
2 ( TCF7L2 ) gene  [41] , variants in which are known to in-
fluence type 2 diabetes susceptibility.

  We next performed the meta-analyses for 2 cM bins to 
obtain finer resolution ( table 3 ,  fig. 1 ). Consistent with 
the 30 cM bin analyses, the strongest results for the com-
bined data for the LOD score (p LOD ) and truncated p val-
ue (p TP ) based analyses were obtained on chromosome 14 
at  � 58 cM (p LOD  = 0.0011, p TP  = 0.0017), chromosome 10 
at  � 138 cM (p LOD  = 0.0021, p TP  = 0.0019), about 4 cM 
from  TCF7L2 . Other interesting results were obtained on 
chromosome 4 at  � 76 cM (p LOD  = 0.0048, p TP  = 0.0055) 
and  � 176 cM (p LOD  = 0.0129, p TP  = 0.0074), but these do 
not meet the genome-wide suggestive significance based 
on the Bonferroni correction. All these regions also were 
identified as being of interest in the weighted rank-based 
analysis (p RANK   !  0.10), with the chromosome 10 region 
the second strongest rank-based result (p RANK  = 0.0055). 
 Table 4  lists the studies that made notable contributions 

(LOD  1 1.0) to each of these meta-analysis linkage signals. 
Notably, the chromosome 2 signal at 258 cM is 1–2 cM 
from calpain-10  [42] . Also, the chromosome 3 signal at 
 � 60 cM is  � 20 cM from the peroxisome proliferator-ac-
tivated receptor gamma ( PPARG   [43] ) locus.

  Combining results over all studies implicitly assumes 
that genetic mechanisms and allele frequencies are con-
sistent across all groups. In an attempt to decrease ge-
netic heterogeneity, we re-ran the analysis on geographi-
cally defined subgroups: European/European American, 
African/African American, and Mexican American ( ta-
ble 1 ). The regions identified by at least one method (LOD 
score, truncated p value, and/or rank) using  � 30 cM bins 
(significant at the 0.01 level) are listed in  table 5 . Many of 
these regions identified by subgroup analyses were not 
identified in the full analyses, consistent with either more 
power with more homogeneous subsets of the data, or an 
increased false positive rate owing to more tests. Among 

Table 3. Meta-analysis results of consortium data using 2 cM bins: 
regions (cM) with p value < 0.05

Chr Rankw LOD TPM

1 58–60 (0.049) 58–60 (0.026)
162–166 (0.013)

2 0–20 (0.020)
44–54 (0.024)

258 (0.038) 258 (0.025)
3 58–64 (0.021) 60–62 (0.044)

180–186 (0.013)
4 72–84 (0.0048) 68–86 (0.0055)

138–140 (0.028)
172–182 (0.040) 170–180 (0.013) 170–190 (0.0074)

5 60–66 (0.039) 54–60 (0.040)
6 114–134 (0.018) 146–160 (0.016) 146–158 (0.017)
7 28–44 (0.022)
8 34–40 (0.019)
9 24–34 (0.023) 34 (0.049)
10 110–138 (0.0055) 122–156 (0.0021) 122–158 (0.0019)
14 48–68 (0.0011) 46–70 (0.0017)

98–106 (0.042) 100–106 (0.020)
16 38–88 (0.0020)
17 34–44 (0.012) 40–52 (0.023)
20 4–12 (0.026) 60–64 (0.039)

34 (0.039)
21 46–48 (0.044)
22 44–48 (0.037)

The results are presented separately for different scoring 
schemes: weighted ranks (Rankw); maximum LOD score (LOD); 
truncated minimum p value (TPM). The best p values within 
these regions are given in parentheses.
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  Fig. 1.  Meta-analysis results of the IT2DLAC data using 2 cM bins. 
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these results, the analyses of the African/African Ameri-
can group identified a region on chromosome 6 at 127–
158 cM (p RANK  = 0.0012, p LOD  = 0.0002, p TP  = 0.0004) 
with p values almost reaching the genome-wide signifi-
cance level using the Bonferroni correction. Two of the 
four studies included in this subgroup showed linkage 
signals which may contribute to this finding: GENNID 
AA samples have an interpolated LOD score of 2.45 at 
 � 148 cM on the same chromosome, and Wake Forest 
University samples have an interpolated LOD score of 
2.25 at  � 162 cM. Analyses using 2 cM bins showed the 
strongest signal at  � 152 cM in this region (p RANK  =
5.5  !  10 –5 , p LOD  = 4.3  !  10 –5 , p TP  = 5.7  !  10 –5 ).

