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META-ANALYSIS OF COD–SHRIMP INTERACTIONS REVEALS
TOP-DOWN CONTROL IN OCEANIC FOOD WEBS
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Biology Department, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada

Abstract. Here we present a meta-analytic approach to analyzing population interac-
tions across the North Atlantic Ocean. We assembled all available biomass time series for
a well-documented predator–prey couple, Atlantic cod (Gadus morhua) and northern shrimp
(Pandalus borealis), to test whether the temporal dynamics of these populations are con-
sistent with the ‘‘top-down’’ or the ‘‘bottom-up’’ hypothesis. Eight out of nine regions
showed inverse correlations of cod and shrimp biomass supporting the ‘‘top-down’’ view.
Exceptions occurred only close to the southern range limits of both species. Random-effects
meta-analysis showed that shrimp biomass was strongly negatively related to cod biomass,
but not to ocean temperature in the North Atlantic Ocean. In contrast, cod biomass was
positively related to ocean temperature. The strength of the cod–shrimp relationship, how-
ever, declined with increasing mean temperature.

These results show that changes in predator populations can have strong effects on prey
populations in oceanic food webs, and that the strength of these interactions may be sensitive
to changes in mean ocean temperature. This means that the effects of overfishing in the
ocean cascade down to lower trophic levels, as has been shown previously for lakes and
coastal seas. In order to further investigate these processes, we establish a methodological
framework to analyze species interactions from time series data.

Key words: Atlantic cod; bottom-up vs. top-down; climate; Gadus morhua; marine food webs;
meta-analysis; North Atlantic; northern shrimp; overfishing; Pandalus borealis; predator–prey inter-
action; temperature.

INTRODUCTION

Aquatic food webs have been studied intensively
with respect to the interaction of consumer (‘‘top-
down’’) and resource (‘‘bottom-up’’) effects on species
composition and abundance. Experimental work in
lakes, streams, and coastal marine systems, in partic-
ular, have shown that variations in predator populations
often have cascading effects across the food web, with
implications for community structure and ecosystem
functioning (Carpenter et al. 1985, Mazumder et al.
1990, Power 1990, Estes et al. 1998, Worm et al. 2000,
2002, Jackson et al. 2001). Unfortunately, it is not clear
how the concepts that emerged from these studies can
be applied to the vast continental shelves and open
oceans, which cover more than two-thirds of Earth’s
surface. It has been argued that high diversity of species
and stochasticity of environmental controls in the ocean
may counter strong ‘‘top-down’’ effects (Strong 1992,
Jennings and Kaiser 1998). Others argue that there is
convincing evidence that predation can structure oce-
anic as well as coastal food webs (Verity and Smetacek
1996, Pace et al. 1999). This topic is also of applied
interest, because oceanic food webs support most of
the world’s fisheries (Pauly and Christensen 1995).
Some simulation models suggest that predictions about
the ecosystem effects of fishing are very sensitive to

Manuscript received 7 December 2001; revised 17 May 2002;
accepted 26 May 2002. Corresponding Editor: O. J. Schmitz.

1 E-mail: Boris.Worm@dal.ca

the assumed balance of ‘‘bottom-up’’ vs. ‘‘top-down’’
control (Walters et al. 1997, Cury et al. 2000, Bundy
2001). In these models, consumer-controlled webs re-
spond strongly, whereas resource-controlled webs ap-
pear to be relatively insensitive to overfishing of higher
trophic levels (Walters et al. 1997). Clearly, there is a
lack of empirical studies that test these ideas and eval-
uate the role of population interactions in oceanic food
webs (Jennings and Kaiser 1998).

In this paper, we focus on the trophic role of Atlantic
cod (Gadus morhua), which has historically been a
very abundant predator on smaller fishes and benthic
invertebrates in the North Atlantic Ocean (Jackson et
al. 2001). In the last two to three decades, cod abun-
dance in the North Atlantic has shown violent fluctu-
ations and rapid declines, mostly due to overfishing
(Myers et al. 1996, 1997b). Today, many stocks are at
historically low levels. Here we suggest that each cod
stock may be viewed as a replicated realization of a
large-scale, unintended predator removal experiment,
which can teach us something about how large marine
ecosystems work. Observations indicate that while cod
stocks declined, benthic crustaceans such as northern
shrimp (Pandalus borealis), snow crabs (Chionocetes
opilio), and American lobster (Homarus americanus)
have increased in catches and abundance (see Results).
Analyses of single stocks have suggested various fac-
tors that may explain the increase in benthic prey spe-
cies, including changes in ocean temperature (which
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TABLE 1. Atlantic cod (Gadus morhua) predation on northern shrimp (Pandalus borealis), based on percentages of shrimp,
by mass or volume, in cod stomachs.

