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Abstract

Introduction Breast cancer subtyping and prognosis have been
studied extensively by gene expression profiling, resulting in
disparate signatures with little overlap in their constituent genes.
Although a previous study demonstrated a prognostic
concordance among gene expression signatures, it was limited
to only one dataset and did not fully elucidate how the different
genes were related to one another nor did it examine the
contribution of well-known biological processes of breast
cancer tumorigenesis to their prognostic performance.

Method To address the above issues and to further validate
these initial findings, we performed the largest meta-analysis of
publicly available breast cancer gene expression and clinical
data, which are comprised of 2,833 breast tumors. Gene
coexpression modules of three key biological processes in
breast cancer (namely, proliferation, estrogen receptor [ER],
and HER2 signaling) were used to dissect the role of
constituent genes of nine prognostic signatures.

Results Using a meta-analytical approach, we consolidated the
signatures associated with ER signaling, ERBB2 amplification,
and proliferation. Previously published expression-based
nomenclature of breast cancer 'intrinsic' subtypes can be

mapped to the three modules, namely, the ER-/HER2- (basal-
like), the HER2+ (HER2-like), and the low- and high-proliferation
ER+/HER2- subtypes (luminal A and B). We showed that all nine
prognostic signatures exhibited a similar prognostic
performance in the entire dataset. Their prognostic abilities are
due mostly to the detection of proliferation activity. Although ER-

status (basal-like) and ERBB2+ expression status correspond to
bad outcome, they seem to act through elevated expression of
proliferation genes and thus contain only indirect information
about prognosis. Clinical variables measuring the extent of
tumor progression, such as tumor size and nodal status, still add
independent prognostic information to proliferation genes.

Conclusion This meta-analysis unifies various results of
previous gene expression studies in breast cancer. It reveals
connections between traditional prognostic factors, expression-
based subtyping, and prognostic signatures, highlighting the
important role of proliferation in breast cancer prognosis.

DRFS = distant relapse-free survival; ER = estrogen receptor.
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Introduction
Breast cancer is the disease most extensively studied by gene

expression profiling of primary tumors from patient populations

[1-21]. Despite this effort, the research results are still frag-
mented. Disparate signatures have been proposed, either

directly from breast cancer expression profiles [10-

12,18,19,21,22] or translated from model systems [1,23,24],

with little agreement in the constituent genes. Fan and col-

leagues [25] recently compared the prognostic ability of the

intrinsic subtypes and four prognostic signatures in 295
patients. They noted concordance in the risk classification,

which suggests potential equivalence between some of these

signatures. However, these signatures have been examined in

only one dataset and the study did not fully elucidate how the

different genes were related to one another nor did it examine

the contribution of well-known biological processes of breast

cancer tumorigenesis to their prognostic performance.

To address these issues, we undertook the largest meta-anal-

ysis of publicly available gene expression and clinical data,

which are comprised of 2,833 breast tumors [1-21]. We used

the concept of 'coexpression' modules (comprehensive lists of

genes with highly correlated expression) associated with
important biological processes in breast cancer to reveal the

common thread connecting molecular subtyping and several

prognostic signatures. Their prognostic values, adjusted for

the conventional clinicopathological variables, were studied in

a database of 2,833 patients with breast cancer in order to

arrive at solid conclusions. Finally, we went a step further to
characterize the constituent genes of these signatures and to

study how they contribute to their prognostic power.

Materials and methods
Detailed descriptions of the methods can be found in Addi-

tional data file 1. A brief summary is outlined here.