  Results for the several meta-analysis methods are cor-
related. To assess this correlation, we calculated the Pear-
son correlations on the logarithm of the p values between 
the different pairs of methods for the analysis of all 23 
genome scans. Not surprisingly, the correlation is stron-
gest for the methods based on LOD scores and truncated 
p values (r = 0.88 and 0.89 for 2 and  � 30 cM bins, respec-
tively), and less strong for those based on LOD scores and 
weighted ranks (0.55 and 0.63), or p values and weighted 
ranks (0.36 and 0.54).

  Simulation Results: Type I Error 
 To assess the validity of the different meta-analysis 

methods, we carried out a computer simulation. Results 
are summarized for each meta-analysis score and bin 
width ( table 6 ). The bin-wise type I errors are calculated 
as the proportions of simulation replicates with p value  !  
0.05, and are then averaged over all bins on the genome. 
Given study-specific maps with different marker densi-
ties (simulation 1) and  � 30 cM bins, the average type I 
error rates are modestly inflated beyond the nominal 0.05 
level, but the point-wise type I errors can be either in-
flated or deflated, resulting in fairly large variations 
among bins. Inflation and variation are greatest for ranks 
and least for truncated p values, and greater for  � 30 cM 
bins than for 2 cM bins. Given a constant map across all 
studies (simulation 2), inflation of the average type I error 
rates and the variations are reduced, particularly for 2 cM 
bins. The truncated p value based method still outper-
forms the other two in both average type I error rates and 
variation. The inflation is eliminated for 2 cM bins and 
the variations are greatly reduced for all the methods, 
comparable to those obtained in simulation 3. Given the 
artificial setting of identical length chromosomes and 

Table 4. Individual studies with substantial contributions to linkage signals of meta-analysis

Region Study Positiona, cM LOD, scoreb Ref.c

Chromosome 4
(�76 cM)

AADM 76 1.76 15
University of Arkansas AA 76 2.77
GENNID MA1 104 1.15
University of Lund Sibs 92 1.44

Chromosome 4
(�176 cM)

University of Arkansas AA 158 1.11 7, 16, 19
University of Lund Botnia 180 1.00
Washington University 178 1.26

Chromosome 10
(�138 cM)

University of Arkansas AA 154 1.04 7, 17, 25
FUSION 2 136 1.11
GENNID JA 136 1.06
United Kingdom 108 1.98
U Texas Health Science Center at San Antonio 150 2.88

Chromosome 14
(�58 cM)

AADM 60 1.75 21, 25
University of Arkansas AA 60 1.52
FUSION 2 58 1.98
GENNID AA 88 1.08
GENNID EA2 38 1.07
SFBR 54 1.53

a The positions are in the deCODE map, where a local maximum LOD scores are achieved in the individual study.
b The LOD scores are based on linear interpolation of original LOD scores in the individual study (see Materials and Methods).
c Publications which showed strong or modest linkage signal (LOD score greater than 1) close to the corresponding regions.  They 

may or may not be consistent with the data applied in our meta-analyses.



 Guan    et al.
 

Hum Hered 2008;66:35–4942

identical marker maps across studies (simulation 3), type 
I error rates are consistent with nominal levels for all 
methods. Similar results were obtained evaluated for ge-
nome-wide suggestive type I error rates.

