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Meta-analysis of genome-wide association studies
discovers multiple loci for chronic lymphocytic
leukemia
Sonja I. Berndt et al.#

Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong

heritability. To further understand the genetic susceptibility for CLL and identify common loci

associated with risk, we conducted a meta-analysis of four genome-wide association studies

(GWAS) composed of 3,100 cases and 7,667 controls with follow-up replication in 1,958

cases and 5,530 controls. Here we report three new loci at 3p24.1 (rs9880772, EOMES,

P¼ 2.55� 10� 11), 6p25.2 (rs73718779, SERPINB6, P¼ 1.97� 10� 8) and 3q28 (rs9815073,

LPP, P¼ 3.62� 10�8), as well as a new independent SNP at the known 2q13 locus

(rs9308731, BCL2L11, P¼ 1.00� 10� 11) in the combined analysis. We find suggestive

evidence (Po5� 10� 7) for two additional new loci at 4q24 (rs10028805, BANK1, P¼ 7.19

� 10�8) and 3p22.2 (rs1274963, CSRNP1, P¼ 2.12� 10� 7). Pathway analyses of new and

known CLL loci consistently show a strong role for apoptosis, providing further evidence for

the importance of this biological pathway in CLL susceptibility.
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C
hronic lymphocytic leukemia (CLL) is the most common
leukemia among adults in western countries1. Although
advances in treatment options have been made, CLL

remains an incurable malignancy. Genome-wide association
studies (GWAS) have identified multiple susceptibility loci for
CLL2–7 with at least three loci having more than one independent
signal5,8. However, these discovered loci only account for about a
third of the estimated heritability attributed to common variants5.
In a combined analysis of four GWAS and follow-up replication,
including 3,888 cases and 12,539 controls of European ancestry,
we recently discovered 11 independent single-nucleotide
polymorphisms (SNPs) in nine novel loci associated with CLL
risk5. To discover additional loci associated with susceptibility to
CLL, we more than doubled our replication sample size in the
present study, slightly increasing our statistical power, and
investigated the association with 14 other promising SNPs
identified from our GWAS meta-analysis.

Here, we identify four new independent SNPs in three novel
loci as well as two promising new loci associated with the risk of
CLL. Pathway analyses with these new loci as well as the
previously identified loci suggest a strong role for the apoptosis in
susceptibility to CLL, further enhancing our understanding.

Results
Discovery meta-analysis. We conducted a meta-analysis of
four genome-wide association studies4,5,9 comprising 3,100
unrelated cases and 7,667 controls of European ancestry (see
‘Methods’ section, Supplementary Tables 1–3). As these studies
used different commercial SNP microarrays, we imputed the
B8.5 million common SNPs present in the 1000 Genomes Phase
1 integrated data (version 3)10 for each study using IMPUTE2
(ref. 11; Supplementary Table 2) and tested for associations with
CLL risk assuming a log-additive genetic model. After quality
control exclusions, B8.5 million SNPs with minor allele
frequency 41% were meta-analysed in the discovery stage
using a fixed effects model.

A quantile–quantile plot of the meta-analysis results in the
discovery stage showed an enrichment of small P values from the
fixed-effects model compared with the null distribution, which
persisted even after removal of the known loci (Supplementary
Fig. 1). There was little evidence for inflation due to population
stratification (lambda¼ 1.028). Under a log-additive genetic
model, a total of 16 unique loci (defined as separated by at
least 1Mb) reached genome-wide significance (Po5� 10� 8;
Supplementary Fig. 2), all of which had been previously
reported2,3,5,8. For each previously reported locus, we identified
the SNP with the strongest P value within 1Mb of the published
index SNP. Of the 29 published loci, 21 were at least suggestively
associated with CLL under a log-additive model in our discovery
meta-analysis with Po5� 10� 7 (Supplementary Table 4). As the
original reported SNPs at two loci (4q26 and 6q25.2) failed to
show nominal significance (Po0.05) in our study, we meta-
analysed our results with the published results for known loci
from two other GWAS6,7. In this larger meta-analysis, 25 of the
published loci were at least suggestively associated with CLL risk
(Po5� 10� 7) based on a fixed-effects model; however, both
rs6858698 at 4q26 and rs11631963 at 15q25.2 showed attenuated
odds ratios and weak P values even with this increased sample
size (P¼ 0.002 and P¼ 0.0003, respectively; Supplementary
Table 5), questioning the certainty of these loci.

Joint meta-analysis of the discovery and replication. To identify
additional loci associated with CLL risk, four SNPs in known
regions that appeared to be possible secondary signals (r2o0.1
with the reported SNPs and Po5� 10� 7 in the discovery
meta-analysis) and 10 SNPs in novel regions that reached a

significance threshold of Po5� 10� 6 in the discovery meta-
analysis were taken forward for replication in 1,958 cases and
5,530 controls. In the joint meta-analysis of the discovery and
replication, four SNPs were identified as genome-wide significant
under a fixed-effects model, three in novel regions and one
as a new independent SNP in the previously reported 2q13
region: 3p24.1 (rs9880772, EOMES, P¼ 2.55� 10� 11), 6p25.2
(rs73718779, SERPINB6, P¼ 1.97� 10� 8), 3q28 (rs9815073,
LPP, P¼ 3.62� 10� 8) and 2q13 (rs9308731, BCL2L11, P¼ 1.00
� 10� 11; Table 1, Fig. 1, Supplementary Table 6). The new 2q13
SNP, rs9308731, was weakly correlated with the two previously
identified2,5 independent SNPs at 2q13, rs17483466 (r2¼ 0.008)
and rs13401811 (r2¼ 0.0005); when the three 2q13 SNPs were
included in the same logistic regression model, all three remained
genome-wide significant (Supplementary Table 7). Genome-wide
suggestive evidence (Po5� 10� 7) was also found in the joint
discovery/replication fixed-effects meta-analysis for two promis-
ing novel loci at 4q24 (rs10028805, BANK1, P¼ 7.19� 10� 8)
and 3p22.2 (rs1274963, CSRNP1, P¼ 2.12� 10� 7; Table 1,
Supplementary Fig. 3).

