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Abstract
Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity
and disability, particularly in the elderly. It is characterized by changes in joint structure including
degeneration of the articular cartilage and its etiology is multifactorial with a strong postulated
genetic component. We performed a meta-analysis of four genome-wide association (GWA)
studies of 2,371 knee OA cases and 35,909 controls in Caucasian populations. Replication of the
top hits was attempted with data from additional ten replication datasets. With a cumulative
sample size of 6,709 cases and 44,439 controls, we identified one genome-wide significant locus
on chromosome 7q22 for knee OA (rs4730250, p-value=9.2×10−9), thereby confirming its role as
a susceptibility locus for OA. The associated signal is located within a large (500kb) linkage
disequilibrium (LD) block that contains six genes; PRKAR2B (protein kinase, cAMP-dependent,
regulatory, type II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of
oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine
synthase 4-like), and BCAP29 (the B-cell receptor-associated protein 29). Gene expression
analyses of the (six) genes in primary cells derived from different joint tissues confirmed
expression of all the genes in the joint environment.
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Introduction
Osteoarthritis (OA) is the most prevalent form of chronic joint disease and accounts for
substantial morbidity and disability, particularly among the elderly. It is characterized by
loss of joint homeostasis. The articular cartilage cannot maintain its integrity and is
progressively damaged, the subchondral bone envelope is thickened changing loads in the
bone-cartilage biomechanical unit, the synovium shows signs of inflammation and bony
spurs (osteophytes) appear at the edges of the bone. Its etiology is multifactorial with a
significant genetic component as shown by twin and family studies[1, 2].

Many genetic variants have been considered as potential risk factors for OA but most of the
reported associations are inconclusive or not replicated. Recently, a large-scale meta-
analyses found evidence that the GDF5 locus on chromosome 20 was associated with the
increased risk of knee OA in Caucasians[3-6]. Other genome-wide data have reported an
association with the DVWA gene in Asians but not Caucasians [7] and a PTGS2 variant that
replicated but did not reach genome-wide significance (GWS)[8]. Recently, a genome wide
association (GWA) study identified a locus on chromosome 7q22 that shows an association
with combined knee OA and/or hand OA phenotype[9].

In this study we have synthesized available data from four GWA studies under the auspices
of the TreatOA (Translational Research in Europe Applied Technologies for Osteoarthritis
[www.treatoa.eu]) consortium. A total of 2,371 knee OA cases were available for this first
stage of the analysis. The most significant signals were further investigated in additional
samples of European descent and SNPs that reached genome-wide significance (GWS) were
further evaluated in Asian samples. .

Methods
Study design

A detailed description of all samples used in this study is provided in the Supplementary
Material. We used a three-stage design for the identification of any potential associations
between sequence variants and knee OA in populations of European ancestry. We first
synthesized the available data from 4 GWA studies (deCODE, Rotterdam Study,
Framingham, Twins UK) using inverse variance fixed effects models. The variants that
reached the 2×10−5 level of significance were selected for further replication. These SNPs
were followed-up in 8 additional European cohorts (arcOGEN, Greek, Spanish, Finnish,
Nottingham, Chingford study, GARP, Estonian and Swedish). The SNPs that replicated in
the follow-up samples were genotyped in additional 2 European samples (deCODE
(Icelandic) and Swedish). One cohort provided in silico replication from an ongoing GWA
study (arcOGEN, 12 SNPs were directly genotyped, and 6 were imputed), whereas de novo
replication was performed in the other cohorts. Furthermore, the top hits were followed-up
in Asian populations (Chinese and Japanese samples). The effect sizes from the meta-
analysis of the GWA studies and the effect sizes from the replication effort were all
combined to provide an overall estimate. We also synthesized the effect estimates of the
European and Asian samples to provide a global summary effect estimate

Phenotype definitions
Study subjects with a radiographic Kellgren and Lawrence (K/L) grade≥ 2 [10] or total knee
replacement (TKR) were included as cases in the analysis. When clinical criteria were
considered (Greek, Spanish and GARP study groups) the American College of
Rheumatology (ACR) classification criteria were used [11]. As controls, we considered
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subjects who had no known affected joints among those assessed. For example in a cohort
that assesses knee, hip and hand OA, controls were participants with no affected hip or hand
joints for the knee OA analysis. Population-based controls were used for the arcOGEN
study.