  While simulation 1 tries to reproduce the scenario of 
our meta-analyses of the consortium data, simulation 2 
unifies the sets of markers used in different studies. Be-

cause the simulations were carried out under the null hy-
pothesis of no linkage, the positions of markers should 
not affect the linkage or meta-analysis results. Difference 
in marker sets in fact reflects the variation of marker dis-
tributions across studies, and then impacts the results 
through effect of marker densities. Elimination of this 
difference gives us a better opportunity to evaluate the 

Table 6. Averaged Size (8 standard deviations) over all bins on the genome for meta-analysis methods under different simulation set-
tings: simulation based on actual studies’ marker maps (setting 1), based on a single study (FUSION 1) marker map (setting 2), and 
based on an artificial, evenly spaced marker map (setting 3)

Significance Method Setting

1 2 3

Bin-wisea Rankw 30 cM 0.05880.038 0.05580.027 0.05180.007
LOD 0.05580.030 0.05480.026 0.05180.008
TPM 0.05380.026 0.05280.021 0.05080.008
Rankw 2 cM 0.05280.024 0.05180.007 0.05080.007
LOD 0.05180.017 0.05180.008 0.05080.007
TPM 0.05180.014 0.05080.007 0.05080.007

Genome-wide Rankw 30 cM 1.181.1 (!10–2) 1.080.74 (!10–2) 0.9580.32 (!10–2)
suggestiveb LOD 1.080.84 (!10–2) 0.9980.72 (!10–2) 0.9380.32 (!10–2)

TPM 0.9980.69 (!10–2) 0.9380.58 (!10–2) 0.9380.28 (!10–2)
Rankw 2 cM 0.7181.1 (!10–3) 0.5680.78 (!10–3) 0.7180.83 (!10–3)
LOD 0.5180.77 (!10–3) 0.5780.77 (!10–3) 0.6080.74 (!10–3)
TPM 0.5180.79 (!10–3) 0.5780.81 (!10–3) 0.6180.77 (!10–3)   

The results are presented separately for different scoring schemes: weighted ranks (Rankw); maximum LOD score (LOD); trun-
cated minimum p value (TPM).

a Bin-wise significance level is .05.
b Genome-wide suggestive significance levels are 1/(number of bins) using the Bonferroni correction, which are 0.87 ! 10–2 (set-

ting 1 and 2) and 0.91 ! 10–2 (setting 3) for 30-cM bins, and 0.57 ! 10–3 (setting 1 and 2) and 0.60 ! 10–3 (setting 3) for 2-cM bins.

Table 5. Regions of interest in subgroup analyses using �30 cM bins

Subgroup Chromosome Region, cM pRANK pLOD pTP

European/European American 6 95–127 0.0039 0.032 0.041

African/African American 4 60–90 0.153 0.0017 0.0044
6 127–158 0.0012 0.0002 0.0004
6 158–190 0.0017 0.0028 0.0035

10 119–148 0.0069 0.055 0.0088
14 62–93 0.0014 0.0013 0.0025
16 33–66 0.0038 0.036 0.019

Mexican American 3 64–96 0.0002 0.0017 0.0016
15 34–67 0.0033 0.040 0.036

The regions include bins identified by at least one of the three methods at 0.01 significance level.
The results are presented separately for different scoring schemes: weighted ranks (pRANK); maximum LOD score (pLOD); trun-

cated minimum p value (pTP).
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effect of uneven marker densities. As an example, the re-
sults of simulation 2 using 30 cM bins (and truncated p 
values as the test statistics) are shown in  figure 2 . The 
graph shows that several bins on chromosome 6, 11, 12, 
and 20 have inflated type I error rates  1 0.10, and the two 
bins on chromosome 22 have empirical type I error rates 
 ! 0.02. This observation corresponds to the unusually 
high or low marker densities on the five chromosomes. 
The average marker distances on chromosomes 6, 11, 12, 
20, and 22 are 5.3, 5.9, 5.9, 3.9, and 22.6 cM, respectively, 
compared to 8.5 to 11.7 cM on other chromosomes, sug-
gesting that bins with higher marker densities tend to 
produce larger test statistics and more false-positive re-
sults. In contrast, for the 2 cM bins, the p values in these 
regions vary between 0.030 and 0.073, with most values 
close to the nominal value of 0.05. In simulation 3, when 
the markers are evenly spaced on the genome, inflation 
of the average type I errors disappears and variation is 
substantially reduced. This suggests that uneven marker 
spacing may play a role in departures of type I errors from 
nominal levels. Furthermore, the somewhat better per-
formance of 2 cM compared to  � 30 cM bins may reflect 
a dilution of the effect of uneven marker density by the 
increased number of bins.

