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Meta-analysis of epigenome-wide association
studies in neonates reveals widespread differential
DNA methylation associated with birthweight
Leanne K. Küpers et al.#

Birthweight is associated with health outcomes across the life course, DNA methylation may

be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of

8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Con-

sortium, we find that DNA methylation in neonatal blood is associated with birthweight at

914 sites, with a difference in birthweight ranging from −183 to 178 grams per 10% increase in

methylation (PBonferroni < 1.06 x 10−7). In additional analyses in 7,278 participants, <1.3% of

birthweight-associated differential methylation is also observed in childhood and adolescence,

but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs

that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10−74)

and BMI in pregnancy (3/914, p = 1.13x10−3), but not with those related to folate levels in

pregnancy. Whether the associations that we observe are causal or explained by confounding

or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.
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I
ntrauterine exposures, such as maternal smoking, pre-
pregnancy body mass index (BMI), hyperglycaemia, hyper-
tension, folate and famine are associated with fetal growth and

hence birthweight1–6. Observational studies show that birth-
weight is also associated with later-life health outcomes, including
cardio-metabolic and mental health, some cancers and mortal-
ity7–11. In these long-term associations, birthweight may act as a
proxy for potential effects of intrauterine exposures12,13. Several
mechanisms may explain the associations of intrauterine expo-
sures with birthweight and later-life health as we illustrate in
Fig. 1. Our overall conceptual framework in this study was that
the intrauterine environment induces epigenetic alterations,
which influence fetal growth and hence correlate with birth-
weight. This is partly supported by previous large-scale epigen-
ome-wide association studies (EWAS) that have reported
associations of relevant maternal pregnancy exposures, including
smoking, air pollution and BMI, with DNA methylation in off-
spring neonatal blood14–16. However, whilst four previous EWAS
have observed associations of DNA methylation with birth-
weight17–20, the evidence to date has been limited in scale and
power with sample sizes ranging from approximately 200 to 1000.

In this study, we hypothesised that there are associations
between DNA methylation and birthweight. We further aimed to
explore if these epigenetic alterations are associated with later
disease outcomes (Fig. 1). If birthweight is a proxy for a range of
adverse prenatal exposures, we might expect neonatal blood DNA
methylation to be associated with birthweight. However, we
acknowledge that any associations of DNA methylation with
birthweight may be explained by confounding21 or reflect fetal
growth influencing DNA methylation.

Here we present a large meta-analysis of multiple EWAS to
explore associations between neonatal blood DNA methylation and
birthweight. In further analyses, we explore whether any birthweight-
associated differential methylation persists at older ages. To aid
functional interpretation, we (i) explore the overlap of identified
cytosine-phosphate-guanine sites (CpGs) that are differentially
methylated in relation to birthweight with those known to be asso-
ciated with intrauterine exposure to smoking, famine and different
levels of BMI and folate; (ii) associate DNA methylation at identified
CpGs with gene expression and (iii) explore potential causal links
with birthweight and later-life health using Mendelian randomization
(MR)22. We show that DNA methylation in neonatal blood is
associated with birthweight and some of the differential methylation
is also observed in childhood and adolescence, but not in adulthood.

Also, we show overlap between birthweight-related CpGs and CpGs
related to intrauterine exposures. Potential causality of the associa-
tions needs to be studied further.

Results
Participants. We used data from 8825 neonates from 24 studies in
the Pregnancy And Childhood Epigenetics (PACE) Consortium,
representing mainly European, but also African and Hispanic eth-
nicities with similar proportions of males and females. Details of
participants used in all analyses are presented in Table 1, Supple-
mentary Data 1 and study-specific Supplementary Methods.

Meta-analysis. Primary, secondary and follow-up analyses are out-
lined in the study design in Fig. 2. Methylation at 8170 CpGs,
measured in neonatal blood using the Illumina Infinium® Human-
Methylation450 BeadChip assay and adjusted for cell-type hetero-
geneity23–25, was associated with birthweight (false discovery rate
(FDR) <0.05), of which 1029 located in or near 807 genes survived
the more stringent Bonferroni correction (p < 1.06 × 10−7, Supple-
mentary Data 2). We observed both positive (45%) and negative
(55%) directions of associations between methylation levels of these
1029 CpGs and birthweight (Fig. 3) and these CpGs were spread
throughout the genome (orange track (1) in Fig. 4 and Supplemen-
tary Fig. 1). We found evidence of between-study heterogeneity (I2 >
50%) for 115 of the 1029 sites (Supplementary Data 2), thus we
prioritised 914 CpGs, located in or near 729 genes, based on p <
1.06 × 10−7 and I2 ≤ 50% for further analyses (Fig. 3 and orange track
(1) in Fig. 4). The CpG with the largest positive association was
cg06378491 (in the gene body ofMAP4K2). For each 10% increase in
methylation at this site, birthweight was 178 g higher (95% con-
fidence interval (CI): 138, 218 g). The CpG with the largest negative
association was cg10073091 (in the gene body of DHCR24), which
showed a 183 g decrease in birthweight per 10% increase in methy-
lation (95% CI: −225, −142 g). The CpG with the smallest P-value
and I2 ≤ 50% was cg17714703 (in the gene body of UHRF1), which
showed a 130 g increase in birthweight for 10% increase in methy-
lation (95% CI: 109, 151 g).