Genotyping and imputation
Samples from the GWA studies were genotyped using the Infinium HumanHap300
(Illumina) for deCODE and Twins UK samples, HumanHap550v3 Genotyping BeadCHip
(Illumina) for the Rotterdam Study and the Affymetrix GeneChip® Human Mapping 500K
for the Framingham cohort. The number of SNPs genotyped ranged from 314,075 to
500,510. Imputations were performed to increase the coverage. All the top SNPs studied had
acceptable imputation quality. Finally, the genotyped and imputed SNPs that successfully
passed the quality control criteria (n=2,335,627) were considered for the analyses. Detailed
information on genotyping platform, quality control and imputation methods for each cohort
are presented in Supplementary Table 3.

The replication samples for the Greek, Spanish, Finnish, Chingford and GARP studies were
genotyped using the MassArray iPlex Gold from Sequenom. Replication genotyping was
carried out by a genotyping contractor (Kbiosciences Ltd) using a competitive allele-specific
PCR SNP genotyping system for the Nottingham and the Estonian cohort. The additional
622 Icelandic cases and the samples from the Swedish cohort were genotyped by deCODE
genetics using the Centaurus (Nanogen) platform [12]. Detailed information on genotyping
is provided in Supplement.

Statistical analysis
Association analysis—Each team performed an association testing per gender for knee
OA under a per-allele model. The lambda inflation factor was calculated per gender-specific
effect size using the genomic control method [13] and the standard errors were corrected by

the square root of the lambda inflation factor ( ). Robust standard
errors were estimated to adjust for the family relationships (Framingham study and GARP).

Meta-analysis—The effect size for each SNP (odds ratio per copy of minor allele as per
HapMap) was calculated using inverse-variance fixed effects models [14], synthesizing all
the sex-specific effect sizes and the corrected standard errors. We also performed analyses
combining men and women. In family studies results from men and women combined were
used in order to account for relatedness between females and males within families. Meta-
analyses of the GWA studies were performed using the METAL (www.sph.umich.edu/csq/
abecasis/metal) software. Between-study heterogeneity was tested using the Cochran’s Q
statistic, which is considered significant at p<0.1. The extent of inconsistency across studies
was quantified using the I2 metric which ranges from 0 to 100% [15]. Heterogeneity is
considered low, moderate, high and very high for 0-24%, 25-49%, 50-74% and >75%
respectively [16]. We also computed the 95% CI for the I2 [17]. Furthermore, we repeated
the calculation with random effects models for all SNPs that were further evaluated in
replication datasets. Results are shown in Supplementary Table 4. Meta-analyses of the 18
top-hits were performed using Stata version 10.1.

Assessment of credibility—In order to assess the credibility of the top hit we calculated
the Bayes factor under a spike and smear prior using as an alternative an average genetic
effect corresponding to an OR of 1.2 and a conservative agnostic prior of 0.0001% [18].
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Functional analysis
Two methodological approaches were used to investigate the functional role of genes
identified by GWA studies. (A) By assessing their expression in primary human joint cells
(synovial fibroblasts, chondrocytes and meniscal cells) and its change in response to the
proinflammatory cytokines TNFα and IL1β as well as comparing their gene expression
profiles during chondrocyte de-differentiation (3D pellet cultures of vs monolayer culture,
see Supplement) and (B) by assessing their expression dynamics by wholemount in situ
hybridization using 6h (shield), 10h (bud), 13h (5-9 somites) and 1, 2, 3 and 4 days old
zebrafish (Danio rerio) embryos, in order to explore their role during embryogenesis (see
Supplement).

Results
Meta-analysis of GWA studies and replication of top findings

The descriptive characteristics of the GWA studies used for the meta-analyses are from
Iceland (deCODE), the Netherlands (Rotterdam study), USA (Framingham) and the UK
(Twins UK). The characteristics of these studies are presented in Table 1 and Supplement.
The 4 GWA datasets included a total of 2,371 cases and 35,909 controls. A quantile-quantile
(QQ) plot, comparing the meta-analysis association results of the four studies to those
expected by chance, showed an excess of SNP associations indicating a likely true
association signal (Figure 1). The data analysis revealed the strongest association on
chromosome 7q22 with a p-value of 5.06 ×10−8 for rs4730250 localized in dihydrouridine
synthase 4-like gene (DUS4L) (Figure 2). Other associated signals in 7q22 gene cluster are
in high linkage disequilibrium (LD) (r2>0.8) with the top signal (Figure 2).