  In simulation 1, the four regions (chromosome 4 at 
 � 76 cM and at  � 176 cM, 10 at  � 138 cM, and 14 at  � 58 
cM) identified in the meta-analyses have acceptable em-
pirical type I errors between 0.037 and 0.086 for all the 
three methods when using 2 cM bins ( table 7 ). These re-
sults suggest that linkage evidence may be modestly over-
stated on chromosomes 4 ( � 76 cM) and 14 ( � 76 and 
 � 176 cM), and modestly understated on chromosome 10 
( � 138 cM).

  Discussion 

 This meta-analysis of all 23 type 2 diabetes autosomal 
genome scans provides modest evidence for linkage on 
several chromosomes, notably 14 ( � 58 cM in the de-
CODE map), 10 ( � 138 cM), 4 ( � 76 cM and  � 176 cM), 
and 16 ( � 44 cM). When we restricted our attention to 
geographically/racially defined subgroups in an effort to 
decrease genetic heterogeneity, we found evidence for 
several additional chromosomal regions, notably chro-
mosomes 1 ( � 164 cM in Europeans/European Ameri-
cans, and  � 144 cM in Africans/African Americans), 2 
( � 246–258 cM in Mexican Americans), and 6 ( � 116 cM 
in Europeans/European Americans, and  � 152 cM in Af-
ricans/African Americans). Many of these regions are 
only identified in one subgroup and so may reflect true 
etiologic differences by group or a combination of false 
positives and false negatives.

  Two regions which have received considerable atten-
tion in the type 2 diabetes genetic linkage literature ow-
ing to repeated reports of genetic linkage are 1q [begin-
ning with  5, 8 ] and 20q [beginning with  4, 44, 45 ]. While 
neither of these regions was among the most interesting 
in this meta-analysis, both yielded some evidence for 
linkage: for chromosome 1 at  � 166 cM, p TP  = 0.013, and 
for chromosome 20 at  � 62 cM, p TP  = 0.071 and p LOD  = 
0.039. In subgroup analyses on European/European 
American samples both regions are significant at the 0.01 
level, but are not interesting in African/African Ameri-
can or Mexican American samples (all p  1  0.10).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817 19 20 21220

0.05

0.1

0.25

Si
ze

0 20 40 60 80 100
Bin

Truncated p value (30 cM)

  Fig. 2.  Sizes of bins in simulation 2 using 30 cM bins and trun-
cated p values as the test scores. 

Table 7. Sizes at four interesting regions for meta-analysis meth-
ods (using 2 cM bins) under simulation setting 1 (simulation 
based on actual studies’ marker maps)

Chromosome

4
�76 cM

4
�176 cM

10
�138 cM

14
�58 cM

Rankw 0.086 0.070 0.037 0.063
LOD 0.080 0.060 0.040 0.078
TPM 0.067 0.049 0.039 0.071