Discussion
All the three novel loci are located in or near genes implicated in
apoptosis and/or immune function. The novel 3p24.1 SNP
(rs9880772) resides 13 kb 50 of eomesodermin (EOMES), a
member of the T-box gene family and a key regulator in cell-
mediated immunity and CD8þ T-cell differentiation12. EOMES
is critical for lymphoproliferation due to Fas-deficiency13, which
has been observed in inherited lymphoproliferative disorders
associated with autoimmunity14,15. Overexpression of EOMES
has been observed among extranodal natural killer/T (NK/T)-cell
and peripheral T-cell lymphomas16. Interestingly, highly
correlated SNPs within the same 15 kb region 50 of EOMES
have also been associated with two autoimmune diseases,
rheumatoid arthritis17 (rs3806624, r2¼ 0.96) and multiple
sclerosis18 (rs11129295, r2¼ 0.72), as well as Hodgkin’s
lymphoma19 (rs3806624, r2¼ 0.96), underscoring the
importance of this genetic region for susceptibility to both
lymphoma and autoimmune disease. Regions locally centromeric
and telomeric of rs9880772 show strong regulation and promoter
signatures by histone marks, DNaseI hypersensitivity and
transcription factor binding sites, and the correlated SNP,
rs3806624, is located within a poised promoter in the
lymphoblastoid cell line, GM12878 (Supplementary Table 8).

The novel 6p25.2 SNP (rs73718779) is located within an intron
of SERPINB6, which encodes a member of the serine protease
inhibitor (serpin) superfamily. Although the physiological role
of SERPINB6 is not well understood, it inhibits cathepsin G20,
which activates the pro-apoptotic proteinase caspase 7 (ref. 21).
In eQTL and methylation QTL analyses, we found that the T
allele for rs6939693, an SNP completely correlated with
rs73718779 (r2¼ 1), was associated with significantly reduced
SERPINB6 expression in blood in a weighted z-score meta-
analysis (P¼ 1.40� 10� 52, Supplementary Table 9) and
increased DNA methylation levels based on a linear mixed
model (P¼ 1.70� 10� 11, Supplementary Table 10), suggesting
strong potential functional relevance.

The 3q28 SNP (rs9815073) is an intronic variant within the
LIM domain containing preferred translocation partner in lipoma
gene (LPP). The SNP is located within a strong enhancer in the
lymphoblastoid cell line, GM12878 (Supplementary Fig. 4).
Moderately correlated SNPs in LPP have previously been
associated with diseases related to autoimmunity and/or immune
dysregulation, including celiac disease22 (rs1464510, r2¼ 0.51),
allergy23 (rs9860547, r2¼ 0.68) and vitiligo24 (rs1464510,
r2¼ 0.51). SNPs within this region have also been associated
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with follicular lymphoma25 (rs6444305, r2¼ 0.001) and B-cell
lymphoma in Asians (rs6773854, r2¼ 0.002); however, the
association with rs9815073 appears to be independent of
both of these SNPs in the fixed-effects meta-analysis
(Prs9815073¼ 9.11� 10� 7 after conditioning on rs6444305 and
Prs9815073¼ 5.11� 10� 7 after conditioning on rs6773854
compared with Prs9815073¼ 5.35� 10� 7 without adjustment).

The suggestive 4q24 SNP (rs10028805) is located within an
intron of B-cell scaffold protein with ankyrin repeats 1 (BANK1),
which encodes a protein adaptor that is predominantly expressed
in B-cells. BANK1 is a putative tumour suppressor gene in B-cell
lymphomagenesis26, and BANK1-deficient cells show enhanced
CD40-mediated proliferation and survival with Akt activation27.
Rs10028805 is moderately correlated with rs10516487 (r2¼ 0.70),
a non-synonymous SNP in exon 2 that has been associated with
systemic lupus erythematosus28 and shown to alter mRNA
splicing and the quantity of the BANK1 protein29. Consistent
with this, we observed rs10028805 to be associated with
BANK1 expression in lymphoblastoid cells (P¼ 6.89� 10� 13,
Supplementary Table 11).

The 3p22.2 SNP (rs1274963) is an intronic variant in the
gene CSRNP1 (cysteine-serine-rich nuclear protein 1), which is
induced by AXIN1, a scaffold protein that is a negative regulator
of the Wnt/signalling pathway30. A putative tumour suppressor
with potential apoptosis activity31, CSRNP1 plays an important
role in the development of haematopoiesis progenitors in
zebrafish32 and has been shown to be expressed in many
tissues, with leukocytes being among those with the highest
abundance30. The SNP resides in an area with strong regulatory
potential based on histone marks, DNaseI hypersensitivity and
transcription factor binding sites (Supplementary Table 8) and is
located within a strong enhancer in the lymphoblastoid cell line,
GM12878 (Supplementary Fig. 4). Of potential functional
relevance, in lymphocytes and blood, the rs1274963A risk allele
was associated with reduced WDR48 expression (Supplementary
Tables 9 and 11), a gene shown to induce apoptosis and suppress
tumour cell proliferation33.