Findings were consistent with results from our main analyses
when restricted to participants of European ethnicity, with a Pearson
correlation coefficient for effect estimates of 0.99 for the 914
birthweight-associated CpGs (Supplementary Fig. 2, blue track (2) in
Fig. 4 and Supplementary Data 3) and 0.90 for all 450k CpGs.
Comparing the main meta-analysis to the four Hispanic cohorts and
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Fig. 1 Hypothetical paths that might link intrauterine exposures to DNA methylation, birthweight and later-life health outcomes. Red arrows summarise the

paths that have motivated the analyses undertaken in this study (i.e. that maternal environmental exposures influence DNA methylation that in turn
influences fetal growth and hence birthweight). The EWAS meta-analysis undertaken sought to identify methylation associated with birthweight. Blue

arrows summarise other plausible paths, including that maternal exposures influence fetal growth first and it then influences DNA methylation or that
maternal exposures may influence fetal growth/birthweight and later-life health outcomes through other pathways than DNA methylation
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the two African cohorts revealed that 94.9% and 74.0% of the 914
CpGs showed consistent direction of association, with Pearson
correlation coefficients for point estimates of 0.82 and 0.48,
respectively (Supplementary Data 3). In leave-one-out analyses, in
which we reran the main meta-analysis repeatedly with one of the
24 studies removed each time, there was no strong evidence that any
one study influenced findings consistently across the 914 differen-
tially methylated CpGs that passed Bonferroni correction and for
which between-study heterogeneity had an I2 ≤ 50%. For 139/914
CpGs (15.2%) the difference in mean birthweight for a 10% greater
methylation at that site varied by ≥20% with removal of a study, but
the study resulting in the change was different for different CpGs.
Supplementary Fig. 3.1-3.20 show the results for a random 10 plots
where removal of one study changed the result by 20% or more and a
random 10 where this was not the case; full results are available on
request from the authors. Findings were broadly consistent when
birthweight was categorised to high (>4000 g, n= 1593) versus
normal (2500–4000 g, n= 6377) (Supplementary Data 4, yellow
track (5) in Fig. 4) and when we did not exclude neonates born
preterm or to women with pre-eclampsia or diabetes (Supplementary
Fig. 4 and Supplementary Data 5A and 5C, and red track (3) in
Fig. 4). Without these exclusions, we were able to examine
associations with low (<2500 g, n= 178) versus normal
(2500–4000 g, n= 4197) birthweight, though statistical power was

still limited. Four CpGs were associated with low versus normal
birthweight (Bonferroni-corrected threshold), none of which over-
lapped with the 914 CpGs from the main analysis (Supplementary
Data 5B, purple track (4) in Fig. 4). We identified that 161 of the 914
differentially methylated CpGs potentially contained a single-
nucleotide polymorphism (SNP) at cytosine or guanine positions
(i.e. polymorphic CpGs; Supplementary Data 6). Polymorphic CpGs
may affect probe binding and hence measured DNA methylation
levels26,27. We used one of the largest studies (ALSPAC; n= 633)
to explore this. We found no indication of bimodal distributions
for any of the 161 CpGs suggesting SNPs had not markedly affected
methylation measurements at these sites (dip test p-values:
0.299–1.00)28–30.

Analyses at older ages. We took the 914 neonatal blood CpGs that
were associated with birthweight at Bonferroni-corrected statistical
significance and with I2 ≤ 50% and examined their associations with
birthweight when measured in blood taken in childhood (2–13 years;
n = 2756 from 10 studies), adolescence (16–18 years; n= 2906 from
six studies) and adulthood (30–45 years; n= 1616 from three stu-
dies). Only participants from ALSPAC, CHAMACOS and Genera-
tion R had also contributed to the main neonatal blood EWAS. In
childhood, adolescence and adulthood, we observed 87, 49 and 42 of
the 914 CpGs to be nominally associated with birthweight (p < 0.05).

Table 1 Characteristics for the participating studies in the main meta-analysis for the association between neonatal blood DNA

methylation and birthweight

Study Total N Normal birthweight,

N (%)

High birthweight,

N (%)

Birthweight (g) Gestational age

(wk)

Ethnicity Boys,

N (%)

ALSPAC 633 547 (86.4) 79 (12.5) 3512 ± 443 39.7 ± 1.3 European 301 (47.6)
CBCa: Hispanic 127 106 (83.5) 19 (15.0) 3445 ± 484 39.8 ± 1.3 Hispanic 74 (58.3)
CBCa: Caucasian 136 108 (79.4) 26 (19.1) 3625 ± 472 39.7 ± 1.5 European 79 (58.1)
CHAMACOS 283 236 (83.4) 44 (15.5) 3520 ± 446 39.3 ± 1.2 Hispanic 142 (50.1)
CHSa 199 168 (84.4) 28 (14.1) 3486 ± 476 40.2 ± 1.2 Mixed 79 (39.7)
EARLI 131 113 (86.3) 16 (12.2) 3507 ± 480 39.3 ± 1.0 Mixed 70 (53.4)
EXPOsOMICS: Rhea,
Environage and Piccolipiu