The results are presented separately for using different scoring 
schemes: weighted ranks (Rankw); maximum LOD score (LOD); 
truncated minimum p value (TPM).
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  Several genome-wide association studies  [46–51]  have 
recently been published on susceptibility loci for type 2 
diabetes. Except the  TCF7L2  gene which is identified by 
all the six studies and is one of the strongest signals in our 
meta-analysis, the other main signals found in these as-
sociation studies are not close to the signals in meta-anal-
ysis. But there are intriguing overlaps between some 
modestly associated single nucleotide polymorphisms 
(SNPs) and our meta-analysis peaks. For example, our 
signal on chromosome 4 ( � 76 cM) is  � 1 Mb from SNP 
rs282705 reported by Sladek et al.  [46]  (p = 9.0  !  10 –6 ), 
and 5 Mb from SNP SNP_A-4299379 reported by Saxena 
et al.  [48]  (p = 7.2  !  10 –5 ). Our signal on chromosome 14 
( � 58 cM) is  � 8 Mb from SNPs rs1256517 and rs1256526 
in Sladek et al.  [46]  (p = 4.7  !  10 –6 ). Our signal on chro-
mosome 16 ( � 44 cM) is  � 1 Mb from a modestly associ-
ated SNP rs724466 in Steinthorsdottir et al.  [50]  (p = 2.7 
 !  10 –5 ), and  � 8 Mb from one of a modestly associated 
SNP rs10521095 in Scott et al.  [47]  (p = 3.8  !  10 –5 ).

  Demenais et al.  [52]  conducted a meta-analysis of four 
type 2 diabetes linkage scans of European samples using 
the GSMA method with unweighted ranks. These four 
studies: University of Lund Botnia, University of Lund 
Sibs, United Kingdom, and Pasteur Institute Lille, are in-
cluded in our analyses, although with slight differences 
in the samples. Demenais et al. found six regions on the 
genome to be nominally significant at 0.05 level. Their 
region on chromosome 16 (29–58 cM) directly overlaps 
one of our top four signals (chromosome 16  � 44 cM). 
Four more of their regions on chromosomes 1 (145–174 
cM), 2 (58–87 cM), 6 (116–145 cM), and 17 (29–58 cM) 
are also at least nominally significant at the 0.05 level in 
our analyses ( table 3 ), and the chromosome 1, 16, and 17 
regions also are significant at the 0.01 level in our sub-
group analyses of 11 European/European American 
samples ( table 5 ).

  While these results are of interest, it should be noted 
that the evidence for linkage at individual locations and 
overall is at best modest. For the  � 30 cM bins, the small-
est p values for the truncated p value, LOD score, and 
weighted rank methods were 0.0020, 0.0051, and 0.0138, 
respectively. None of these p values met the threshold for 
genome-wide significance using the Bonferroni correc-
tion. Indeed, among 115 tests based on the  � 30 cM bins, 
2 were significant at the 0.01 level and 3 at the 0.05 level 
for the truncated p value method; 1 and 6 for the analyses 
based on LOD scores, and 0 and 9 for those based on 
weighted ranks. 1.15 and 5.75 such results would be ex-
pected at the 0.01 and 0.05 levels in the absence of linkage 
information. Similarly, the minimum p value observed 

for 2 cM bins for the truncated p value based meta-anal-
ysis was 0.0017, while those for the LOD score and weight-
ed rank based analyses were 0.0011 and 0.0020. Among 
1,758 tests based on the 2 cM bins, 18 were significant at 
the 0.01 level and 94 at the 0.05 level for the truncated p 
value method; these numbers were 18 and 83 for the anal-
yses based on LOD scores and 8 and 90 for those based 
on weighted ranks. 17.58 and 87.90 such results would be 
expected at the 0.01 and 0.05 levels even in the absence of 
linkage information. Again, no excess of small p values 
was observed.

  The GSMA method proposed by Wise et al.  [29]  pro-
vides an approach to combine the results of multiple link-
age studies to identify susceptibility loci for the disease of 
interest. It suggests the use of ranks to unify various mea-
sures of linkage results and the use of bins ( � 30 cM) to 
obtain independence of test statistics. Our simulations 
have shown that GSMA results in appropriate type I error 
rates under the conditions of homogeneous marker sets 
and constant marker density (simulation 3), but results in 
modestly inflated type I error rates on average and some 
variability in these rates by location under more realistic 
settings (simulations 1 and 2). The alternative scoring 
schemes of maximum LOD scores and truncated p values 
provided similar but slightly better type I error control. 
The truncated p value method not only gives the best av-
erage type I error rate compared to the nominal value, but 
also the smallest standard deviations among the methods 
using the three scores ( table 6 ).