To explore potential biological pathways associated with the
newly discovered loci as well as the previously established loci for
CLL, we conducted pathway analyses using GRAIL34, Webgestalt
and GeneMania (see ‘Methods’ section). All the three pathway
analyses identified apoptosis or apoptosis-related pathways as
either the top key words (GRAIL, Supplementary Table 12,
Fig. 2a) or their most significantly enriched pathway: regulation
of apoptotic signalling (GeneMania, P¼ 2.06� 10� 17, false
discovery rate-corrected hypergeometric test, Supplementary
Table 13, Fig. 2b) and activation of pro-apoptotic gene
products (Webgestalt, P¼ 5.49� 10� 11, false discovery
rate-corrected hypergeometric test, Supplementary Table 14).
Other enriched pathways included related apoptotic functions
and pathways, such as cytochrome c release from mitochondria
(Webgestalt, P¼ 2.16� 10� 6; GeneMania, P¼ 7.50� 10� 13)
and mitochondrial outer membrane (Webgestalt,
P¼ 3.89� 10� 6; GeneMania, P¼ 7.18� 10� 17; Supplementary
Tables 13 and 14, Supplementary Fig. 5). Lymphocyte-related
pathways, such as lymphocyte homeostasis (Webgestalt,
P¼ 2.16� 10� 6), haematopoietic or lymphoid organ
development (GeneMania, P¼ 0.009), and lymphoid (GRAIL)
were also observed in all the three analyses.

We constructed a polygenetic risk score that included the four
new SNPs from this study as well as 30 previously identified SNPs
at known loci (Supplementary Table 5) to evaluate the possibility
of risk stratification for CLL (see ‘Methods’ section). Those in the
top 20% of the risk distribution had a 1.9-fold increased risk (95%
confidence interval: 1.70–2.21) compared with those in the
middle quintile of the distribution. The newly discovered SNPs
explain B1% of the familial risk. Together with the previously
identified loci, we estimate that the identified loci for CLL thus far
explain B16.5% of the familial risk, which is similar to previous
estimates5,6.

In conclusion, our meta-analysis of GWAS identified four new
independent SNPs and two additional promising loci for CLL,
furthering our knowledge of the underpinnings of genetic
susceptibility to CLL. Pathway analyses of known and new CLL

Table 1 | New loci and independent SNPs associated with CLL risk.

SNP Cytoband Nearest

gene

Position Stage No. of

cases

No. of

controls

Risk allele/

other allele

RAF OR CI P

New loci

rs9880772 3p24.1 EOMES 27777779 Discovery 3,097 7,664 T/C 0.464 1.17 (1.10–1.24) 7.77E�07

Replication 1,935 5,414 T/C 0.467 1.23 (1.13–1.34) 4.67E�06

Combined 5,032 13,078 T/C 0.465 1.19 (1.13–1.25) 2.55E� 11

rs73718779 6p25.2 SERPINB6 2969278 Discovery 3,097 7,663 A/G 0.111 1.27 (1.16–1.40) 6.22E�07

Replication 1,871 4,107 A/G 0.109 1.21 (1.05–1.40) 0.008

Combined 4,968 11,770 A/G 0.110 1.26 (1.16–1.36) 1.97E�08

rs9815073 3q28 LPP 188115682 Discovery 3,098 7,663 C/A 0.651 1.20 (1.12–1.28) 5.35E�07

Replication 1,848 4,094 C/A 0.652 1.13 (1.03–1.25) 0.01

Combined 4,946 11,757 C/A 0.651 1.18 (1.11–1.25) 3.62E�08

New independent SNP at known locus

rs9308731 2q13 BCL2L11 111908262 Discovery 3,100 7,665 A/G 0.541 1.19 (1.12–1.26) 4.71E�08

Replication 1,929 5,448 A/G 0.531 1.21 (1.10–1.32) 4.66E�05

Combined 5,029 13,113 A/G 0.537 1.19 (1.13–1.26) 1.00E� 11

New suggestive loci (Po5� 10� 7)

rs10028805 4q24 BANK1 102737250 Discovery 3,099 7,665 G/A 0.625 1.16 (1.09–1.23) 7.04E�06

Replication 1,876 4,107 G/A 0.621 1.15 (1.05–1.15) 0.003

Combined 4,975 11,772 G/A 0.624 1.16 (1.10–1.22) 7.19E�08

rs1274963 3p22.2 CSRNP1 39191029 Discovery 3,100 7,666 T/C 0.210 1.20 (1.12–1.29) 1.37E�06

Replication 1,938 5,402 T/C 0.204 1.13 (1.01–1.26) 0.03

Combined 5,038 13,068 T/C 0.208 1.18 (1.11–1.25) 2.12E�07

CI, confidence interval; OR, odds ratio; RAF, risk allele frequency among controls.
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loci point to regulation of apoptosis as one of the key biological
processes underlying the genetic loci to date and suggest new
avenues for disease prevention and treatment.

Methods
Discovery meta-analysis. Our discovery meta-analysis included four CLL GWAS
of European ancestry: National Cancer Institute NHL GWAS (NCI GWAS)5,
Utah Chronic Lymphocytic Leukemia GWAS (UTAH), Genetic Epidemiology of
CLL Consortium GWAS (GEC)4, and Molecular Epidemiology of Non-Hodgkin
Lymphoma GWAS (UCSF)9. Details of the case and control ascertainment and
study design of the four GWAS, including the 22 studies that comprise the NCI
GWAS, are described in Supplementary Table 1. In brief, CLL cases were
ascertained from cancer registries, clinics or hospitals, or through self-report
verified by medical and pathology reports. For the NCI GWAS, phenotype
information for the cases was reviewed centrally at the International Lymphoma
Epidemiology Consortium (InterLymph) Data Coordinating Center and
harmonized according to the hierarchical classification proposed by the Interlymph
Pathology Working Group based on the World Health Organization classification
(2008)35,36. All the studies obtained informed consent from their participants and
approval from their respective Institutional Review Boards for this study5.