324 297 (91.7) 22 (6.8) 3368 ± 437 39.4 ± 1.2 European 169 (52.1)

GECKO 255 206 (80.8) 46 (18.0) 3543 ± 533 39.7 ± 1.3 European 136 (53.3)
Gen3G 162 145 (89.5) 15 (9.3) 3408 ± 431 39.5 ± 1.1 European 74 (45.7)
Generation R 717 589 (82.1) 122 (17.0) 3572 ± 465 40.2 ± 1.1 European 372 (51.9)
GOYAb 947 649 (68.5) 294 (31.0) 3750 ± 501 40.4 ± 1.3 European 483 (51.0)
Healthy Start: African
American

77 – – 3059 ± 358 38.9 ± 1.3 African
American

42 (54.5)

Healthy Start: Hispanic 115 – – 3322 ± 395 39.1 ± 1.1 Hispanic 55 (47.8)
Healthy Start: Caucasian 240 220 (91.7) 14 (5.8) 3325 ± 425 39.3 ± 1.1 European 125 (52.1)
INMA 166 – – 3297 ± 400 39.9 ± 1.2 European 82 (49.4)
IOW F2 118 97 (82.2) 17 (14.4) 3432 ± 525 39.7 ± 1.6 European 59 (50.0)
MoBa1 1066 795 (74.6) 251 (23.5) 3644 ± 544 39.5 ± 1.6 European 568 (53.3)
MoBa2 587 435 (74.1) 146 (24.9) 3701 ± 487 40.1 ± 1.2 European 329 (56.0)
MoBa3 205 153 (74.6) 51 (24.9) 3706 ± 491 39.8 ± 1.2 European 106 (51.7)
NCLa 792 592 (74.7) 192 (24.2) 3671 ± 506 40.0 ± 1.3 European 453 (57.2)
NEST: African American 99 – – 3197 ± 534 39.3 ± 1.2 African

American
47 (47.5)

NEST: Caucasian 111 94 (84.7) 13 (11.7) 3446 ± 471 39.5 ± 1.2 European 50 (45.0)
NHBCS 96 84 (87.5) 12 (12.5) 3509 ± 453 39.6 ± 1.1 European 53 (55.2)
PREDO 540 428 (79.3) 99 (18.3) 3572 ± 478 40.1 ± 1.2 European 264 (48.8)
PRISM 138 – – 3385 ± 441 39.5 ± 1.1 Mixed 76 (55.1)
PROGRESS 143 – – 3124 ± 387 38.6 ± 1.1 Hispanic 77 (53.8)
RICHS 89 52 (58.4) 23 (25.8) 3335 ± 734 38.9 ± 1.2 European 35 (39.3)
Project Viva 329 263 (79.9) 64 (19.5) 3623 ± 473 40.0 ± 1.2 European 168 (51.1)
Total N 8825 6377 1593

Results are presented as mean ± SD or N (%). Normal birthweight: 2500−4000 g, high birthweight: >4000 g, low birthweight: <2500 g. Studies with mixed ethnicities analysed all participants together
with adjustment for ethnicities. g: grams, wk: weeks, y: years. Full study names can be found in study-specific Supplementary Methods. For some studies the sample size for defining normal/high BW was
too small
aCBC, CHS and NCL used heel prick blood spot samples instead of cord blood
bGOYA is a case-cohort study (cases are mothers with BMI>32 and controls are mothers randomly sampled from the underlying study population in which the cases were identified), in analyses where
we included a random sample with a normal BMI distribution results were essentially the same as in the main analyses
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All these CpGs showed consistent directions of association. Ten
CpGs showed differential methylation across all four age periods.
However, only a minority survived Bonferroni correction for 914
tests (p < 5.5 × 10–5): 12 (1.3%), 1 (0.1%) and 0 CpGs in childhood,
adolescence and adulthood, respectively (Supplementary Data 7; the
12 CpGs that persisted in childhood are presented in the green track
(6) in Fig. 4). Of the 914 CpGs, 50, 52 and 49% showed consistency
in direction of association in childhood, adolescence and adulthood,
but correlations of the associations of DNA methylation and birth-
weight between methylation measured in infancy and that measured
in childhood, adolescence and adulthood were weak (Pearson cor-
relation coefficients: 0.15, 0.06 and 0.02, respectively).