Preparation of expression data

We collected publicly available datasets from journal articles

and repositories such as Gene Expression Omnibus (GEO)

and ArrayExpress, selecting those with a medium to large sam-

ple size (Table 1). Since publications sometimes used the

same patients, datasets with unique patients were introduced
(identified by the 'dataset symbols' in Table 1) by merging

some original datasets or removing redundant patients. The

collection includes datasets produced on whole-genome

microarrays, small diagnostic arrays, and reverse transcription-

polymerase chain reaction panels, totaling 2,833 expression

profiles. Hybridization probes were mapped to Entrez GeneID
[26] through sequence alignment against RefSeq mRNA in

the (NM) subset, similar to the approach of Shi and colleagues

[27], using RefSeq version 21 (2007.01.21) and Entrez data-

base version 2007.01.21. When multiple probes were

mapped to the same GeneID, the one with the highest vari-

ance in a particular dataset was selected to represent the
GeneID. The numbers of distinct GeneIDs obtained for each

dataset are shown in Table 1. The normalized, log-transformed

expression measures as published by the original studies were

used. Meta-analyses were performed on the union of all

17,198 genes. Summary statistics of absent genes were con-
sidered as missing values. Summaries of the availability and

compositions of important clinical variables for each dataset

are shown in Figure 1 of Additional data file 2.

Identifying coexpression modules

The expression levels of the prototype genes on the log2 scale
were used as explanatory variables in multiple regression with

the Gaussian error model, using the following equation (gene

symbols stand for their log expression, and coefficients are

omitted for clarity):

Yi = ESR1 + ERBB2 + AURKA,

where the response variable Yi is the expression of gene i. This

model is fitted separately for each gene i in the array. The asso-

ciation between gene i and prototype j (in the presence of or

conditional on all other prototypes) is tested using the t statis-

tic for each coefficient. Because the t statistics for different

datasets have different degrees of freedom, we put them all on
the same scale by transforming them to the corresponding

cumulative probabilities and then to z scores using the inverse

standard normal cumulative distribution function. The z scores

were combined meta-analytically across datasets using the

'inverse normal method'. The linear model above was fitted

separately to each gene in each dataset, and the z scores
were combined meta-analytically over multiple studies using

the inverse normal method [28]. To select genes that are most

strongly associated with the prototypes, we use a stringent cri-

terion of |z| ≥ 16, which is well above |z| ≈ 5 that corresponds

to a Bonferroni-corrected P value of 0.05.

Module scores

For a specific dataset, the module score is computed for each

sample as

where xi is the expression of a gene in the module that is

present in the dataset's platform. wi is either +1 or -1, depend-

ing on the sign of the z score of the association with the

prototypes.

Clustering and multimodality tests

To cluster the tumors based on the ESR1 and ERBB2 module

scores, Gaussian mixture models [29] with equal and diagonal

variance for all clusters were fitted. For testing multimodality,

we used the likelihood ratio test statistics between the fitted

model for the tested number of components, k, versus the

alternative model with k - 1 components. The statistical signif-
icance of the number of components was assessed by para-

module score = ∑ ∑w x w

i

i

i

i i / | |,
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metric bootstrapping. Each tumor was automatically classified

as estrogen receptor-negative (ER-)/HER2+, HER2+, or ER+

using the maximum posterior probability of membership in the

clusters.

Survival analysis

Survival curves and 5-year survival rates in forest plots were

based on Kaplan-Meier estimates, with the Greenwood

method used for computing the 95% confidence intervals

[30]. Hazard ratios between two groups were calculated using

Cox regression. Stratified Cox regression was used to com-

pute total hazard ratios in forest plots and multivariate analysis,
using the dataset as the stratum indicator, thus allowing for dif-

ferent baseline hazard functions between cohorts. Cox regres-

sion was also used to compute gene-by-gene associations

with survival, treating the log expression measures as continu-

ous explanatory variables. The gene-wise z scores were com-

bined across datasets using the inverse normal meta-
analytical methods. Distant relapse-free survival (DRFS) was

considered as an event for our survival analysis, which

includes distant recurrence, death from breast cancer, death

from a cause other than breast cancer, and death from an

unknown cause.

Results
Prototype-based coexpression module analysis

To perform this meta-analysis including several heterogeneous
datasets and different microarray platforms, we used the con-

cept of coexpression modules. To identify these modules, we

applied a supervised approach whereby three 'prototype'

genes representing three key biological processes in breast

cancer (namely, proliferation, ER, and HER2 amplification sig-

naling) were selected. The genes chosen as their prototypes
were, respectively, ESR1, ERBB2, and AURKA (aurora-

related kinase 1, also known as STK6 or STK15).