Region

Percentage of diet

Mean 1 SE Range Data Reference

Northern Newfoundland
Flemish Cap
Flemish Cap
Gulf of Maine
Barents Sea
Iceland

6.7
5.8
9.3
4.0
7.2
5.0

1.70
1.90

···
···
···

0.57

2.0–25.2
1.3–14.5

···
···

1.9–12.8
1.0–7.5

1981–1994
1993–1998
1993–2000
1973–1998
1984–1996
1980–1990

Lilly et al. (2000)
Rodrı́guez-Marı́n and del Rı́o (1999)
Torres et al. (2000)
Link and Garrison (2002)
Berenbiom et al. (2000)
Magnússon and Pálsson (1991b)

Note: Data were pooled over all size classes of cod and shrimp.

might affect cod and crustaceans independently), re-
lease from cod predation, or both (Berenboim et al.
2000, Koeller 2000, Lilly et al. 2000). The problem
with single-stock studies is that true samples size and,
thus, statistical power, are very low, and therefore it is
often impossible to distinguish among competing hy-
potheses.

Our approach here is to combine all available data
and analyze population interactions across the North
Atlantic using meta-analysis of time series data. We
focus on the interaction between Atlantic cod and
northern shrimp because the amount and quality of
available data are much better than for other species.
Also, analyses of stomach contents confirm that north-
ern shrimp is an important prey species of cod on both
sides of the Atlantic Ocean (see Table 1). We correlate
biomass time series of northern shrimp and cod, com-
piled by stock assessment scientists, and temperature
time series, compiled by physical oceanographers, to
estimate the relationships between shrimp, cod, and
temperature, respectively. We distinguish among four
competing predictions. (1) Strong ‘‘bottom-up’’ control
should result in a positive correlation between predator
and prey abundance because both populations depend
on factors that regulate productivity. Such bottom-up
control is predicted by ratio-dependent predator–prey
models (Arditi and Ginzburg 1989) and some prey-
dependent models (Abrams 1994), if the dominant
source of variability comes from the lowest trophic
levels. (2) Strong ‘‘top-down’’ effects should result in
a negative correlation between predator and prey be-
cause predators suppress prey abundance (McQueen et
al. 1989). Most predator–prey models, other than do-
nor-controlled models (Pimm 1991), predict such a re-
lationship if strong predator–prey relationships are as-
sumed. (3) Weak interactions should result in weak or
no correlation between populations. Many ecologists
believe that this is the most common and important
form of ecological interactions (Polis and Strong 1996).
However, weak correlations between predator and prey
are also predicted by certain prey-dependent models
(e.g., Oksanen et al. 1981), if we assume that shrimp
represent the second level and cod are the top predators
in a tritrophic food web. (4) Strong ‘‘climate control’’
should result in significant correlations between pop-

ulation abundance and environmental variables, e.g.,
ocean temperature. Among biological oceanographers
and fisheries biologists, this is the most widely accepted
hypothesis to explain interannual variability in the
abundance of marine species (Anderson and Piatt 1999,
Hare and Mantua 2000, Myers 2002).

There are several difficulties in carrying out a meta-
analysis of population interactions from observational
time series data. First, the assumption of independence
among data sets may be compromised by spatial cor-
relation. For example, in marine fish, the recruitment
among populations is correlated on a spatial scale of
;500 km (Myers et al. 1997c). A related problem is
temporal autocorrelation within time series, which ef-
fectively reduces the true degrees of freedom that are
available to test hypotheses (Bence 1995, Pyper and
Peterman 1998). This problem is ignored in most stud-
ies of ocean food webs (e.g., Shiomoto et al. 1997,
Stefánsson et al. 1998, Reid et al. 2000) because most
time series are short, and loss of degrees of freedom
strongly reduces the power of the hypothesis test (Pyper
and Peterman 1998). We deal with this problem by first
adjusting the degrees of freedom and then combining
time series from many data sets using random-effects
meta-analysis, which increases the power of our anal-
ysis. Finally, measurement error is well known to at-
tenuate correlation coefficients. Quantifying measure-
ment error and adjusting correlation coefficients ac-
cordingly further increases the power of the test. In this
study, we attempt to combine these techniques with
two purposes in mind: (1) to evaluate the generality of
strong predator vs. environmental controls of shrimp
populations in the North Atlantic, and (2) to develop
a powerful, methodological framework, which allows
us to analyze population interactions from time series
data.