Intrauterine factors. We observed enrichment of previously pub-
lished maternal smoking-related CpGs in the birthweight-associated
CpGs14 (55/914 (6.0%) penrichment= 6.12 × 10−74, of which
cg00253658 and cg26681628 also showed persistent methylation

differences in the look-up in childhood). We additionally found
enrichment of maternal BMI-related CpGs in the list of birthweight-
related CpGs15 (3/914 (0.3%) penrichment= 1.13 × 10−3). All direc-
tions of association were consistent with the birthweight-lowering
influence of maternal smoking or the positive association of maternal
BMI with birthweight (Supplementary Data 8). We did not find
evidence for overlap with plasma folate31. For famine, we were
unable to explore overlap with DNA methylation at the Bonferroni-
significant level as the previous EWAS of famine only reported
results that reached a FDR level of statistical significance32. In
additional analyses for overlap between all FDR hits from the
birthweight EWAS with those FDR hits presented in the smoking,
maternal BMI, folate and famine EWAS, we found an overlap of 430/
8170 CpGs (5.3%, penrichment= 7.38 × 10−132) for smoking, 584/8170
CpGs (7.1%, penrichment= 3.34 × 10−62) for maternal BMI and 14/
8170 (0.2%, penrichment= 0.02) for folate. For famine we did not
observe overlap.

Study-specific epigenome-wide association studies

Main meta-analysis

Association of DNA methylation with birthweight as a continuous variable
Fixed effects inverse variance weighted meta-analysis

Secondary meta-analyses
Genome-wide analyses on all >450k CpGs

European ancestry only meta-analysis (n = 6,023 from 17 studies)

High (n = 1,593) vs normal birthweight (n = 6,377) from 21 studies

Including mother-offspring pairs with pre-eclampsia, gestational

diabetes and preterm delivery (9 studies**)

a.    Continuous birthweight (n = 5,414)

b.    High (n = 1,039) vs normal birthweight (n = 4,197)

c.    Low (n = 178) vs normal birthweight (n = 4,197)

a.     Childhood (n = 2,756 from 10 studies, 2–12y)

b.     Adolescence (n =2,906 from 6 studies, 16–18y)

c.     Adulthood (n =1,616 from 3 studies, 30–45y)

Follow up of methylation sites for function & causality
Focused on n = 914 prioritised CpGs (p < 1.06*10 –7 and l 2≤50%)

In silico explore overlap of CpGs associated with intrauterine exposures

a.   Maternal smoking and BMI

b.   Metastable epialleles and imprinted genes 

Functional analyses 

a.   In silico explore overlap with a publicly available list of cis-eQTMs

b.   Explore whole blood mRNA gene expression in 112 Spanish four-

      year-olds and 84 Gambian two-year-olds

c.   In silico functional enrichment analyses (GO and KEGG pathways) 

Explore causality with birth weight and later-life health using two-sample

Mendelian randomization with publicly available summary data 

Exploration of persistence at older ages
Focused on n = 914 prioritised CpGs (p < 1.06*10 –7 and l 2≤50%)

Associations with birthweight in blood samples collected at older ages

n = 8,825 neonates* from 24 birth cohorts

Fig. 2 Design of the study. Schematic representation of the main meta-analysis, secondary meta-analyses, follow-up analyses and exploration of
persistence at older ages. *We removed multiple births from all analyses and excluded preterm births (<37 weeks) and offspring of mothers with pre-

eclampsia or diabetes (three major pathological causes of differences). **For sufficient power in the low vs normal BW analyses, we only included nine
studies with >10 low birthweight cases
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Fig. 3 Volcano plot showing the direction of associations of DNA methylation with birthweight in 8825 neonates from 24 studies. The X-axis represents

the difference in birthweight in grams per 10% methylation difference, the Y-axis represents the −log10(P). The red line shows the Bonferroni-corrected
significance threshold for multiple testing (p < 1.06 × 10−7). Highlighted in orange are the 914 CpGs with p < 1.06 × 10−7 and I2≤ 50% and highlighted in

blue are the 115 CpGs with p < 1.06 × 10−7 and I2 > 50%

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09671-3

4 NATURE COMMUNICATIONS |         (2019) 10:1893 | https://doi.org/10.1038/s41467-019-09671-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Metastable epialleles and imprinted genes. We tested the
birthweight-associated CpGs for enrichment of metastable epialleles
(loci for which the methylation state is established in the peri-
conceptional period33,34). We additionally tested for enrichment of
CpGs annotated to imprinted genes (loci that depend on the main-
tenance of parental-origin-specific methylation marks in the pre-
implantation embryo, some of which are known to regulate fetal
growth35,36). We did not find evidence of enrichment for metastable
epialleles (3/1936 metastable epialleles overlap a birthweight-
associated CpG), imprinting control regions (0/741) or imprinted
gene transcription start sites (5/1728) (Supplementary Data 9).

Comparison with GWAS for birthweight. To compare these
EWAS results to those from genetic studies, we used the 60 recently
published fetal SNPs associated with birthweight in a GWAS meta-
analysis of 153,781 newborns37 and mapped the CpG sites identified
in the EWAS to these SNPs to seek evidence of co-localisation of

genetic and epigenetic variation (Supplementary Data 10). We
repeated this for the 10 recently published maternal SNPs associated
with birthweight in a GWAS meta-analysis of 86,577 women38

(Supplementary Data 11). We observed that one or more of the 914
birthweight-associated CpGs were within+/−2Mb of 34/60 fetal and
all 10 maternal birthweight-associated SNPs. Of the 34 fetal SNPs,
three were located in the same gene as the CpG, as was one of the ten
maternal SNPs. Ten fetal and four maternal SNPs were within 100 kb
of identified CpGs. In a look-up of the fetal and maternal SNPs from
GWAS of birthweight in an online cord blood methylation quanti-
tative trait loci (mQTL) database (mqtldb.org39), 35 fetal and four
maternal SNPs affected methylation at some CpG(s), but none at the
914 birthweight-associated CpGs specifically.