We selected for follow-up in replication samples all SNPs with a p-value <2×10−5 in the
meta-analysis association results. A total of 18 SNPs from 10 chromosomal loci satisfied
this criterion (Supplementary Table 1). However, as some of those SNPs are fully equivalent
in the HapMap-CEU dataset a total of 11 non-identical SNPs were tested for replication. We
analyzed these 11 SNPs for replication in 3,326 cases and 7691 controls from 8 European
studies (Table 1 and Supplement). Two SNPs, rs4730250 and rs10953541 both located at
7q22, replicated nominally (p<0.05) in the combined analysis of the follow-up samples, with
p-values of 6.3×10−4 and 8.3×10−3 respectively. The two SNPs, rs4730250 and rs10953541,
were then further genotyped in two additional replication sets.

Both SNPs reached GWS in a meta-analysis of all European sample sets (the GWA datasets
and the replication cohorts) (Table 2). We analyzed a total of 6,709 knee OA cases and
44,439 controls. SNP rs4730250 was genome wide significant GWS with a per-allele
summary OR of 1.17 (95% CI: 1.11-1.24) and a p-value of 9.2 ×10−9. The minor allele
frequency was 0.17 in the combined dataset. Low heterogeneity was observed (I2=15%,
95% CI: 0-48%), which was not statistically significant (p=0.26 for Cochran’s Q statistic)
(Figure 3). No gender specific effects were seen. The summary estimates did not differ
significantly in men and women (p-value=0.74, test of homogeneity) (Figure 3). Analysis
where both sexes were analyzed together in all cohorts did not alter the results (OR=1.17
[95% CI: 1.07-1.27], p-value=4.1×10−8). The summary effect sizes of all loci under study
are presented in Table 2. The two significant SNPs at 7q22, rs4730250 and rs10953541, are
highly correlated (D′=1, r2=0.63 in HapMap-CEU) and are likely to represent the same
underlying association signal as shown by conditional association analysis (Supplementary
Table 2).

Age and BMI are considered to be significant risk factors for the development of knee OA
[19-25]. We performed an analysis where the top hit was adjusted for these risk factors in
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deCODE samples and the Rotterdam Study. The association of the top hit remained largely
unchanged in analyses adjusted for BMI and age.

In order to assess the credibility of the associations of the two SNPs, we calculated the
Bayes factor[18] under a spike and smear prior using an average genetic effect
corresponding to an OR of 1.2 and a conservative agnostic prior (assuming no prior
knowledge of the association) of 0.0001%. The posterior credibility of these associations
was 98% and remained similarly high even with a small alternative effect size of 1.1.

We also tested if the observed signal at the 7q22 region was replicated in East Asian
samples (Japanese and Chinese cohorts). The total number of knee OA cases and controls
assessed was 1183 and 1245 respectively. The rs12535761 was used as a proxy for the
rs4730250. The two SNPs are in strong LD (r2=1, D′=1, in HapMap Asian samples). The
finding was not replicated in the Asian samples with a summary effect size of 1.03 (95% CI:
0.85-1.25). A meta-analysis including both European and Asian samples with 7,892 cases
and 45,684 controls yielded a global summary effect of 1.15 (95% CI: 1.10-1.22) with p-
value=5.7×10−8 for rs4730250 with low heterogeneity (I2=19%).

Functional analysis of genes in 7q22 cluster
The associated signal at 7q22 is located within a large (500kb) linkage disequilibrium (LD)
block that contains six genes; PRKAR2B (protein kinase, cAMP-dependent, regulatory, type
II, beta), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi
complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-
like), and BCAP29 (the B-cell receptor-associated protein 29).