METHODS

Species

The northern shrimp (Pandalus borealis) is a me-
dium-sized decapod crustacean (carapace length up to
30 mm) that is most abundant in deeper (100–500 m),
muddy habitats on the continental shelves in the North
Atlantic and Pacific Oceans. The northern shrimp is
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FIG. 1. Study regions in the North Atlantic Ocean. Dark gray areas represent the approximate range of shrimp stocks:
BAS, Barents Sea; ICE, Iceland; SKA, Skagerrak; LAB, Labrador; NNF, northern Newfoundland; NGL, northern Gulf of
St. Lawrence; FLC, Flemish Cap; ESS, eastern Scotian Shelf; GOM, Gulf of Maine.

believed to prefer cooler temperatures (1–68C) and soft,
muddy sediments containing large amounts of organic
material on which it feeds (Shumway et al. 1985, Ram-
seier et al. 2000). Its maximum age is ;8 yr. The At-
lantic cod (Gadus morhua, simply ‘‘cod’’ hereafter) is
a large (up to 150 cm) and formerly very abundant
demersal fish that occurs throughout the North Atlantic
Ocean at depths ranging from 1 m to 600 m. Its max-
imum age is in excess of 20 yr, although young fish
(ages 2–5 yr) constitute the bulk of the biomass in most
stocks today. Cod are opportunistic feeders, but most
their diet consists of benthic crustaceans such as shrimp
and crabs and smaller fish such as herring (Clupea har-
engus) or capelin (Mallotus villosus). Crustaceans com-
prise 30–90% of stomach contents in small (,20 cm)
cod but usually ,40% in large (.60 cm) cod, which
feed mainly on small pelagic fishes such as capelin
(Pálsson 1994). The geographical distributions of
northern shrimp and cod are largely overlapping, with
the exception of Northwest Greenland and Baffin Bay
(no cod), and Georges Bank, southern North Sea, and
English Channel (no northern shrimp). Where the two
species co-occur, northern shrimp represents an im-
portant diet component for cod (Table 1).

Data sources

As an initial step, we used the existing NAFO
(Northwest Atlantic Fisheries Organization, Dart-
mouth, Nova Scotia, Canada) database to search for
patterns in the catches of cod and some benthic prey
species, northern shrimp, snow crab, and American lob-
ster. We recognize that catch data are partly confounded

by changes in fishing effort, and therefore use catch
data only to generate hypotheses about the relative
abundance of populations.

To test hypotheses, we collected all available time
series of cod and northern shrimp biomass estimates
from areas with substantial populations of both species
(Fig. 1, Table 2). We excluded those time series in
which observations covered ,10 yr, because after treat-
ment for autocorrelation, the true sample size for those
data was reduced below n 5 3. We used three standard
sources of abundance data: biomass estimates derived
from research survey (RS) or from sequential popu-
lation analysis (SPA), and catch per unit effort (CPUE)
data. Whenever possible, we used research trawl survey
estimates of biomass, which represent the highest qual-
ity information available. All research trawl surveys
used a random stratified-sampling strategy. SPA esti-
mates of abundance were derived from commercial
catch at age data, which were standardized using re-
search trawl survey data (Hilborn and Walters 1992).
Long-term research trawl survey data were not avail-
able for five of the northern shrimp populations, be-
cause existing research surveys were not originally de-
signed to monitor shrimp abundance. In these cases,
we used published CPUE estimates, but only if those
were standardized to correct for changes in gear tech-
nology and vessel characteristics. Standardized CPUE
estimates were converted to biomass using the most
recent biomass estimate produced by the research trawl
surveys. The data set can be accessed online.2

2 URL: ^www.fish.dal.ca/;myers/papers.html&
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TABLE 2. Study regions, geographical positions, mean temperature (1970–2000), standard
error for temperature series, and assessment methods for cod and shrimp biomass estimates.

Region Latitude Longitude

Temperature

Mean 1 SE

Assessment†

Cod Shrimp

Labrador
Northern Newfoundland
Flemish Cap
Northern Gulf of St. Lawrence
Eastern Scotian Shelf
Gulf of Maine
Iceland
Barents Sea
Skagerrak

558009
528309
478309
498509
448509
438309
668309
748009
578409

2588009
2538009
2458409
2648009
2608009
2708009
2238009

258009
78209

0.40
1.29
3.07
4.68
2.91
8.97
3.15
3.92
6.50

0.14
0.10
0.12
0.07
0.14
0.22
0.18
0.09
0.10

RS
RS
SPA
SPA
SPA
RS
SPA
SPA
SPA

CPUE, RS
CPUE, RS
RS
CPUE, RS
CPUE, RS
RS
CPUE, RS
RS
SPA

† Abbreviations for methods: RS, research survey, CPUE, catch per unit effort; SPA, se-
quential population analysis.