  Ranks allow the advantage of easy conversion of dif-
ferent types of linkage scores (such as LOD scores, mean 
IBD sharing, or p values) into a uniform scale, but do not 
directly reflect the strength of the corresponding linkage 
signals. Even under the null hypothesis of no linkage 
anywhere in the genome, high ranks still must be as-
signed and often will be assigned to regions with little 
evidence for linkage. Since most linkage studies report 
statistics that are of (approximately) known asymptotic 
distribution, conversion to a common scale such as LOD 
scores or p values should usually be possible, as was the 
case for the 23 samples in the Consortium data.

  Analysis based on LOD scores preserves the magni-
tude of the linkage results from each study. Analysis 
based on truncated p values emphasizes the gap between 
‘significant’ (smaller than a cut-off value) and ‘insignifi-
cant’ (greater than a cut-off value) results by replacing the 
latter by the extreme value of 1. Both methods make use 
of more information than the ranks. In addition, since 
the bins falling into the same linkage peak are obviously 
correlated, the truncated p value based analysis narrows 
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the width of the peak by truncating ‘insignificant’ results 
into the baseline and hence reduces the extent of correla-
tion among the test statistics. This may explain the better 
control of the type I error rates using this method. 
Forabosco et al.  [53]  showed that only using strongly sig-
nificant results, such as LOD score  1 1, 2, or 3, will result 
in loss of power in GSMA. In our analyses, we use the 
more modest threshold value of 0.05 for the p values, 
which corresponds to a LOD score of 0.59. We also con-
ducted the meta-analyses using a cut-off p value of 0.10 
(results not shown), and the results are similar to those 
presented here with no additional interesting regions 
identified. Our analyses results from using the LOD 
scores (and so no p value truncation) and truncated p val-
ues are also highly correlated, with Pearson correlation of 
0.88 between the logarithm of the p values.

  We also carried out meta-analyses and simulations us-
ing ranks without weighting by sample size and mini-
mum p values without truncation as measures of linkage 
signals (results not presented). Unweighted ranks are ex-
pected to perform less well than the other methods since 
they ignore differences in the amount of information 
contained in individual studies. (Non-truncated) mini-
mum p values produced results highly correlated with 
those using the maximum LOD scores, with the Pearson 
correlations 0.96 and 0.92 in  � 30 cM and 2 cM bin meth-
ods respectively, and identified three out of the four best 
regions; the region  � 76 cM on chromosome 4 was not 
identified at 0.05 significance level by this method.

  Besides considering alternative scoring schemes, we 
also considered narrower bin widths. Although  � 30 cM 
bins can contain some linkage peaks and potentially re-
duce the correlation between adjacent bins, it is still dif-
ficult to develop a good binning approach to keep all 
linkage peaks from being split into two or more bins. Fur-
ther, wide bins decrease the resolution of the linkage re-
sults, and may attenuate the distinction between weaker 
and stronger linkage signals. We therefore decided to use 
2 cM bins as an approximation of continuous evaluation 
of the linkage statistic. An advantage of the narrow bins 
is that most of the bins contain zero or one markers in the 
linkage studies we collected. The effect of marker densi-
ties is likely minimized, consistent with the better control 
of type I errors using narrower bins in simulations 1
and 2.

  Since LOD scores were not calculated at every 2 cM in 
every study, we interpolated the LOD scores linearly (see 
‘Materials and Methods’). To evaluate the impact of in-
terpolation, we calculated the LOD scores at every 10 cM 
instead, using the same simulated pedigrees and geno-

types as those in our simulations, and interpolated the 
scores at every 2 cM. The interpolated scores are very 
close to the actual values and should not have changed 
the power of GSMA noticeably.