To maximize our statistic power, all cases with sufficient DNA and a subset of
available controls were genotyped for this study. Subjects in these studies were
genotyped using the Illumina OmniExpress, Omni2.5, HumanHap610K,
HumanCNV360-Duo or Affymetrix 6.0. For the NCI GWAS, the majority of
subjects were genotyped with the Illumina OmniExpress; however, a subset of
controls (N¼ 3,536) and one case were genotyped using the Omni2.5, so to prevent
potential platform artifacts, extensive quality control metrics were used, including
the removal of assays with low completion rates or monomorphic calls from either

platform, before combining the data5. For all four GWAS, rigorous quality control
metrics were applied to each study to ensure high quality results. Samples with
poor call rates, gender discordance, abnormal heterozygosity or of non-European
ancestry were excluded, and SNPs with a call rate o95% or Hardy–Weinberg
equilibrium P value o1� 10� 6 were removed from the analysis (Supplementary
Table 2).

Each GWAS was imputed separately using IMPUTE2 (ref. 11). In contrast to
the previous study5 where a hybrid reference panel was used for imputation, all the
studies in this analysis were imputed using the 1000 Genomes Project version 3
(March 2012 release) as the reference panel. Poorly imputed SNPs (INFO score
o0.3) and SNPs with minor allele frequency o1% were excluded from each study,
leaving roughly B8.5 million SNPs for analysis. After quality control filters, a total
of 3,100 cases and 7,667 controls across the four studies remained for analysis
(Supplementary Table 3). For each study, principal component analyses were
conducted separately. Association testing was conducted for each study separately
using SNPTEST version 2, adjusting for age, sex and significant principal
components (Po0.05 in null model with age and sex). Meta-analyses were
performed using the fixed-effects inverse variance method based on the beta
estimates and standard errors from each study.

Replication and technical validation. Replication of potential novel SNPs was
undertaken in 1,958 additional cases and 5,530 controls from six different studies
(Supplementary Tables 1 and 3). Fourteen promising SNPs that reached a sig-
nificance threshold of Po5� 10� 6 in the discovery meta-analysis were taken
forward for replication, including 10 SNPs in novel regions (defined as at least
1Mb from a known CLL locus) and four SNPs in known regions that appeared to
be possible secondary signals (r2o0.1 with the reported SNPs and Po5� 10� 7 in
the discovery meta-analysis). To conduct conditional analyses with the potential
secondary signals, the previously reported index SNP(s) in each of these four
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Figure 1 | Regional association plots of the three novel loci and new independent SNP at a known locus associated with the risk of CLL.

(a) Chromosome 3p24.1 (rs9880772), (b) chromosome 6p25.2 (rs73718779), (c) chromosome 3q28 (rs9815073) and (d) chromosome 2q13

(rs9308731). Shown are the � log10 association P values from the discovery fixed effects meta-analysis (dots) and combined discovery and replication

fixed effects meta-analysis (diamonds). The lead SNPs are shown in purple. Estimated recombination rates (from 1000 Genomes) are plotted in blue.

The SNPs surrounding the most significant SNP are colour-coded to reflect their correlation with this SNP. Pairwise r2 values are from 1000 Genomes

European data (March 2012 release). Genes, position of exons and direction of transcription from UCSC genome browser (genome.ucsc.edu) are noted.

Plots were generated using LocusZoom (http://csg.sph.umich.edu/locuszoom).
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regions were also genotyped. TaqMan custom genotyping assays (Applied
Biosystems) were designed and optimized for the 14 promising SNPs as well as five
previously reported index SNPs. Taqman or Sequenom genotyping was conducted
separately for each replication study at their own centre. Each study included
duplicates for quality control, and HapMap samples genotyped across the
centres yielded excellent concordance (100%). Association testing was conducted
separately for each study, adjusting for age, sex and for MSKCC, Ashkenazi
ancestry. The replication studies were then meta-analysed together and with the
discovery GWAS using an inverse variance fixed effects model. All the SNPs
reaching genome-wide or suggestive significance in the joint meta-analysis were
either directly genotyped or well imputed (INFO40.78 for all SNPs with average
INFO¼ 0.95) in the GWAS. Technical validation comparing genotype calls or
imputed data from the NCI GWAS with Taqman assays for 639 samples revealed
moderate concordance for rs9815073 (r2¼ 0.67), but high concordance (r240.97)
for the other SNPs. Although the concordance was lower than expected and further
confirmation is needed, an analysis of the Taqman validation data for rs9815073
showed an odds ratio¼ 1.30, which is similar to the odds ratio observed in the full
discovery data set.

Polygenic risk score analysis. To evaluate possible stratification for CLL risk
based on the 34 independent SNPs from the 30 loci, we performed a polygenic risk
score analysis using the discovery sample data. Polygenic risk scores were derived
for each person by taking the weighted sum of the risk alleles (0, 1 or 2) for each of
the 34 SNPs. The weights for each SNP were the per-allele log odds ratios estimated
from our meta-analysis of the discovery data. We then computed the quintiles of
the polygenic risk scores and used logistic regression models to estimate the odds
ratio for CLL risk for each quintile with the middle quintile as the reference.
Departures from a multiplicative model were assessed by testing for all pair-wise
SNP interactions. No evidence of significant interactions was observed.

Heritability analysis. To estimate the familial risk explained by both the novel
and previously established loci for CLL, we estimated the contribution of each
independent SNP to the heritability using the equation h2SNP¼ b22f(1� f), where b

is the log-odds ratio per copy of the risk allele from the replication stage analyses
and f is the allele frequency, and summed the contributions of all novel and
established SNPs37. We then estimated the total heritability from the sibling
relative risk (relative risk¼ 8.5 from Goldin et al.38), using the equation derived by
Pharoah et al.39 We then calculated the proportion of familial risk explained by
dividing the summed contributions of the novel and established SNPs by the total
heritability.