Measurement error and autocorrelation

Shrimp and cod biomass time series data from all
nine regions were log-transformed and correlated using
ri, which is the Pearson’s correlation coefficient of the
ith correlation. No time lags were used because we
reasoned that cod predation would have an immediate
effect on shrimp populations. Correlation coefficients
were corrected for measurement error. It is well known
that measurement error will bias our individual esti-
mates of the correlation coefficients toward zero (Hedg-
es and Olkin 1985:228). Instead of measuring the var-
iables U and V, we measure

X 5 U 1 h, Y 5 V 1 z (1)

where h and z are measurement errors. If errors are
normally distributed and independent of U and V, it is
possible to correct for measurement error using

2 2 2 2 2 2r9 5 r /Ï[s (s 1 s )][s /(s 1 s )] (2)i i u u h v v z

where is an estimator of the true correlation andr9i
and are estimates of measurement error variance.2 2s sh z

Here, we used published estimates of measurement er-
ror variance for North Atlantic research trawl surveys
(Myers and Cadigan 1993) and CPUE time series (Har-
ley et al. 2001). We took a conservative approach by
assuming error variances ranging at the lower end of
reported variances ( 5 0.1 for cod and 5 0.032 2s sh z

shrimp, respectively).
A second problem is caused by significant autocor-

relation in many data sets, especially those dominated
by low-frequency variability (Bence 1995, Pyper and
Peterman 1998). This problem is similar to spatial
pseudoreplication because it violates the assumption of
independence among observations (Hurlbert 1984). In
general, this means that a sample correlation between
two autocorrelated time series has fewer degrees of
freedom than assumed by the significance test. If this
is ignored, the test will have a Type I error rate greater
than the specified a, and a significant correlation may
be detected when, in fact, none is present. Recently, a
robust method has been suggested to adjust the degrees
of freedom for the sample correlation (‘‘modified Chel-

ton method’’; Pyper and Peterman 1998), which has
the advantage of conserving both Type I and Type II
error rates. This advantage is not shared by methods
that remove autocorrelation from the data (e.g., ‘‘first-
differencing,’’ ‘‘prewhitening’’), but tend to inflate
Type II error rates and thus decrease the power of the
hypothesis test (Pyper and Peterman 1998).

We tested for autocorrelation by correlating log-
transformed population abundance in each year with
abundance in years n 1 1, . . . , n 1 5 (lag-1 to lag-
5). This revealed moderate to high autocorrelation in
both cod and shrimp time series ranging from 0.5 to
0.96 at lag-1. We adjusted degrees of freedom accord-
ingly, using the ‘‘modified Chelton’’ method as de-
scribed by Pyper and Peterman (1998).

In the following, we simply denote correlation co-
efficients corrected for measurement error and sample
sizes corrected for autocorrelation with prime symbols
( , ).r9 n9i i

Data analysis

Corrected correlation coefficients were combinedr9i
using fixed- and random-effects meta-analysis, respec-
tively. Let di be the magnitude parameter, i.e., the ‘‘ef-
fect size,’’ for the meta-analysis (Hedges and Olkin
1985, Cooper and Hedges 1994). The effect size in our
case will be the normalizing and variance-stabilizing
Fisher’s z transform of . That is, our estimate of di isr9i

(1 1 r9)id 5 0.5 ln . (3)i [ ](1 2 r )i

If the z-transformed data are bivariate normal, the con-
ditional variance estimate of di is approximately

21 4 2 r9iv 5 1 (4)i 2 2(n9 2 1) 2(n9 2 1)i i

where is the effective sample size of the ith corre-n9i
lation (Stuart and Ord 1987:533). We recommend using
this estimate rather than its commonly used approxi-
mation vi 5 1/(n 2 3), which greatly inflates the var-
iance estimate at low sample sizes.

worm
See Erratum on last pageregarding Equation (3) and (4)
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Because we combine data from multiple populations,
we have k estimates (from k 5 9 regions) of the effect
size di and associated variances vi, respectively. We use
these to calculate an estimated weighted mean effect
size with a confidence interval. Fixed-effect meta-d̄
analysis assumes that there is only one true value of

, which is estimated byd̄

k

w dO i i
i51d̄ 5 (5)k

wO i
i51

where wi represents the weight assigned to the ith study.
These weights are inversely proportional to the vari-
ance in each study, i.e., wi 5 1/vi. The average effect
size has conditional variance v, which is a functiond̄
of the conditional variances of each effect size being
combined:

1
v 5 . (6)k

(1/v )O i
i51

The square root of v is the standard error of estimate
of the combined effect size . Multiplying the standardd̄
error by an appropriate critical value Ca (commonly
the unit normal Ca 5 1.96, the Z statistic for a two-
tailed test at a 5 0.05) and adding and subtracting the
resulting product to yields the 95% CI for (Cooper¯ ¯d d
and Hedges 1994:266). If the confidence interval does
not contain zero, we reject the null hypothesis. Equiva-
lently, we can test the null hypothesis with the statistic

z d̄ z
Z 5 . (7)

0.5v

The null hypothesis is rejected if Z exceeds 1.96, the
95% two-tailed critical value of the standard normal
distribution.