Using the meta-analysis scheme described above, we were

able to identify genes whose expression was significantly

associated with each chosen prototype (Additional data file 3).
The coexpression patterns of the genes are shown by

heatmaps in Figure 2 of Additional data file 2. Each module

contains highly correlated or anticorrelated genes, as shown

by the vertical color patterns. The annotation of the modules

Figure 1

Breast tumor characterization using module scoresBreast tumor characterization using module scores. (a) Joint distribution between the estrogen and ERBB2 amplification scores in example 
datasets. Clusters are identified by Gaussian mixture models with three components. The ellipses correspond to the 95% cumulative probability 
around the cluster centers. The clusters are designated as tumor types ER-/ERBB2-, HER2+, and ER+/HER2-. HER2+ tumors show intermediate 
estrogen scores. (b) Dot histograms showing dependence of proliferation score on the subtypes. The median and quartiles for each group are 
shown by the box plot. ER-/ERBB2- and HER2+ tumors show high proliferation scores, whereas ER+/HER2- tumors show a wide range of prolifera-
tion scores. The distributions of the intrinsic subtypes (colored dots), BRCA1 mutations, and p53 mutations are shown in datasets where they are 
available. ER, estrogen receptor.
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shows that they correspond well to the expected biological
processes, as many ER-related, HER2-related, and prolifera-

tion genes were included in the ER and HER2 signaling and

proliferation modules, respectively. For our further analysis, the

correlated gene expression measures in a module (which pro-

vide redundant information) are averaged into a single number
called a 'module score'.

Table 1

Publicly available gene expression data from breast cancer studies

Dataset symbol Number of arrays Institution Reference(s) Platform Data source Number of GeneIDs

Genomic platforms

NKI 337 Nederlands Kanker 
Instituut (Amsterdam, The 

Netherlands)

[19,20] Agilent Author's website 13,120

EMC 286 Erasmus Medical Center 
(Rotterdam, The 

Netherlands)

[21] Affymetrix U133A GEO: GSE2034 11,837

UPP 249 Karolinksa Institute 
(Uppsala, Sweden)

[3,11] Affymetrix U133A,B GEO: GSE4922 15,684

STOCK 159 Karolinska Institute 
(Stockholm, Sweden)

[3,13] Affymetrix U133A,B GEO: GSE1456 15,684

DUKE 171 Duke University (Durham, 
NC, USA)

[8] Affymetrix U95Av2 Author's website 8,149

UCSF 161 + 8 University of California at 
San Francisco (USA)

[9] cDNA Author's website 6,178

UNC 143 + 10 University of North 
Carolina (Chapel Hill, NC, 

USA)

[7] Agilent HuA1 Author's website 13,784

NCH 135 Nottingham City Hospital 
(Nottingham, UK)

[12] Agilent HuA1 AE: E-UCON-1 13,784

STNO 115 + 7 Stanford University (Palo 
Alto, CA, USA)/Norwegian 

Radium Hospital (Oslo, 
Norway)

[16] cDNA Author's website 5,614

JRH1 99 John Radcliffe Hospital 
(Oxford, UK)

[17] cDNA Journal's website 4,112

JRH2 61 John Radcliffe Hospital [18] Affymetrix U133A GEO: GSE2990 11,837

MGH 60 Massachusetts General 
Hospital (Boston, MA, 

USA)

[10] Agilent GEO: GSE1379 11,421

expO 239 International Genomic 
Consortium

[41] Affymetrix U133v2 GEO: GSE2109 16,634

TGIF1 49 EORTC trial 10994 [5] Affymetrix U133A GEO: GSE1561 11,837

BWH 40 + 7 Brigham and Women's 
Hospital (Boston, MA, 

USA)