Expression quantitative trait loci and other related analyses. To explore
the potential functional relevance of the CLL-associated SNPs, we conducted
expression quantitative trait loci (eQTL) and methylation quantitative trait loci
(meQTL) analyses using three independent data sets: (1) a childhood asthma study
of gene expression in lymphoblastoid cell lines40, (2) a meta-analysis of eQTL
associations from whole blood41, and (3) meQTL in CD4þ lymphocytes from the
GOLDN study42. In the childhood asthma study40, RNA was extracted from
lymphoblastoid cell lines from 830 parents and offspring from 206 families of
European ancestry. Gene expression was assessed with the Affymetrix HG-U133
Plus 2.0 chip, and subjects were genotyped using the Illumina Human-1 and
HumanHap300K beadchips with subsequent imputation using data from the 1000
Genomes Project. The four new and two suggestive SNPs were tested for cis
associations (defined as gene transcripts within 1Mb), adjusting for non-genetic
effects in the gene expression value and relatedness using MERLIN43. To gain
insight into the relative importance of associations with our SNPs compared with
other SNPs in the region, conditional analyses were also conducted, in which both
the CLL SNP and the most significant SNP for the particular gene transcript
(that is, the peak SNP) were included in the same model. The meta-analysis of
eQTL associations from whole blood41 included eQTL data generated using
Illumina gene expression arrays from seven studies consisting of a total of 5,311
unrelated Europeans. Gene expression arrays were harmonized by matching probe
sequences, and all the studies were imputed using the HapMap European reference
panel. SNPs that were strongly correlated (r240.8) with the newly discovered and
suggestive CLL SNPs were examined for possible cis associations. In the GOLDN
study42, over 450,000 CpG methylation sites were genotyped in CD4þ T-cells
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Figure 2 | Relationships between loci associated with CLL risk. (a) The GRAIL results are depicted in a circle plot with the connections between the

SNPs and corresponding gene for the established CLL loci. The width of the line corresponds to the strength of the literature-based connectivity with thicker

lines representing stronger connections. (b) Depiction of GeneMania results. Query genes are shown in large circles with hatch marks and tightly
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from 593 participants. Subjects were genotyped with the Affymetrix Human SNP
Array 6.0, and the 2.5 million SNPs available in the HapMap2 release were
imputed. We updated the analysis by including more participants (n¼ 717) and
expanded the scope of cis-meQTL to SNPs and CpG sites within 50 kb of each
other. The association between the CLL-associated SNPs (as well as strongly
correlated SNPs, r240.8) and methylation beta values was tested using the linear
mixed models, adjusting for family structure and other covariates including age,
sex, recruitment centres and principal components. Finally, we also utilized
HaploReg44, a tool for exploring noncoding functional annotation using ENCODE
data, to evaluate the genome surrounding our SNPs.

Pathway analyses. To explore potential biological pathways underlying known
CLL loci to date, we conducted analyses using GRAIL34, Webgestalt45 and
GeneMania46. GRAIL34 is a text-based mining tool that is used to evaluate the
relationship between genes at different disease loci. Genes within 250 kb of known
loci were included, and the 2006 text database was used to avoid overweighting the
previously published loci. Webgestalt45 is a web-based pathway analysis server
offering hypergeometric tests for Gene Ontology (GO) term enrichments and
visualization of enriched GO terms in a graph depicting the GO hierarchy.
GeneMania46 is a network-based analysis server that finds an expanded set of genes
including the query genes and additional genes closely linked with the query genes
via protein and genetic interactions, pathways, co-expression, co-localization and
protein domain similarity. For both Webgestalt and GeneMania, the nearest gene
for each locus was included. For all pathways analyses, only newly discovered loci
and the previously identified loci that reached at least Po1� 10� 5 in the
combined meta-analysis with the published results from two other GWAS6,7

(Supplementary Table 5) were included.

Chromatin state dynamics analysis. To assess chromatin state dynamics, we
used Chromos47, which utilizes Chip-Seq data from ENCODE48 on nine cell types:
B-lymphoblastoid cells (GM12878), hepatocellular carcinoma cells (HepG2),
embryonic stem cells (hESC), erythrocytic leukemia cells (hK562), umbilical vein
endothelial cells (hUVEC), skeletal muscle myoblasts (hSMM), normal lung
fibroblasts (hNHLF), normal epidermal keratinocytes (hNHEK) and mammary
epithelial cells (hMEC). This programme uses pre-computed data with genome-
segmentation performed using a multivariate hidden Markov-model to reduce the
combinatorial space to a set of interpretable chromatin states. The output from
Chromos lists data into 15 chromatin states corresponding to repressed, poised and
active promoters, strong and weak enhancers, putative insulators, transcribed
regions and large-scale repressed and inactive domains. For this study, we focused
on the results observed for the lymphoblastoid cell line (GM12878).
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the José Carreras Leukemia Foundation grant DJCLS-R12/23, the German Federal

Ministry for Education and Research (BMBF-01-EO-1303), the Health Research Board,

Ireland and Cancer Research Ireland, Czech Republic supported by MH CZ—DRO

(MMCI, 00209805) and RECAMO, CZ.1.05/2.1.00/03.0101, and Fondation de France

and Association de Recherche Contre le Cancer. GEC/Mayo GWAS—This reaearch was

supported by NIH (grant numbers CA118444, CA148690 and CA92153), Intramural

Research Program of the NIH, National Cancer Institute and Veterans Affairs Research

Service. Data collection for Duke University was supported by a Leukemia & Lymphoma

Society Career Development Award, the Bernstein Family Fund for Leukemia and

Lymphoma Research, the NIH (K08CA134919) and National Center for Advancing

Translational Science (UL1 TR000135). HPFS—HPFS was supported in part by NIH

grants CA167552, CA149445, CA098122, CA098566 and K07 CA115687. We thank the

participants and staff of the Health Professionals Follow-up Study for their valuable

contributions as well as the following state cancer registries for their help: AL, AZ, AR,

CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY,

NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. We assume full responsibility

for analyses and interpretation of these data. Iowa-Mayo SPORE— This was supported

by NCI Specialized Programs of Research Excellence (SPORE) in Human Cancer

(P50 CA97274), National Cancer Institute (30 CA086862 and P30 CA15083) and

Henry J. Predolin Foundation. Italian GxE— This was supported by Italian Association

for Cancer Research (AIRC, Investigator Grant 11855, P.C.), Fondazione Banco di

Sardegna 2010-2012 and Regione Autonoma della Sardegna (LR7 CRP-59812/2012,

M.G.E.). Mayo Clinic Case-Control—It was supported by NIH (R01 CA92153) and

National Cancer Institute (P30 CA015083). MCCS—The Melbourne Collaborative

Cohort Study (MCCS) recruitment was funded by VicHealth and Cancer Council

Victoria. The MCCS was further supported by Australian NHMRC grants 209057,

251553 and 504711, and also by infrastructure provided by Cancer Council Victoria.