Interpretation of the results is facilitated by con-
verting the estimates for the mean effect size backd̄
to the metric of a correlation r̄, using the inverse of
the z transform:

¯ ¯2d 2dr̄ 5 (e 2 1)/(e 1 1). (8)

Finally, we need to test the assumption of homogeneity
of effect sizes among the different regions. Under the
fixed-effects model we have presented, it is assumed
that all di are equal and all of the observed variation
in the individual di is due to estimation error. To test this
assumption, we use the test statistic Q as given by

2k

w dO i i1 2k i51
2Q 5 w d 2 . (9)O i i k

i51
wO i

i51

If the values of Q are small or statistically nonsignif-

icant, the estimates of effect size may be pooled. When
the assumption of homogenous effect sizes is violated,
one should incorporate this heterogeneity among effect
sizes into a random-effects model (Cooper and Hedges
1994).

Random-effects meta-analysis

Under a random-effects model, the effect size di is
not assumed to be fixed, but is a normal random var-
iable. This relaxes the assumption of homogenous ef-
fects sizes. When comparing populations from many
different ecosystems, this is probably a more realistic
model than assuming that the true effect size is pre-
cisely the same across all populations. Under a random-
effects model, the total observed variability in the ef-
fect size estimate di contains the conditional estimation
error variance vi and an estimate of the random vari-
ation . The unconditional variance estimate used in2sd

the analysis is

2v9 5 s 1 v .i d i (10)

We can use the estimated Q to derive an estimate of
the weighted-sample estimate of the unconditional var-
iance (Cooper and Hedges 1994:275):

Q 2 (k 2 1)2s 5d k
(11)2wO ik

i51
w 2O i k

i51 w .O i
i51

The estimates of are used to calculate the weightsv9i
5 1/ . The analysis then proceeds equivalent to thew9 v9i i

fixed-effects model as previously outlined.

Spatial correlation

A final problem in combining data from various re-
gions is that some regions may be spatially correlated
and therefore not completely independent. This is
equivalent to an experimental situation in which plots
are so close that they influence each other. For marine
fish including cod, it has been shown that recruitment
between stocks is often correlated on a scale of ,500
km (Myers et al. 1997c). This suggests that data sets
in regions that are ,500 km away may not be entirely
independent. Unfortunately, our data set was too small
to accurately estimate the covariation among stocks and
use this as a measure of spatial independence (Myers
et al. 1997a). Therefore, we report both the results of
the complete analysis and those from an analysis in
which regions that were ,500 km from neighboring
ones were excluded. Then we examine whether the re-
sults are sensitive to these manipulations.

Testing alternative hypotheses

It is widely believed that community changes in the
ocean are often related to changes in ocean temperature
that may cause abrupt ‘‘regime shifts’’ (Anderson and
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FIG. 2. Catch statistics from 1960 to 2000 for cod (Gadus
morhua, solid line) vs. three crustacean prey species (dotted
lines) in the northwest Atlantic. (A) Cod vs. northern shrimp
(Pandalus sp.); (B) cod vs. snow crab (Chionocetes opilio);
and (C) cod vs. American lobster (Homarus americanus);
1000 metric tons 5 1 Gg.

Piatt 1999, Hare and Mantua 2000). As for cod and
shrimp, a positive correlation among these populations
could be due to similar, but independent, responses to
changes in ocean temperature. A negative correlation
could be due to opposite responses to changes in ocean
temperature. To test these alternative hypotheses, we
analyzed correlations among cod biomass and bottom
temperature and among shrimp biomass and tempera-
ture, respectively. We assembled temperature time se-
ries for depth regions where shrimp and cod distribu-
tions overlap (usually 200–250 m). Data were retrieved
from published oceanographic time series and the Ca-
nadian Department of Fisheries and Oceans Oceano-
graphic Database.3 From these data, we recalculated
mean annual temperatures using generalized linear
modeling, with year and month as the independent var-
iables. Then we correlated temperature series with the
log-transform of cod and shrimp biomass, respectively,
at a time lag of three years. Changes in temperature
are thought to affect larval processes and recruitment
in particular (Myers 1998). Under this assumption,
changes in adult abundance will lag several years be-
hind temperature series. We a priori chose a lag of three
years because, beginning at this age, both cod and
shrimp contribute to the overall biomass estimate as
derived from the research survey and catch per unit
effort data.