We performed additional experiments to get more information about the genes in the cluster
and their potential role in joint biology and pathology. Analysis of the mRNA expression
data in chondrocyte pellet indicates that BCAP29, COG5, DUS4L and HBP1 expression
levels were higher than in monolayer cultures suggesting that they are expressed in an
environment that more accurately recapitulates articular cartilage. In contrast no difference
were seen for GPR22 and PRKAR2B mRNA expression. In a zebrafish model the
expression of all genes was detectable from the shield stage onwards. Results are described
in detail in Supplement

Discussion
This study provides further evidence for a knee OA signal localizing to the 7q22 cluster
region and associated with knee OA. The statistical credibility and confidence of this
evidence is very high based on the calculations of the Bayes factor. The same locus has been
identified and proposed as an OA susceptibility locus from the Rotterdam Study for the
prevalence and progression of OA [9]. Our study and the earlier Rotterdam Study do include
overlapping populations. However, our study was specifically targeting the knee OA
phenotype. Furthermore, an additional 3 European cohorts and two Asian populations were
used for further replication. Our study utilizes the largest sample size in the genetics of knee
OA research to date with almost 8000 knee OA cases analyzed.

The most significant hits identified by our study are located within a large (500kb) linkage
disequilibrium (LD) block that contains six genes; PRKAR2B, HPB1, COG5, GPR22,
DUS4L and BCAP29. The top hit rs4730250 is annotated in intron 3 of the DUS4L gene.
Any of the genes at the 7q22 region may confer risk for knee OA, as the LD pattern across
the region is high.
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The functional analyses support the epidemiological findings but do not exclude any of the 6
candidate genes. Specifically, the zebrafish experiments show that both COG5 and DUS4L
are expressed in developing cartilage supporting the notion that either of these genes could
have a biological function during chondrogenesis. The studies in the de-differentiation
model of human chondrocytes (3D vs 2D culture) show that BCAP29, COG5, DUS4L and
HBP1 all have different expression patterns in 3D culture (chondro-like cells) than in 2D
culture (de-differentiated cells) suggesting that these four genes may play a role in cartilage
metabolism.

A major issue in the field of osteoarthritis is the definition of the disease phenotypes[4, 26].
Different criteria may introduce bias and dilute the effect. The cases in our study were
defined either clinically by the presence of a knee replacement or radiographically using the
Kellgren/Lawrence (K/L) system. The K/L system is however far from perfect and can be
affected by differences in the position of the knee in which the radiographs were obtained,
observer biases, interpretation of grading criteria and random error [27, 28]. Similarly there
are no standard criteria for replacing knee joints. This may introduce heterogeneity and
move the observed effects towards the unity, and so under-estimate the true strength of an
association. In our study we synthesized data with a standardized definition of the
phenotype, however small individual locus effects with ORs in the range of 1.1-1.2 as for
other chronic diseases may well be plausible for knee OA, explaining the paucity of other
significant hits despite the reasonable large-scale effort. These findings highlight that even
larger collaborative studies and improved standardization of the phenotypes are needed to
better understand and identify further genetic variants of OA.

Moreover, even though we were able to accumulate a large sample size, the power of the
study to detect very small effect sizes in the range of 1.05-1.15 is inadequate. For example,
identification of a GWS signal with an effect size of 1.15 and minor allele frequency of
20%, with 80% power would require almost 7000 additional knee OA cases.

Our results confirm that the 7q22 chromosomal region confers risk for knee OA, which
along with our functional work implicates 6 possible genes. Further in depth genetic analysis
of the locus, including deep-sequencing of the region and functional work including in vitro
assays and animal models will be required to deepen our understanding of the underlying
molecular pathways associated with the disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Q-Q plot of the expected vs observed distribution of p-values.
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Figure 2.
Regional association plot of rs4730250. Statistical significance of the associated SNPs are
illustrated on –log10 scale. The p-value of the rs4730250 and the other 10 selected SNPs are
based on the meta-analysis of all datasets (both GWA studies and replication studies). P-
values for the rest of the SNPs are based on the meta-analysis of the GWA studies. The
sentinel SNP is shown in blue. The correlation of the sentinel SNP is shown on a scale from
minimal (gray) to maximal (red). SNPs in red have r2≥0.8 with the sentinel SNP and SNPs
in orange have r2≥ 0.5. Chromosome positions are based on HapMap release 22 build 36.
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Figure 3.
a) Forest plot of study-specific estimates (black boxes) and summary OR estimates and 95%
confidence intervals (95% CIs) (diamond) for the association between the rs4730250 SNP
and knee osteoarthritis.
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Table 1