Cases and their vital status were ascertained through the Victorian Cancer Registry

(VCR). MCC-Spain—This study is funded by The Instituto de Salud Carlos III

(ISCIII—Spanish Government, PI11/01810, PI14/01219, RCESP C03/09 and CIBERESP)

and the Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR)—Generalitat de

Catalunya (Catalonian Government, 2014SGR756). Nadia Garcı́a and Marleny Vergara

(ICO-IDIBELL) provided technical support for this study. MD Anderson provided

Institutional support to the Center for Translational and Public Health Genomics.

MSKCC—Geoffrey Beene Cancer Research Grant, Lymphoma Foundation (LF5541);

Barbara K. Lipman Lymphoma Research Fund (74419); Robert and Kate Niehaus

Clinical Cancer Genetics Research Initiative (57470); U01 HG007033; ENCODE

and U01 HG007033. NCI-SEER—Intramural Research Program of the National

Cancer Institute, NIH, and Public Health Service (N01-PC-65064,N01-PC-67008,

N01-PC-67009, N01-PC-67010 and N02-PC-71105). NHS—The NHS was supported in

part by NIH grants CA186107, CA87969, CA49449, CA149445, CA098122, CA098566

and K07 CA115687. We thank the participants and staff of the Nurses’ Health Study for

their valuable contributions as well as the following state cancer registries for their help:

AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE,

NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. We assume full

responsibility for analyses and interpretation of these data. NSW—NSW was supported

by grants from the Australian National Health and Medical Research Council

(ID990920), the Cancer Council NSW and the University of Sydney Faculty of Medicine.

NYU-WHS—National Cancer Institute (R01 CA098661, P30 CA016087) and National

Institute of Environmental Health Sciences (ES000260). PLCO—This research was

supported by the Intramural Research Program of the National Cancer Institute and by

contracts from the Division of Cancer Prevention, National Cancer Institute, NIH,

DHHS. SCALE—Swedish Cancer Society (2009/659). Stockholm County Council

(20110209) and the Strategic Research Program in Epidemiology at Karolinska Institute.

Swedish Cancer Society grant (02 6661). NIH (5R01 CA69669-02), Plan Denmark.

UCSF2—The UCSF studies were supported by the NCI, NIH (CA1046282 and

CA154643). The collection of cancer incidence data used in this study was supported by

the California Department of Health Services as part of the statewide cancer reporting

program mandated by California Health and Safety Code Section 103885; the National

Cancer Institute’s Surveillance, Epidemiology, and End Results Program under contract

HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract

HHSN261201000035C awarded to the University of Southern California and contract

HHSN261201000034C awarded to the Public Health Institute; and the Centers for

Disease Control and Prevention’s National Program of Cancer Registries, under agree-

ment no. 1U58 DP000807-01 awarded to the Public Health Institute. UTAH/Sheffield—

NIH CA134674. Partial support for data collection at the Utah site was made possible by

the Utah Population Database (UPDB) and the Utah Cancer Registry (UCR). Partial

support for all data sets within the UPDB is provided by the Huntsman Cancer Institute

(HCI) and the HCI Cancer Center Support grant, P30 CA42014. The UCR is supported

in part by NIH contract HHSN261201000026C from the National Cancer Institute SEER

Program with additional support from the Utah State Department of Health and the

University of Utah. Partial support for data collection in Sheffield, UK was made possible

by funds from Yorkshire Cancer Research and the Sheffield Experimental Cancer

Medicine Centre. We thank the NCRI Haemato-oncology Clinical Studies Group,

colleagues in the North Trent Cancer Network the North Trent Haemato-oncology

Database. WHI—The investigators of WHI are as follows: Program Office (National

Heart, Lung, and Blood Institute, Bethesda, MD, USA) Jacques Rossouw, Shari Ludlam,

Dale Burwen, Joan McGowan, Leslie Ford and Nancy Geller; Clinical Coordinating

Center (Fred Hutchinson Cancer Research Center, Seattle, WA, USA) Garnet Anderson,

Ross Prentice, Andrea LaCroix and Charles Kooperberg; Investigators and Academic

Centers (Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA)

JoAnn E. Manson; (MedStar Health Research Institute/Howard University, Washington,

DC, USA) Barbara V. Howard; (Stanford Prevention Research Center, Stanford, CA,

USA) Marcia L. Stefanick; (The Ohio State University, Columbus, OH, USA) Rebecca

Jackson; (University of Arizona, Tucson/Phoenix, AZ, USA) Cynthia A. Thomson;

(University at Buffalo, Buffalo, NY, USA) Jean Wactawski-Wende; (University of

Florida, Gainesville/Jacksonville, FL, USA) Marian Limacher; (University of Iowa, Iowa

City/Davenport, IA, USA) Robert Wallace; (University of Pittsburgh, Pittsburgh, PA,

USA) Lewis Kuller; (Wake Forest University School of Medicine, Winston-Salem, NC,

USA) Sally Shumaker; and Women’s Health Initiative Memory Study (Wake Forest

University School of Medicine, Winston-Salem, NC, USA) Sally Shumaker. The

WHI program is funded by the National Heart, Lung, and Blood Institute, NIH,

US Department of Health and Human Services by contracts HHSN268201100046C,

HHSN268201100001C, HHSN268201100002C, HHSN268201100003C,

HHSN268201100004C and HHSN271201100004C. YALE—National Cancer Institute

(CA62006 and CA165923). Other support includes: NSFC—the National Natural Science

Foundation of China (no. 61471078).