[14] Affymetrix U133v2 GEO: GSE3744 16,634

Small diagnostic 
platforms

TRANSBIG 253 TRANSBIG Consortium [2] Agilent AE: E-TABM-77 1,052

EMC2 180 Erasmus Medical Center [6] Affymetrix (custom) GSE3453 86

HPAZ 96 Hospital La Paz (Madrid, 
Spain)

[4] RT-PCR Appendix of [4] 61

Total 2,865 = 2,833 carcinomas + 32 nonmalignant 
breast tissues

Number of the union of all GeneIDs: 17,198

Number of GeneIDs common to genomic platforms: 1,963

Datasets UNC, STNO, UCSF, and BWH include a small number of normal breast or fibroadenoma tissue samples. AE, ArrayExpress (accession); Affymetrix, 
Affymetrix, Inc., Santa Clara, CA, USA; Agilent, Agilent Technologies, Inc., Santa Clara, CA, USA; EORTC, European Organization for Research and 
Treatment of Cancer; GEO, Gene Expression Omnibus (accession); RT-PCR, reverse transcription-polymerase chain reaction.
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Module scores for tumor subtyping

To automatically assign these large numbers of tumors into the

subtypes according to the given module, we applied the
Gaussian mixture models [29] to the module scores of the

three processes. Only three natural clusters, based on multi-

modality tests, can be identified. The ER and HER2 module

scores were bimodally distributed, but the proliferation module

was not. Furthermore, the combination of the ER and HER2

module scores does not produce four clusters that would have
been observed if the scores were independent (Figure 1a).

Instead, ERBB2+ tumors showed an intermediate level of ER

module values, and we therefore did not consider the

distinction of ERBB2+ into ER+ or ER- to be supported by con-

tinuous value gene expression levels. We will refer to three
groups as ER-/HER2-, HER2+, and ER+/HER2- tumors, which

correspond roughly to the intrinsic subtypes of basal-like,

her2, and combined luminal A/B subtypes, respectively, as

defined by the Stanford group [15].

Concerning proliferation, Figure 1b shows that, while ER-/
HER2- and HER2+ tumors have mostly high proliferation

scores, ER+/HER2- tumors display a wide range of values,

Figure 2

Survival analysis of groups based on module scoresSurvival analysis of groups based on module scores. Kaplan-Meier analysis for distant relapse-free survival (DRFS) of systemically untreated (a) and 
treated (b) patient groups. The ER+ subgroup is split into ER+/HER2-/L and ER+/HER2-/H (low and high proliferation, respectively). Vertical bars on 
the curves are 95% confidence intervals for the Kaplan-Meier survival estimates. Forest plot representation of the 5-year survival estimates and haz-
ard ratios for DRFS of individual datasets in the systemically untreated (c) and treated (d) populations. The length of horizontal bars and the width of 
the diamonds of the 'Total' correspond to 95% confidence intervals. Missing bars are unavailable data. Multivariate analysis representation in which 
all the variables are available in systemically untreated (e) and treated (f) patients. ER, estrogen receptor; HR, hazard ratio.
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encompassing the low values of normal breast tissue (see

dataset UNC) and the high values typical for ER-/HER2- and

HER2+ tumors. For our further analysis, we denote the ER+/

HER2- low- and high-proliferation tumors as ER+/HER2-/L and
ER+/HER2-/H, corresponding to the luminal A and B subdivi-

sions of the intrinsic subtypes, respectively. Interestingly, we

did not see natural clustering (bimodality) in the distribution of

proliferation scores as was the case with the ER and ERBB2

modules.

The relationship between module scores and some gene

mutations could also be examined. Almost all BRCA1-mutated

tumors are confined to ER- tumors (Figure 1b), confirming the

hypothesis that ER- ('basal-like') tumors are phenocopies of

BRCA1-mutated tumors [14]. This is also supported by the

strong overexpression of LMO4, a suppressor of BRCA1

function [31], in ER- tumors. p53 mutations may appear in the
three subtypes, but mostly confined to the highly proliferative

tumors. It is not clear whether their association with ER-/

HER2- and HER2+ tumors is related to the pathways of these

receptors or is merely an indirect effect of the mutations' asso-

ciation with proliferation.