Characteristics of the studies included in the analysis

Team
Knee OA

Cases/
Controls

Platform used Age mean
(range)

BMI mean
(range)

Females
(%)

Knee OA
definition Control definition

GWA studies

deCODE* 1033/32482 Infinium
HapMap 300 69(19-99) 26(14-60) 58% TKR Health care records

Framingham 419/1674 Affymetrix
GeneChip® 64(29-93) 26(14-54) 56% Radiographic Radiographic

Rotterdam 868/1464
Illumina

HapMap550v
3

67(55-94) 26(16-56) 59% Radiographic Radiographic

TwinsUK 51/289 Infinium
HapMap 300 54(37-76) 25(15-51) 100% Radiographic Radiographic

Replication cohorts
stage 1

arcOGEN 1643/4894 Illumina 610
Quad NA NA 71% Radiographic

/clinical General population

Chingford(a) 64/236 NP 63 (54-77) 26 (17-43) 100% Radiographic Radiographic

Finnish 112/210 NP 67 (51-74) 29 (20-42) 75% TKR Population-based

Greek 368/606 NP 61(20-90) 26(17-34) 72% Clinical Clinical

GARP 161/758 NP 60(30-79) 27(19-47) 63% Radiographic
/clinical Radiographic/clinical

Spanish 262/294 NP 66(32-94) 31(18-53) TKR/clinical Clinical

Nottingham(b) 647/237 NP 66 (40-97) 27 (15-51) 53% TKR Radiographic and
clinical

Estonian 69/456 NP 47 (32-60) 28(15-47) 69% Radiographic Radiographic

Replication cohorts-
Stage 2

deCODE 622/32482(c)
Illumina and

Centaurus
(Nanogen)

77 (40-99) 29 (19-49) 63% TKR Population-based

Swedish 390/839 NP 62 (46-73) 29 (18-51) 63%

TKR+conco
mitant

clinical &
radiographic
diagnosis of

OA

General population
without TKR

NP: Not pertinent; TKR: Total knee replacement; THR: total hip replacement

(a)
Numbers excluding the samples already included in the arcOGEN study.

(b)
Numbers excluding the samples already included in the arcOGEN study.

(c)
same controls as for discovery cohort.
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Table 2

Summary odds ratios and 95% confidence intervals of SNPs in the analysis including all European descent
data.

SNP rs
number

Minor
(risk)allele Chr Position Gene MAF OR (95% CI)

Fixed effects p-value I2 (95%
CI)

Cochran’s
Q

rs4730250 G 7 106994931 DUS4L 0.17 1.17 (1.11-1.24) 9.17×10−9 15(0-49) 0.26

rs10953541 T 7 107031781 BCAP29 0.24 1.17 (1.10-1.23) 3.90.×10−8 19 (0-54) 0.23

rs3749132 A 2 68907001 ARHGAP25 0.07 1.17 (1.05-1.30) 4.08×10−3 47 (0-74) 0.04

rs886827 C 7 42285581 GLI3 0.27 1.07 (0.99-1.16) 0.089 65 (43-80) 0.001

rs1886695 G 20 33643949 CPNE1 0.16 0.89 (0.84-0.95) 1.76×10−4 42 (2-66) 0.02

rs10071956 T 5 173093290 Intergenic 0.38 1.12 (1.06-1.19) 5.05×10−5 15 (0-53) 0.29

rs6816070 G 4 16089455 LDB2 0.42 0.91 (0.86-0.95) 1.34×10−4 0 (0-54) 0.46

rs661924 T 10 21353562 NEBL 0.39 1.11 (1.05-1.17) 1.82×10−4 30 (0-67) 0.18

rs436354 G 5 783271 ZDHC11 0.17 1.19 (1.01-1.30) 1.79×10−2 41(2-63) 0.06

rs1994104 T 12 83040643 intergenic 0.13 0.88 (0.80-0.96) 3.13×10−3 46 (2-70) 0.02

rs9857056 G 3 181698548 intergenic 0.12 1.11 (1.02-1.20) 1.65×10−2 72 (43-87) 0.001

MAF: minor allele frequency; Minor allele is the OR allele
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