Authors contributions
S.I.B., N.J.C., C.F.S., A.N., K.E.S., W.C., S.S.W., L.R.T., A.R.B.-W., P.H., M.P.P., B.M.B.,

P.C., Y.Z., A.Z.-J., C.L., R.M., H.H., J.M., P.V., J.J.S., A.K., J.R.C., S.J.C., N.R. and S.L.S.

organized and designed the study. N.J.C., C.F.S., A.C., L.B., A.H., J.M.Cu., L.C., P.M.B.,

E.A.H., J.R.C., S.J.C. and S.L.S. conducted and supervised the genotyping of samples.

S.I.B., N.J.C., C.F.S., J. Vijai, Z.W., M. Machado, M.Y., D.K.A., D.Z., J.M.L., L.L., B.M.,

J.H., J.-H.P., N.C., J.R.C., S.J.C., N.R. and S.L.S. contributed to the design and execution

of data analysis. S.I.B., N.J.C., C.F.S., J. Vijai, Z.W., A.N., N.C., J.R.C., S.J.C., N.R. and

S.L.S. wrote the first draft of the manuscript. S.I.B., N.J.C., C.F.S., J. Vijai, J.G., A.N.,

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10933 ARTICLE

NATURE COMMUNICATIONS | 7:10933 | DOI: 10.1038/ncomms10933 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


R.S.K., K.E.S., A.Mo., W.C., A.C., S.S.W., Q.L., L.R.T., A.R.B.-W., P.H., M.P.P., B.M.B.,

C.M.Vajdic, P.C., Y.Z., G.G.G., A.Z.-J., Y.Y., T.G.C., T.D.S., A.J.N., N.E.K., M.L., J.M.Cu.,

C.A., H.H., H.-O.A., M. Melbye, B.G., E.T.C., M.G., K.C., L.A.C.-A., W.R.D., B.K.L.,

G.J.W., L.C., P.M.B., J.R., E.A.H., R.D.J., L.F.T., Y.B., N.S., N.B., P.Bo., P.Br., L.F., M.

Maynadie, J.M., A.S., K.G.C., S.J.A., C.M. Vachon, L.R.G., S.S.S., J.F.L., J.B.W., N.E.C.,

A.D.N., A.J.D.R., L.M.M., R.K.S., E.R., P.V., R.K., G.M., E.W., M.-D.C., R.C.H.V., R.C.T.,

M.C.S., R.L.M., D.A., J. Virtamo, S.W., J.C., T.Z., T.R.H., D.J.V., A.Ma., J.J.S., R.D.G.,

J.M.Co., K.A.B., E.G., P.K., A.K., J.T., M.G.E., G.M.F., L.M., S.C., K.E.N., J.A.S., J.W.,

J.F.F., K.O., X.W., S.d.S., J.R.C., N.R. and S.L.S. conducted the epidemiological studies

and contributed samples to the GWAS and/or follow-up genotyping. All the authors

contributed to the writing of the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/

naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

How to cite this article: Berndt, S. I. et al. Meta-analysis of genome-wide association

studies discovers multiple loci for chronic lymphocytic leukemia. Nat. Commun. 7:10933

doi: 10.1038/ncomms10933 (2016).

This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise

in the credit line; if the material is not included under the Creative Commons license,

users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Sonja I. Berndt1,*, Nicola J. Camp2,*, Christine F. Skibola3,4,*, Joseph Vijai5,*, Zhaoming Wang6,*, Jian Gu7,*,

Alexandra Nieters8, Rachel S. Kelly9,10, Karin E. Smedby11, Alain Monnereau12,13,14, Wendy Cozen15,16,

Angela Cox17, Sophia S. Wang18, Qing Lan1, Lauren R. Teras19, Moara Machado1,20, Meredith Yeager6,

Angela R. Brooks-Wilson21,22, Patricia Hartge1, Mark P. Purdue23, Brenda M. Birmann24, Claire M. Vajdic25,

Pierluigi Cocco26, Yawei Zhang27, Graham G. Giles28,29, Anne Zeleniuch-Jacquotte30,31,32, Charles Lawrence33,

Rebecca Montalvan33, Laurie Burdett6, Amy Hutchinson6, Yuanqing Ye7, Timothy G. Call34, Tait D. Shanafelt35,

Anne J. Novak35, Neil E. Kay34, Mark Liebow35, Julie M. Cunningham36, Cristine Allmer37, Henrik Hjalgrim38,

Hans-Olov Adami9,39, Mads Melbye38,40, Bengt Glimelius41, Ellen T. Chang42,43, Martha Glenn44,

Karen Curtin45, Lisa A. Cannon-Albright45,46, W. Ryan Diver19, Brian K. Link47, George J. Weiner47,

Lucia Conde3,4, Paige M. Bracci48, Jacques Riby3,4, Donna K. Arnett3, Degui Zhi49, Justin M. Leach49,

Elizabeth A. Holly48, Rebecca D. Jackson50, Lesley F. Tinker51, Yolanda Benavente52,53, Núria Sala54,55,
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Institut Bergonié, 33076 Bordeaux Cedex, France. 15Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California,

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10933

8 NATURE COMMUNICATIONS | 7:10933 |DOI: 10.1038/ncomms10933 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications


Los Angeles, California 90033, USA. 16Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles,

California 90033, USA. 17Department of Oncology, University of Sheffield, Sheffield, South Yorkshire S10 1NS, UK. 18Division of Cancer Etiology, City of Hope