Prognostic value of the molecular subtypes according to 

the module scores

The attractiveness of gene expression prognostic signatures

for clinical applications comes from their ability to identify a

group of patients with a good survival rate that is acceptable

to spare patients from aggressive chemotherapy. Here, we
investigated whether classifications based on the easily inter-

pretable module scores could achieve such clinical relevance.

Figure 2 shows a Kaplan-Meier analysis for the DRFS of sys-

temically untreated (Figure 2a) patients and those treated (Fig-

ure 2b) with adjuvant chemotherapy and/or endocrine therapy

with available clinical information, according to four main sub-
types based on the module scores. The ER+/HER2-/L subtype

showed a much better DRFS than the three others in both

untreated and treated populations, with 90% of patients alive

at 5 years of follow-up. Because there is no statistical differ-

ence in survival between the ER-, HER2+, and ER+/HER2-/H

subtypes and because the risk of recurrence for patients in
these groups is clinically still too high, we pooled them into the

'poor' prognosis group, in contrast to the 'good' ER+/HER2-/L

subtype, for further survival analysis. The consistency of the

prognostic value across datasets is demonstrated by the for-

est plots in Figures 2c and 2d, where the results of the analysis

of individual datasets are concisely summarized by the 5-year
survival estimates and hazard ratios between the 'good' and

'poor' groups. Interestingly, the 'good' prognosis group

showed a better DRFS than the 'poor' prognosis group in both

untreated and systemically treated populations.

The interactions between the module-based risk groups and
conventional clinicopathological prognostic variables are

tested in multivariable Cox regression analysis for DRFS in

both untreated (Figure 2e) and treated (Figure 2f) populations.

The module-based classification added a strong prognostic

effect over all other clinical factors. Confirming previous stud-
ies [18,32], the effect of histological grade is much reduced

and can be explained by the refinement of intermediate grade

into two groups with very different survival rates. Interestingly,

lymph node status and tumor size remain as independent

prognostic factors.

Dissecting gene expression prognostic signatures 

according to the module scores

Although Fan and colleagues [25] noted the similarity of the

performance and patient classifications of the intrinsic sub-

types and four prognostic signatures on the same dataset,

they did not provide a biological rationale for this finding. In our

study, we performed more detailed and extensive analysis to
better understand how disparate gene lists may give rise to

potentially equivalent prognostic signatures.

Using our meta-analytical approach, we first sought to identify

individual genes that were associated with survival by calculat-

ing the meta-analytical z scores of gene-by-gene Cox regres-
sion. To gain further insight into the biological significance of

these prognostic genes, we investigated their correlation with

the coexpression module prototypes. We were able to identify

524 genes that were significantly associated with survival,

even under a stringent Bonferroni multiple testing correction

(data not shown). Of the 524 genes, 71% were strongly coex-
pressed with proliferation, 26% with ER, and 2.2% with

ERBB2 prototypes, highlighting the importance of prolifera-

tion-related genes for prognostication in breast cancer.

A similar analysis was performed with respect to several pub-

lished prognostic signatures (Table 2). Indeed, many of the

genes included in these signatures were confirmed to be indi-
vidually prognostic in the whole dataset collection (Figure 3 of

Additional data file 2). Interestingly, many of these individually

prognostic genes were also highly correlated with the prolifer-

ation module prototype and not with the other two modules,

suggesting that proliferation may be the common driving force

of several prognostic signatures.

To further demonstrate our hypothesis, we divided each signa-

ture into two 'partial signatures': one with only proliferation

genes and the other with the complementary nonproliferation

genes (Figure 3; see Figure 4 of Additional data file 2 for

detailed analysis). Interestingly, when only proliferation genes
were used, the overall performance was not degraded; in fact,

it even improved for some signatures (p53-32) in both

untreated (Figure 3a) and treated (Figure 3c) populations. In

contrast, the nonproliferation partial signatures typically

showed degraded performance (Figures 3b and 3d). These

results show that proposed signatures may contain genes that
are unnecessary or even detrimental to their performance.
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These results thus extend the findings of Fan and colleagues

[25] to a much larger sample size and for several additional

signatures, revealing for the first time the importance of prolif-

eration genes as a common driving force behind the perform-
ance of all of the prognostic signatures studied in this

investigation.