Functional analyses. We compared the 914 birthweight-
related CpGs with a recently published list of 18,881 expression
quantitative trait methylation sites (cis-eQTMs, +/−250 kb around
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Fig. 4 Circos plot showing the (Bonferroni-corrected p < 1.06 × 10−7) results for associations of DNA methylation with birthweight. Results are presented
as CpG-specific associations (−log10(P), each dot represents a CpG) by genomic position, per chromosome. From outer to inner track: [1, orange] Main

analysis results for associations between DNA methylation and birthweight as a continuous measure (n= 8825), [2, blue] Results from participants from
European ethnicity only, DNA methylation and birthweight as a continuous measure (n= 6023), [3, red] Results from analysis without exclusion for

preterm births, pre-eclampsia and maternal diabetes, DNA methylation and birthweight as a continuous measure n= 5414), [4, purple] Results from
logistic regression analysis without exclusion for preterm births, pre-eclampsia and maternal diabetes, for low (n= 178) vs normal (n= 4197) birthweight,

[5, yellow] Results from logistic regression analysis for associations between DNA methylation and high (n= 1590) vs normal (n= 6114) birthweight,
[6, green] Results from look-up analysis in methylation samples taken during childhood and its association with birthweight as a continuous measure (n=

2756). Track 1: highlighted in red are 115 CpGs with I2 > 50%. Tracks 2–6: highlighted in red are CpGs that were not found in the 914 main meta-analysis
hits (though note differences in sample size and hence statistical power for different analyses presented in the different tracks)
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the transcription start site), CpG sites known to correlate with gene
expression, from whole blood samples of 2101 Dutch adult indivi-
duals. We found that 82 of the 914 birthweight-associated CpGs
were associated with gene expression of 98 probes (cis-eQTMs)40

(penrichment < 1.73 × 10−11, Supplementary Data 12). Additionally, in
112 Spanish 4-year-olds41, we observed that 19 CpGs were
inversely associated with whole blood mRNA gene expression and
four CpGs were positively associated with gene expression
(FDR<0.05, Supplementary Data 13). Of these 23 CpGs, 13 were also
found in the publicly available cis-eQTM list40. In 84 Gambian
children (age 2 years)42, we found two CpGs that were inversely
associated with whole blood mRNA gene expression, but neither
were found in the Spanish results or the publicly available cis-eQTM
list. The 914 birthweight-associated CpGs showed no functional
enrichment of Gene Ontology (GO) terms or Kyoto Encyclopedia of
Genes and Genomes (KEGG) terms (FDR<0.05).

Mendelian randomization. We aimed to explore causality using
MR analysis, in which genetic variants associated with methylation
levels (methylation quantitative trait loci (mQTLs)) are used as
instrumental variables to appraise causality. For 788 (86%) of the
914 birthweight-associated CpGs, no mQTLs were identified in a
publicly available mQTL database39. For 108 (86%) of the remaining
126 CpGs, only one mQTL was identified and for the remainder
none had more than four mQTLs (Supplementary Data 14 provides
a complete list of all mQTLs identified for these 126 CpGs). Many of
the currently available methods that can be used as sensitivity
analyses to explore whether MR results are biased by horizontal
pleiotropy (a single mQTL influencing multiple traits) require more
than one genetic instrument (here mQTLs) and even with two or
three this can be difficult to interpret43. Having determined that it
was not possible to undertake MR analyses of 86% of the
birthweight-related differentially methylated CpGs (because we did
not identify any mQTLs), and for the majority of the remaining
CpGs we would not have been reliably able to distinguish causality
from horizontal pleiotropy (because only one mQTL could be
identified), we decided not to pursue MR analyses further.

Discussion
This large-scale meta-analysis shows that birthweight is associated
with widespread differences in DNA methylation. We observed
some enrichment of birthweight-associated CpGs among sites that
have previously been linked to smoking during pregnancy14 and
pre-pregnancy BMI15, consistent with the hypothesis that epigenetic
pathways may underlie the observational associations of those pre-
natal exposures with birthweight21,44,45. However, the actual overlap
in this analysis was modest, likely explained by the adjustments for
maternal smoking and BMI in the EWAS analyses. The overlap that
we observed with pregnancy smoking-related CpGs may reflect the
possibility that smoking-related CpGs capture smoking better than
self-report46,47, in line with expectations of pregnant women
underreporting their smoking behaviour. Adjustment for maternal
smoking and BMI may have masked a greater level of overlap
between our results and EWAS of these two maternal exposures.
The fact that we find an association of DNA methylation across the
genome with birthweight provides some support for our conceptual
framework shown in Fig. 1. However, we acknowledge that the
associations that we have observed may also be explained by causal
effects of maternal pregnancy exposures on both DNA methylation
and fetal growth, as well as subtle inflammatory responses in cell-
type proportions associated with maternal smoking that might not
have been completely captured with the currently available cell type
estimation methods.