Finally, we were interested in testing whether there
are any consistent trends in the relationships between
cod, shrimp, and temperature with the mean tempera-
ture among study regions. We hypothesized that tem-
perature effects may become stronger and species in-
teractions weaker at the northern or southern range
limits of species (Myers 1998). To test this hypothesis,
we correlated mean temperature, as averaged from the
temperature time series in the various study regions,
with the correlation coefficients of the cod–shrimp,
cod–temperature, and shrimp–temperature analyses, re-
spectively.

RESULTS

Across all NAFO regions combined, commercial
catches of cod showed strong inverse trends with catch-
es of benthic prey species such as shrimp, snow crab,
and lobster over the last 40 yr (Fig. 2). We hypothesize
that these inverse trends indicate changes in true abun-
dance, in addition to changes in commercial fishing
effort. Biomass time series of nine cod populations in
the North Atlantic showed order of magnitude declines
of cod in the Northwest Atlantic, and fluctuating, but
overall more stable, populations in the Northeast At-
lantic (Fig. 3). Shrimp populations in the same areas
were also fluctuating, but generally increasing over
most of the time series (Fig. 3). Correlations between
cod and shrimp biomass time series revealed strong

3 URL: ^http://www.mar.dfo-mpo.gc.ca/science/ocean/database/
data query.html&

negative relationships in all populations, with the ex-
ception of Gulf of Maine (weak negative) and Skag-
errak (strong positive; Fig. 4, Table 3). These two ex-
ceptions also represent the southernmost populations
of northern shrimp in the West and East Atlantic, re-
spectively (Fig. 1, Table 2).

When we corrected for measurement error and au-
tocorrelation, correlation coefficients increased, but ef-
fective sample size decreased dramatically in all data
sets (Table 3). Because of low effective sample sizes,
only three correlation coefficients remained significant
at the a 5 0.05 level (Table 3). When we combined
data sets in a meta-analysis, the Q statistic indicated
that the fixed-effects model was inappropriate for the
cod–shrimp (P , 0.05) and possibly the shrimp–tem-
perature analysis (P , 0.2), but not for the cod–tem-
perature analysis (P . 0.5; Table 4). Because the results
were not sensitive to the choice of the model (Fig. 5),
we report test statistics for the more conservative ran-
dom-effects model only (Table 4). The weighted mean
correlation coefficients for the cod–shrimp correlation
indicated a strong negative relationship (r̄ 5 20.64),



168 BORIS WORM AND RANSOM A. MYERS Ecology, Vol. 84, No. 1

FIG. 3. Cod (open symbols, solid line) and shrimp (closed symbols, dotted line) biomass time series in the North Atlantic
Ocean.

and analysis of cod–temperature revealed a strong pos-
itive relationship (r̄ 5 0.49; Fig. 5A,B, Table 4a). The
shrimp–temperature correlation (r̄ 5 20.24) was not
significantly different from zero (Fig. 5C, Table 4a).
These results were corroborated in a subsequent anal-
ysis in which the northern Newfoundland and northern
Gulf of St. Lawrence data sets were excluded to avoid
potential problems of spatial correlation (Table 4b).
The same results were obtained when the Newfound-
land and Scotian Shelf data sets were eliminated.

When we correlated correlation coefficients for each
area with the mean temperature in the study region, we
found a significant trend for the shrimp–cod correla-
tion, which may indicate that the relationship between
cod and shrimp weakens with increasing temperature
(Fig. 6A). No significant trend was found for the cod–
temperature and shrimp–temperature correlations (Fig.
6B,C).

DISCUSSION

Our analysis suggests that shrimp populations across
the North Atlantic Ocean are strongly inversely related
to predator abundance, but not to ocean temperature.
Observed strong increases in shrimp populations fol-
lowing the decrease in cod stocks are in accordance
with a ‘‘top-down’’ view of marine food webs. Simi-

larly, catches of crabs and lobsters continue to increase
despite high fishing pressures (Fig. 2). This may sug-
gest that other benthic prey species respond in a similar
manner to unprecedented declines in cod stocks. These
results support the generalization that predators can
suppress lower trophic levels in oceanic food webs, as
they do in lakes, streams, and coastal waters (McQueen
et al. 1989, Power 1990, Paine 1994). Moreover, it
implies that overfishing of oceanic predators can have
cascading effects on lower trophic levels. This should
be of concern to fishery managers, who often adhere
to single-species management, ignoring species inter-
actions and the indirect effects of fishing (Botsford et
al. 1997).