Finally, the relationship between prognostic signatures and

the molecular classification based on the coexpression mod-

ules was investigated by looking at the risk classifications on
the plots of proliferation scores versus the molecular subtypes

shown in Figure  4 (see Figure 4 of Additional data file 2 for

analysis on all datasets). Most signatures identified the low-

proliferation subset of ER+/HER2- tumors as low-risk, whereas

almost all high-proliferation ER+, ER-/HER2-, and HER2+

tumors were classified as high-risk. These results suggest that

these prognostic signatures function mostly by identifying
tumors that have high expression of proliferation genes,

regardless of the subtyping based on ER or HER2. They still

correctly classify ER-/HER2 and HER2+ as high-risk by virtue

of elevated expression of proliferation genes.

Discussion
Several breast cancer studies have generated a large number

of arrays with complex genomic data, and an initial effort was

made to compare the prognostic performance of the intrinsic
subtypes and four signatures in one dataset [25]. In the

present meta-analysis, we analyzed data from 2,833 patients

to have the power to address the following questions: How are

different signatures related with respect to prognostication?

Should clinical, pathological, and currently used biomarkers

be integrated into this process? What is the role of individual
genes in a signature, and what is their biological meaning?

Using our meta-analytical approach, we confirmed the pres-

ence of four stable breast cancer molecular subtypes as orig-

inally reported by Perou and colleagues [33], whereas the

normal-like subtype was not verified. Both ER-/HER2- and

HER2+ subtypes were characterized by high proliferation,
whereas the ER+/HER2- subtype was divided into low- and

high-proliferation tumors with different clinical outcomes. The

widely observed prognostic powers of ER and HER2 are

therefore only indirect effects.

Furthermore, the above results have important clinical implica-
tions since they suggest that all investigated prognostic signa-

tures are equivalent. This will be further validated when the

results from the currently accruing MINDACT (Microarray in

Node-Negative Disease May Avoid Chemotherapy) [34] and

TAILORX (Trial Assigning IndividuaLized Options for Treat-

ment [Rx]) [35] trials are reported. For the ER-/HER2- and
HER2+ patients, new prognostic signatures, which do not rely

on proliferation genes, are urgently needed. Initial efforts to

improve prognosis in the above high-risk subgroups were

recently reported [36,37].

Moreover, rather than treating the signatures as black boxes,

the connection to the breast cancer biology has been eluci-
dated. Using this approach, we demonstrated that several pre-

viously reported prognostic signatures, despite the disparity in

their gene lists, carry similar information with regard to prog-

nostication. Although it may be argued that microarray meas-

urements are merely alternative ways to monitor well-known

processes such as proliferation, ER, or HER2 signaling, their
results are not perfectly concordant with conventional varia-

bles. For example, although the proliferation module score and

histological grade both aim to measure cell proliferation, the

former is more informative [18]. We observed that HER2+

tumors showed intermediate ER module activity, which is not

obvious from the traditional ER and HER2 status using con-
ventional assays. These examples suggest that the assess-

ment of several genes from a coexpression module may

provide a more accurate quantification of a whole transcrip-

tional process than using single-gene markers or histopatho-

logical variables.