The differential methylation associated with birthweight in neo-
nates persisted only minimally across childhood and into adulthood.

Larger (preferably longitudinal) studies are needed to explore per-
sistent differential methylation in more detail and with better power
at older ages. It is possible that inclusion of the Gambia study in the
childhood EWAS (which was the only non-European study in these
analyses and was not included in the main meta-analyses with
neonatal blood) might have impacted these results, although this
study made up just 7% of the total child follow-up sample. A rapid
attenuation of differential methylation in relation to birthweight in
the first years after birth has previously been reported19, but our
sample size for these analyses may have been too small to detect
persistence. This rapid decrease, if real, may indicate a reduction in
the dose of the child’s exposure to maternal factors such as smoking
once the offspring is delivered, with that reduction continuing as the
child ages. Persistence of birthweight-related differential DNA
methylation may not necessarily be a prerequisite for long-term
effects, as transient differential methylation in early life may cause
lasting functional alterations in organ structure and function that
predispose to later adverse health effects.

Methylation is known to be associated with gene expression48.
However, we found no consistent associations between birthweight-
related methylation and gene expression in two childhood studies.
This could be due to the relatively small sample sizes, differences in
ethnicities, age, or platforms to measure gene expression. The use of
blood, which is likely only a possible surrogate tissue for fetal growth
phenotypes, for gene expression analysis might also explain the lack
of findings. We did find multiple cis-eQTMs among the birthweight-
related CpGs at which methylation was related to gene expression in
blood when using a publicly available database from a larger adult
sample40, providing some evidence that birthweight-related differ-
entially methylated CpGs may be associated with gene expression.
These initial in silico association analyses need further exploration to
establish any underlying causal mechanisms.

In observational studies, birthweight has repeatedly been
associated with a range of later-life diseases. Change in DNA
methylation has been hypothesized as a potential mechanism
linking early exposures, birthweight and later health (Fig. 1). We
originally aimed to explore this using MR analysis. For the vast
majority of the birthweight-associated CpGs, no genetic instru-
mental variables were available. For the remaining 126 CpGs,
only one mQTL was available, which would make it impossible to
disentangle causality from horizontal pleiotropy. To ensure a
strong basis for future MR analyses on this topic, there is a clear
need for a more extensive mQTL resource.

Strengths of this study are its large sample size and the extensive
analyses that we have undertaken. In a post hoc power calculation
based on the sample size of 8825 with a weighted mean birthweight
of 3560 g (weighted mean standard deviation (SD): 483 g) and with
an alpha set at the Bonferroni-corrected level of P < 1.06 × 10−7 we
had 80% power, with a two-sided test, to detect a minimum differ-
ence of 0.13 SD (63 g) in birthweight for each SD increase in
methylation. The difference in methylation corresponding to a 1 SD
increase differs per CpG, as it depends on the distribution of the
methylation values. We acknowledge that smaller differences which
might be clinically or biologically relevant may not have been iden-
tified in the current analysis. Nonetheless, to our knowledge this
analysis has brought together all studies currently available with
relevant data and is the largest published study of this association.
DNA methylation patterns in neonatal blood, whilst easily accessible
in large numbers, may not reflect the key tissue of importance in
relation to birthweight. DNA methylation and gene expression in
placental tissue may be important targets for future studies. DNA
methylation varies between leucocyte subtypes49 and we used an
adult whole blood reference to correct for this in the main
analyses23,24, as the study-specific analyses were completed before the
widespread availability of specific cord blood reference datasets50,51.
However, we observed very similar findings in two studies
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(Generation R and GECKO) when we compared the results with
those using one of the currently available cord blood references50.
Although we adjusted for potential major confounders that may
affect both methylation and fetal growth, we acknowledge that the
main results cannot ascertain causality. That is, whilst we have
hypothesised that variation in fetal DNA methylation influences fetal
growth and hence birthweight, and undertaken the analyses
accordingly, we cannot exclude the possibility that differences in
neonatal blood DNA methylation are caused by variation in fetal
growth itself, or that the association is confounded by factors,
including maternal smoking and BMI, that independently influence
both fetal growth and DNA methylation (as suggested in Fig. 1). The
450k array that was used to measure genome-wide DNAmethylation
only covers 1.7% of the total number of CpGs present in the genome
and specifically targets CpGs in promoter regions and gene bodies52.
We removed the CpGs that were flagged as potentially cross-reactive,
as the measured methylation levels may represent methylation at
either of the potential loci. Also, although we did not find evidence
for polymorphic effects for the 161 potentially polymorphic CpGs in
ALSPAC, we cannot completely exclude these potential polymorphic
effects in the meta-analysed results. The majority of participants were
of European ethnicity and when analyses were restricted to those of
European ethnicity the results were essentially identical to those with
all studies included. Direct comparisons of the main analysis with
analyses in those of Hispanic or of African ethnicity for the 914 hits
suggested strong correlations with Hispanic but weaker with African
ethnicity. However, these results need to be treated with caution.
First, we had very few studies of Hispanic and African populations.
Second, we only compared the initial hits from the main meta-
analysis with all ethnicities included. A detailed exploration of ethnic
differences would require similar large samples for each ethnic group
and within ethnic EWAS, which is beyond the scope of the data
currently available.