The alternative models of strong bottom-up or cli-
mate control were not supported by our meta-analysis.
Predominant bottom-up control would lead to positive
or weak correlations between predator and prey (de-
pending on whether one assumes prey- or ratio-depen-
dent predation; Arditi and Ginzburg 1989). This was
only seen in two shrimp stocks at the southern end of
the range (Gulf of Maine, and Skagerrak; Figs. 1 and
4). In these warmer regions, the strong dynamics shown
by other stocks may be weakened by the fact that
shrimp tend to hide in deep holes and trenches, and
that cod are partially replaced by ‘‘southern’’ species
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FIG. 4. Linear correlation of log-transformed cod and shrimp biomass time series. Biomass was originally measured in
gigagrams. For analysis, refer to Table 3.

TABLE 3. Pearson’s correlation coefficients, sample sizes, and P values for time series cor-
relations of shrimp and cod biomass indices.

Region r n P r9† n9† P9†

Labrador
Northern Newfoundland
Flemish Cap
Northern Gulf of St. Lawrence
Eastern Scotian Shelf
Gulf of Maine
Iceland
Barents Sea
Skagerrak

20.746
20.911
20.526
20.708
20.856
20.131
20.459
20.412

0.788

23
13
12
19
21
31
33
18
11

0.000
0.000
0.073
0.000
0.000
0.485
0.006
0.087
0.002

20.827
20.976
20.607
20.827
20.982
20.147
20.630
20.635

0.808

4.80
3.30
6.30
3.40
3.50
9.30
8.20

11.70
5.00

0.054
0.012
0.161
0.165
0.004
0.701
0.075
0.023
0.061

† Parameters that were corrected for measurement error and autocorrelation.

such as hakes. We hypothesized that the strength of
top-down control by cod on shrimp is inversely related
to the mean temperature in the region. Our analysis
supports this hypothesis, showing a general trend of
decreasing correlation between cod and shrimp with
increasing mean temperature in each region (Fig. 6A).
Cod biomass within each region, however, was posi-
tively correlated with temperature. This may be ex-
plained by the fact that recruitment, at least in northern
stocks (Myers 1998, Planque and Frédou 1999), and
somatic growth of cod (Brander 1995) increase with

temperature. Across all regions, we found no relation-
ship between the cod–temperature correlation with
mean temperature, which contrasts a more extensive
analysis that demonstrated such a relationship when
considering the entire range of cod in the North Atlantic
(Myers 1998). Neither shrimp biomass within each re-
gion nor between regions was significantly related to
temperature. This leads to rejection of the ‘‘regime-
shift’’ hypothesis (Anderson and Piatt 1999) that the
inverse trends in cod and shrimp may be caused by
independent responses to climate variability. We con-
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TABLE 4. Random-effects meta-analysis, reporting the weighted mean correlation coefficients
r̄ and the estimated random effects variance s2.

Correlation df Q† P s2
d r̄ Z‡ P

a) Full data set
Cod–shrimp
Cod–temperature
Shrimp–temperature

8
8
8

19.35
5.25

12.66

0.013
0.730
0.123

0.382
0.000
0.066

20.636
0.494

20.240

22.68
3.86

21.67

0.007
0.000
0.094

b) Modified data set§
Cod–shrimp
Cod–temperature
Shrimp–temperature

6
6
6

15.58
4.16

11.07

0.016
0.654
0.086

0.360
0.000
0.082

20.534
0.375

20.224

22.01
3.94

21.40

0.043
0.000
0.162

† The Q statistic tests for heterogeneity of effect sizes.
‡ The Z statistic tests whether r̄ is significantly different from zero.
§ Newfoundland and Gulf of St. Lawrence data were removed to correct for the possibility

of spatial correlation.

clude that local climate may affect the strength of the
cod–shrimp relationship through its effects on cod bio-
mass, but does not generally override these interac-
tions.

Strong predation effects of Atlantic cod on inver-
tebrates and forage fishes have been hypothesized be-
fore (Pálsson 1994, and references therein). The prob-
lem with these former studies is that only single stocks
were analyzed and there was usually not sufficient pow-
er to test for the significance of hypothesized relation-
ships. Thus, the evidence remained largely observa-
tional and subject to alternative interpretations. In con-
trast, the combination of data sets from various regions
possesses the power to detect general patterns (Myers
and Mertz 1998). We know only of one other study,
that of Micheli (1999), utilizing meta-analysis to detect
general patterns of food web interactions in the ocean.
She found that phytoplankton biomass was primarily
related to ‘‘bottom-up’’ and zooplankton biomass to
‘‘top-down’’ forcing in marine pelagic webs. If we as-
sume that shrimp have a similar trophic position as
zooplankton, these conclusions could be extended to
benthic food webs by our analysis.