  Because the test statistics (ranks, LOD scores, or trun-
cated p values) are permuted within study to assess the 
significances, splitting a linkage peak into multiple bins, 
which we shall call correlated bins, causes dependence of 
bins and may bias the estimated p values from permuta-
tion. Using 2 cM bins obviously does increase the number 
of correlated bins. However, and more important, it does 
not change the proportion of correlated bins compared to 
that using  � 30 cM bins. For example, we simulated 100 
chromosomes of 150 cM under the null hypothesis, and 
counted the number of bins belonging to the same link-
age peak; here a peak is defined as the contiguous bins 
with LOD  1 0. The proportion of correlated bins was 
0.429 for 2 cM bins, and 0.508 for 30 cM bins. For the 
truncated p values with cut-off at 0.05, that is, LOD  1 0.59, 
the proportions dropped to 0.043 and 0.058 for 2 cM and 
30 cM bins, respec tively.

  A more important issue with 2 cM bins is the problem 
of multiple testing. With more bins, a substantially more 
stringent threshold for p values will be required to declare 
genome-wide significance of any bin. On the other hand, 
the 2 cM bins do provide higher resolution for the inter-
esting regions, which can be more easily compared with 
other linkage studies and genome-wide association stud-
ies. The 2 cM bin-based methods also control the type I 
error rates better than the  � 30 cM-based methods, espe-
cially when there is substantial variability in marker den-
sity. Therefore, we suggest an initial screening using  � 30 
cM bins followed by using 2 cM bins to localize linkage 
signals and control for false positives.

  To obtain more accurate evaluation of significance, 
we may need to know the multi-dimensional distribu-
tions of the test statistics under the same settings of our 
meta-analyses of the Consortium data. Ideally, if we 
could use the complete pedigree information in simula-
tion 1 without the pedigree reduction described in ‘Ma-
terials and Methods’, it would provide an estimate for the 
desired distribution, given that the number of simulation 
replicates is sufficiently large. A similar approach was 
suggested by Wise  [54]  to combine candidate region 
studies with genome-wide studies using the GSMA 
method. If we are willing to ignore the differences be-
tween the Consortium data and the reduced data for 
simulation, we can estimate the p value of each bin as the 
proportion of simulation replicates in which the score of 
the bin in simulation was greater than that in our meta-
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analyses. The same regions were then identified on chro-
mosome 10 and 14 using either  � 30 cM bins or 2 cM 
bins, and on chromosome 4 using 2 cM bins at the 0.01 
significance level, with p values similar to those obtained 
by permutations.

  When data are available, a joint linkage analysis may 
also be performed by pooling pedigree information across 
the same 23 individual studies. Its results should be sim-
ilar to ours from the meta-analyses described here, but 
some differences can also be expected. The meta-analysis 
considers only positive linkage signals, while in the joint 
analysis, deficiencies of sharing in some studies may can-
cel excess sharing in other studies. In the meta-analysis, 
individual studies can apply various methods of analysis, 
including parametric/non-parametric and variance com-
ponent linkage analyses, and might consider auxiliary 
phenotype data. Although this flexibility is appreciated 
when original genotype data cannot be accessed, it may 
add heterogeneity among the individual studies’ results 
to be summarized by the meta-analysis. On the other 
hand, while the joint analyses can make a better use of 
information, they are sometimes limited by computa-
tional powers needed for the large sample size of the 
pooled sample.

  In summary, our meta-analyses of the International 
Type 2 Diabetes Linkage Analysis Consortium data sug-
gested evidence for linkage on regions of chromosomes 
4, 10, 14, and 16 for type 2 diabetes, with no signal reach-
ing genome-wide significance, but those on chromo-
somes 10 and 14 reaching a level expected to occur by 
chance once per genome. Subgroup analyses are consis-
tent with the possibility that genetic heterogeneity of the 
collected samples may be a cause for the modest linkage 
signals. Computer simulations showed that variations of 
the marker density within and between studies could re-
sult in modestly inflated or deflated type I errors in cur-
rent analyses. Smaller bins (2 cM) and alternative test sta-
tistics more directly based on the linkage evidence, such 
as LOD scores or truncated p values, may help to draw 
the type I errors towards the nominal value, but more so-
phisticated approaches need to be considered to correct 
this problem fully.
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