Neonatal blood DNAmethylation at many sites across the genome
is associated with birthweight. Further research is required to
determine if these are causal and if so whether they mediate any
long-term effect of intrauterine exposures on future health.

Methods
Participants. In the main EWAS meta-analysis we explored associations of neo-
natal blood DNA methylation with birthweight using data from 8825 neonates
from 24 studies in the PACE Consortium53 (Table 1). We removed multiple births
from all analyses and excluded preterm births (<37 weeks) and offspring of
mothers with pre-eclampsia or diabetes (three major pathological causes of dif-
ferences in fetal growth). In follow-up analyses, we explored whether any sites
found in the main analysis were discernible in relation to birthweight when
examined in DNA from blood drawn during childhood (2–13 years; 2756 children
from 10 studies), adolescence (16–18 years; 2906 adolescents from six studies) or
adulthood (30–45 years; 1616 adults from three studies), see Supplementary
Data 1B. Informed consent was obtained from all participants, and all studies
received approval from local ethics committees. Study-specific methods and ethical
approval statements are provided in Supplementary Methods.

Birthweight, DNA methylation and covariates. Our primary outcome was
birthweight on a continuous scale (grams), adjusted for gestational age, and measured
immediately after birth or retrospectively reported by mothers in questionnaires. In
secondary analyses, we categorised and compared associations with high (>4000 g,
n= 1593) versus normal (2500–4000g, n= 6377) birthweight. We also explored all
associations with (continuous and categorical) birthweight in analyses that did not
exclude women with pre-eclampsia, diabetes or preterm delivery, which also resulted
in enough cases to explore low (<2500 g, n= 178) versus normal (2500–4000 g, n=
4197) birthweight (Supplementary Data 1C shows the characteristics of participants).
Primary, secondary and follow-up analyses are outlined in the study design in Fig. 2.
DNA methylation was measured in neonatal blood samples using the Illumina Infi-
nium® HumanMethylation450 BeadChip assay. All participants had cord blood
samples except for three studies with heel stick blood spots (n= 1254 [14.2%]). After
study-specific laboratory analyses, quality control, normalisation, and removal of
control probes (n= 65) and probes that mapped to the X (n= 11,232) and Y (n=
370) chromosomes, we included 473,864 CpGs. DNA methylation is expressed as the
proportion of cells in which the DNA was methylated at a specific site and hence takes
values from zero to one. We converted this to a percentage and present differences in

mean birthweight per 10% higher DNA methylation level at each CpG. All analyses
were adjusted for gestational age at delivery, child sex, maternal age at delivery, parity
(0/≥1), smoking during pregnancy (no smoking/stopped in early pregnancy/smoking
throughout pregnancy), pre-pregnancy BMI, socio-economic position, technical var-
iation, and estimated white blood cell proportions (B-cells, CD8+ T-cells, CD4+
T-cells, granulocytes, NK-cells and monocytes)23–25. In studies with participants from
multiple ethnic groups, each group was analysed separately and results were added
to the meta-analyses as separate studies. Further details are provided in the study-
specific Supplementary Methods.

Statistical methods. Robust linear (birthweight as a continuous outcome) or logit
(binary birthweight outcomes) regression EWAS were undertaken within each
study according to a pre-specified analysis plan. Quality control, normalisation and
regression analyses were conducted independently by each study. After confirming
comparability of study-specific summary statistics54, we combined results using a
fixed effects inverse variance weighted meta-analysis55. The meta-analysis was done
independently by two study groups and the results were compared in order to
minimise the likelihood of human error. We show (two-sided) results after cor-
recting for multiple testing using both the FDR<0.0556 and the Bonferroni cor-
rection (p < 1.06 × 10−7). We completed follow-up analyses for differentially
methylated CpGs that reached the Bonferroni-adjusted threshold and did not show
large between-study heterogeneity57 (I2 ≤ 50%). We annotated the nearest gene for
each CpG using the UCSC Genome Browser build hg1958,59. We explored whether
between-study heterogeneity might be explained by differences in ethnicity
between studies, by repeating the meta-analysis including only participants of
European ethnicity, which was by far the largest ethnic subgroup (n= 6023 from
17 studies) (Fig. 2). Ethnicity was defined using maternal or self-report, unless
specified otherwise in study-specific Supplementary Methods. We also did meta-
analyses only including the Hispanic studies and only including the African
American studies and present those results for illustrative purposes only, given the
much smaller sample size. All analyses were performed using R60, except for the
meta-analysis which was performed using METAL55. We removed CpGs that co-
hybridised to alternate sequences (i.e. cross-reactive sites), because we cannot
distinguish whether the differential methylation is at the locus that we have
reported or at the one that the probe cross-reacts with. We compared the
birthweight-related CpGs to lists of CpGs that are potentially influenced by a SNP
(polymorphic sites)26,27. For these CpGs, we determined if DNA methylation levels
were influenced by nearby SNPs, by assessing whether their distributions deviated
from unimodality using Hartigans’ dip test28,29 and visual inspection of density
plots in n= 742 cord blood samples in the ALSPAC study.