To further test this and related hypotheses for other
species and ecosystems, we propose the following for-
mal procedure: (1) Use diet composition or behavioral
data to establish possible food web linkages (e.g., pre-
dation on particular species or functional groups); (2)
assemble biomass time series for species that are be-
lieved to interact; (3) correct for measurement error
and autocorrelation; (4) correlate time series and use
random-effects meta-analysis to combine estimates of
effect size (z-transformed correlation coefficients); (5)
examine data sets for spatial correlation (Myers et al.
1997c) and adjust weightings accordingly (Myers et al.
1997a), or, alternatively, perform a sensitivity analysis
in which potentially correlated data sets are eliminated;
(6) test alternative hypotheses using the same frame-
work; and (7) fit alternative models. We admit that log–
log correlations represent a very simplistic mathemat-
ical model of population interactions, equivalent to a
power model of the form s 5 a/cb, where s and c

represent shrimp and cod biomass and a and b are
parameters. Although we found that this relationship
worked well in our case, fitting more advanced models
to the data may, in many cases, provide additional in-
sights and predictive power (Hilborn and Mangel
1997). For example, Ives et al. (1999) fitted autore-
gressive models to time series data from whole-lake
manipulations in order to construct pelagic interaction
webs. Their approach could be made even more pow-
erful by combining data sets through meta-analysis of
time series models in which parameters are shared
among populations. However, this has not been at-
tempted yet.

Like all scientific methodologies, this approach has
some important limitations. Meta-analysis cannot cope
with fundamental inadequacies and biases in the data.
As with any analysis, the data must be carefully ex-
amined for inconsistencies in the methodology, viola-
tions of assumptions, and influential outliers (Cooper
and Hedges 1994). Also, combining correlation coeffi-
cients cannot reveal mechanisms. This type of data anal-
ysis must be grounded in solid biological evidence that
documents the linkages between two populations. Meta-
analysis can only test for the generality of this linkage.

Despite these limitations, we feel that some impor-
tant questions could be answered using the approach
just outlined. With respect to the effects of overfishing
of cod, trajectories of other prey species should be
analyzed. Catch plots such as those presented in Fig.
2 suggest that entire guilds of species could be affected
by the collapse of cod stocks. Although some of the
observed pattern in Fig. 2 might be attributed to chang-
es in effort, the magnitude, timing, and generality of
the observed changes also suggest substantial increases
in prey species biomass. Similar biomass increases af-
ter release from cod predation have been observed in
small pelagic fishes such as capelin (Mallotus villosus),
herring (Clupea harengus), and sprat (Sprattus sprat-
tus) (Lilly 1991, Magnússon and Pálsson 1991a, Gar-
rison and Link 2000, Köster and Möllmann 2000, Kös-
ter et al. 2001). These changes may trigger feedback
effects such as increased predation on cod eggs and
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FIG. 5. Meta-analysis: (A) effects of cod on shrimp; (B) effects of ocean temperature on cod; and (C) effects of temperature
on shrimp. Circles and bars represent correlation coefficients and 95% confidence intervals, respectively. The weighted mean
correlations (r̄) with 95% confidence limits are shown as diamonds and were calculated using a fixed-effects (FE) and random-
effects (RE) model, respectively. Relative weights of individual data sets in the analysis are shown. All data were plotted
on a Fisher’s z scale for easier interpretation. See Table 4 for test statistics.

larvae that could inhibit recovery of cod, resulting in
a permanently changed food web (Köster and Möll-
mann 2000, Walters and Kitchell 2001). Likewise, the
ecosystem effects of overfishing large megafauna such
as sharks or turtles need to be addressed in a quanti-
tative way (Jackson et al. 2001).

In conclusion, we believe that meta-analysis of time
series data provides a powerful tool to explore food

web interactions in ecosystems that are not amenable
to controlled experimentation. Our present analysis ex-
emplifies this potential by demonstrating that, despite
substantial physical and biological variability in marine
ecosystems, alterations of predator abundance through
overfishing result in strong and general patterns of
community change, and that predation appears to be a
strong structuring force in the North Atlantic Ocean.
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FIG. 6. Relationships between the mean temperature in
the study region and (A) shrimp–cod (r 5 0.68, P 5 0.044),
(B) cod–temperature (r 5 0.14, P 5 0.726), and (C) shrimp–
temperature (r 5 20.46, P 5 0.219) correlation coefficients.
Points represent individual regions, and lines represent least-
square linear regression fits.
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Erratum 

In our article, Worm, B., and R. A. Myers. 2003. Meta-analysis of cod-shrimp 

interactions reveals top-down control in oceanic food webs. Ecology 84:162-173, minor 

typesetting errors occurred on page 165 in Equation 3 and 4, respectively. The correct 

form is given below: 

Our estimate of di is 
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If the z-transformed data are bivariate normal, the conditional variance estimate of di is 
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Where '
in  is the effective sample size of the ith correlation (Stuart and Ord 1987, p. 533). 