Figure 3

Signature comparisonSignature comparison. The prognostic performance of the signatures is 
compared by the forest plots of hazard ratio and plotted as vertical 
color bars for comparison. Most signatures show similar performance. 
Prognostic performance for distant relapse-free survival (DRFS) of the 
signatures using partial signatures containing only proliferation genes in 
the untreated (a) and treated (c) populations. The performance of most 
signatures is not degraded; in fact, it is improved for p53-32. Prognos-
tic performance for DRFS of the signatures using partial signatures 
containing nonproliferation genes in the untreated (b) and treated (d) 
populations.
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Blamey [38] distinguished independent prognostic factors

into those related to the extent of tumor progression (such as

lymph node status and tumor size) and those related to a

tumor's intrinsic aggressiveness (such as histological grade

and mitotic rate) and found only that the prognostic roles of

many markers, such as ER, progesterone receptor, and p53,
were overshadowed by histological grade. Our results con-

firmed these observations, as proliferation genes are even

better indicators of tumor grade [18]. The proliferation score

already contains the poor prognosis information attributable to

various sources: for example, ERBB2 amplification (with or

without BRCA1 mutation), p53 mutation, or yet unknown fac-

tors specifically affecting half of ER+ (luminal) tumors. We still

see the prognostic effect of lymph node status and tumor size,

suggesting that they influence outcome through their own

independent paths.

Despite the lack of direct prognostic impact of ER and ERBB2

genes, the coexpression modules for these processes that we

identified are still useful. Genes in the proliferation module are

already targeted by several chemotherapeutic agents, but less

Table 2

Prognostic signatures

Signature symbol Reference Associated variables in gene selection procedure Number of genes

Original probes Mapped to geneID

ONC-16 [42] Biological knowledge; refined by patient outcome 16 16

NKI-70 [19] Patient outcome 70 52

EMC-76 [21] Patient outcome, stratified by estrogen receptor status 60 + 16 48 + 12

NCH-70 [12] Patient outcome 70 69

CON-52 [43] Patient outcome, consensus 52 50

p53-32 [11] p53 mutation 32 19

CSR [24] Fibroblast core serum response 512 457

GGI-128 [18] Histological grade 128 98

CCYC [44] Periodic expression in cell cycle progression NA 126

NA, not applicable.

Figure 4

Patient classifications made by example signatures applied to representative datasets, showing that the different signatures are essentially detecting as low-risk the low-proliferation subset of ER+/ERBB2- tumorsPatient classifications made by example signatures applied to representative datasets, showing that the different signatures are essentially detecting 
as low-risk the low-proliferation subset of ER+/ERBB2- tumors. ER, estrogen receptor.
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harmful drugs are more desirable. ER+/HER2- tumors are

treatable to some extent by hormone therapy [39] (targeting

ESR1 signaling), and HER2+ tumors by trastuzumab [40] (tar-

geting ERBB2). However, drugs specifically targeting ER-/
HER2- tumors have not yet been established. Furthermore, the

fact that many breast tumors remain unresponsive to existing

drugs warrants further searches for alternative targets, possi-

bly compensatory genes in the same pathway. Our analysis

provides lists of genes coexpressed with these two proc-

esses, and these lists should be more stable than previously
published ones because they are identified from a large data

collection from multiple platforms.

Finally, we have also shown that using coexpression modules

is a versatile tool for unifying apparently disparate results.

Although coexpression does not imply direct physical interac-

tion, the highly correlated genes in a module can be consid-
ered surrogate markers of one another and of the same

underlying transcriptional process. Consequently, newly pub-

lished signatures in the future can be perceived in the light of

well-known modules, and a new, equivalently prognostic set of

markers can be devised based on subsets of these lists.

Conclusion
In summary, this study objectively evaluates several published

signatures in independent cohorts from diverse microarray

platforms and unifies results of previous gene expression stud-

ies in breast cancer. With respect to clinical application, we

revealed connections and equivalence between traditional
prognostic factors, expression-based subtyping, and prognos-

tic signatures and provided evidence that these signatures

should be tested for their ability to spare adjuvant chemother-

apy mainly in the low-proliferation subgroup of patients with

ER+ tumors. With respect to disease biology, we consolidated

the gene lists of the major processes, providing more reliable

candidates for biomarkers and therapeutic targets than those
produced by single-dataset studies. Finally, we provided a

new methodological framework, also applicable to other dis-

eases, for using heterogeneous microarray datasets to

uncover consistent biological relationships and to consolidate

proposed signatures.
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