Analyses at older ages. Analyses of the associations with DNA methylation in
blood collected in childhood, adolescence and adulthood followed the same cov-
ariable adjustment and methods as for the main analyses (p < 5.5 × 10−5 for 914
tests). All participants and studies in these analyses at older ages had not been
included in the main meta-analysis in neonatal blood, except for ALSPAC (n= 633
in neonatal analyses, n= 605 in childhood and n= 526 in adolescence), CHA-
MACOS (n= 283 in neonatal analyses and n= 191 in childhood) and Generation
R (n= 717 in neonatal analyses and n= 372 in childhood). Characteristics are
shown in study-specific Supplementary Methods and Supplementary Data 1B.

Intrauterine factors. We used a hypergeometric test to explore the extent to which
any of the birthweight-related CpGs overlapped with those previously associated
with intrauterine exposure to smoking14 (n= 568 CpGs), BMI15 (n= 104 CpGs)
and plasma folate31 (n= 48 CpGs), using the same (Bonferroni-corrected) cut-off
for statistical significance. No CpGs reached the Bonferroni-corrected cut-off for
famine32. We additionally appraised this overlap using the FDR<0.05 cut-off for all
traits (n= 8170 birthweight-related CpGs, n= 6703 smoking-related CpGs, n=
16,067 BMI-related CpGs, n= 443 folate-related CpGs, n= 7 famine-related
CpGs). These FDR results were available from the publications for smoking, folate
and famine, and we obtained them from the corresponding author for BMI.

Metastable epialleles and imprinted genes. We tested the birthweight-
associated CpGs for enrichment of metastable epialleles and CpGs associated with
imprinted genes. The metastable epialleles were derived from a recently published
study that identified 1936 putative metastable epialleles34. For imprinted genes, we
first identified a set of CpGs falling within a curated set of imprinting control
regions; differentially methylated regions controlling the parental-specific expres-
sion of one or more imprinted genes36. Second, we extracted the set of imprinting
control region controlled genes from the above source and identified all 450k CpGs
within +/−10kbp of the gene transcription start site, including all known alter-
native TSS identified in grch37.ensembl.org using biomaRt61,62.

Comparison with GWAS for birthweight. We compared the birthweight-
associated CpGs with the 60 SNPs from the most recent GWAS meta-analyses of
fetal genotype associations with birthweight in >150,000 newborns37 and with
the 10 SNPs from the most recent GWAS meta-analysis of maternal genotype
associations with birthweight in >86,000 women38. With this comparison we
checked if the EWAS top hits were located within a 4Mb window (+/− 2Mb)
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surrounding these SNPs. We additionally checked whether SNPs and CpGs were
located in the same gene.

Functional analyses. To explore the association of methylation with gene
expression, we compared birthweight-related CpGs with a recently published list of
18,881 cis-eQTMs from whole blood samples of 2101 Dutch adult individuals40.
With a hypergeometric test, we calculated enrichment of cis-eQTMs in the list of
birthweight-associated CpGs. We further explored methylation of birthweight-
associated CpGs in relation to whole blood mRNA gene expression (transcript
levels) within a 500 kb region of the CpGs (+/−250 kb, FDR<0.05) in 112 Spanish
4-year-olds41 and 84 Gambian 2-year-olds42 (Supplementary Methods). To better
understand the potential mechanisms linking DNA methylation and birthweight,
we explored the potential functions of the birthweight-associated CpGs using GO
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We
used the missMethyl R package63, which enabled us to correct for the number of
probes per gene on the 450k array, based on the November 2018 version of the GO
and KEGG source databases. To filter out the large, general pathways we set the
number of genes for each gene set between 15 and 1000, respectively. We calculated
FDR at 5% corrected P-values for enrichment.

Mendelian randomization. MR uses genetic variants as instrumental variables to
study the causal effect of exposures on outcomes64,65. We aimed to use two-sample
MR22,66 to explore (a) evidence of a causal association of methylation levels at the
identified CpGs with birthweight and (b) evidence of a causal association of these
CpGs with later-life health outcomes (i.e. to explore our hypothesised causal
mechanisms shown in Fig. 1). We did this by first searching a publicly available
mQTL database39 to identify cis-mQTLs within 1Mb of each of the Bonferroni-
corrected, with I2 ≤ 50%, birthweight-related differentially methylated CpGs. These
mQTLs could then be used as genetic instrumental variables for methylation levels
of the birthweight-related CpGs. We then aimed to determine the association of
these mQTLs with birthweight and later-life health outcomes from publicly
available summary GWAS results66.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding authors upon
reasonable request. All summary statistics from this EWAS meta-analysis are available
via doi: 10.5281/zenodo.2222287. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
The code used for this EWAS meta-analysis is available from the authors upon request.
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