Beckman Research Institute, Duarte, California 91030, USA. 19 Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA.
20Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. 21Genome

Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3. 22Department of Biomedical Physiology and Kinesiology, Simon Fraser

University, Burnaby, British Columbia, Canada V5A1S6. 23Ontario Health Study, Toronto, Ontario, Canada M5G 0A3. 24Channing Division of Network

Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. 25Centre for Big Data

Research in Health, University of New South Wales, Sydney, New South Wales 2052, Australia. 26Department of Public Health, Clinical and Molecular

Medicine, University of Cagliari, Monserrato, 09042 Cagliari, Italy. 27Department of Environmental Health Sciences, Yale School of Public Health, New

Haven, Connecticut 06520, USA. 28Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia. 29Centre for Epidemiology

and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia. 30Department of

Population Health, New York University School of Medicine, New York, New York 10016, USA. 31Department of Environmental Medicine, New York University

School of Medicine, New York, New York 10016, USA. 32 Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York 10016, USA.
33Westat, Rockville, Maryland 20850, USA. 34Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA. 35Department of Medicine,

Mayo Clinic, Rochester, Minnesota 55905, USA. 36Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
37Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA. 38Department of Epidemiology Research, Division of Health

Surveillance and Research, Statens Serum Institut, 2300 Copenhagen, Denmark. 39Department of Medical Epidemiology and Biostatistics, Karolinska

Institutet, 17177 Stockholm, Sweden. 40Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. 41Department of

Immunology, Genetics and Pathology, Uppsala University, 75105 Uppsala, Sweden. 42Center for Epidemiology and Computational Biology, Health Sciences,

Exponent, Inc., Menlo Park, California 94025, USA. 43Division of Epidemiology, Department of Health Research and Policy, Stanford University School of

Medicine, Stanford, California 94305, USA. 44Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, Utah 84112, USA. 45Department

of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA. 46George E. Wahlen Department of Veterans Affairs Medical

Center, Salt Lake City, Utah 84148, USA. 47Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242,

USA. 48Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94118, USA. 49Department of

Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA. 50Division of Endocrinology, Diabetes and Metabolism, The Ohio

State University, Columbus, Ohio 43210, USA. 51Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98117,

USA. 52Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona 08908, Spain. 53CIBER de

Epidemiologı́a y Salud Pública (CIBERESP), 08036 Barcelona, Spain. 54Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program,

Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain. 55Translational Research Laboratory, Catalan Institute of

Oncology-IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain. 56Unit of Infections and Cancer (UNIC), Cancer Epidemiology Research Programme,

Institut Catala d’Oncologia, IDIBELL, 08908L’Hospitalet de Llobregat, 08908 Barcelona, Spain. 57CIBER Epidemiologı́a y Salud Pública (CIBERESP), 28029

Madrid, Spain. 58Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, 69120 Baden-Württemberg, Germany. 59The Tisch
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Group, Folkhälsan Research Center, FI-00250 Helsinki, Finland. 74Department of Epidemiology, Murcia Regional Health Authority, E30008 Murcia, Spain.
75 Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, The Netherlands. 76 Julius Center for Health Sciences and Primary Care,

University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands. 77Cancer Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK. 78Genetic

Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia. 79Chronic Disease Prevention Unit,

National Institute for Health and Welfare, FI-00271 Helsinki, Finland. 80Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut

06520, USA. 81Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3. 82 School of Population and Public Health,

University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3. 83Center for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia,

Canada V5Z1L3. 84Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3. 85Department of Medicine,

University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3. 86Department of Nutrition, Harvard School of Public Health, Boston,

Massachusetts 02115, USA. 87Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA. 88 Sydney School of Public

Health, The University of Sydney, Sydney, New South Wales 2006, Australia. 89 Faculty of Medicine and Health Sciences, Macquarie University, Sydney,

New South Wales 2109, Australia. 90Department of Histopathology, Douglass Hanly Moir Pathology, Sydney, New South Wales 2113, Australia.
91Department of Biomedical Science, University of Cagliari, Monserrato, 09042 Cagliari, Italy. 92 Interdisciplinary Department of Medicine, University of Bari,

70124 Bari, Italy. 93 Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), 50139 Florence, Italy. 94College of

Information Science and Technology, Dalian Maritime University, Dalian, Liaoning Province 116026, China. 95Department of Health Sciences, University of

York, York YO10 5DD, UK. 96Department of Statistics, Dongguk University, Seoul 100-715, Republic of Korea. 97Department of Epidemiology, University of

North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. 98Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina 27599, USA. 99Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital,

Sheffield, South Yorkshire S10 2TN, UK. * These authors contributed equally to this work. ** These authors jointly supervised this work.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10933 ARTICLE

NATURE COMMUNICATIONS | 7:10933 | DOI: 10.1038/ncomms10933 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications

	title_link
	Results
	Discovery meta-analysis
	Joint meta-analysis of the discovery and replication

	Discussion
	Table 1 
	Methods
	Discovery meta-analysis
	Replication and technical validation

	Figure™1Regional association plots of the three novel loci and new independent SNP at a known locus associated with the risk of CLL.(a) Chromosome 3p24.1 (rs9880772), (b) chromosome 6p25.2 (rs73718779), (c) chromosome 3q28 (rs9815073) and (d) chromosome 2
	Polygenic risk score analysis
	Heritability analysis
	Expression quantitative trait loci and other related analyses

	Figure™2Relationships between loci associated with CLL risk.(a) The GRAIL results are depicted in a circle plot with the connections between the SNPs and corresponding gene for the established CLL loci. The width of the line corresponds to the strength of
	Pathway analyses
	Chromatin state dynamics analysis

	SiegelR.NaishadhamD.JemalA.Cancer statistics, 2013CA Cancer J. Clin.6311302013Di BernardoM. C.A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemiaNat. Genet.40120412102008Crowther-SwanepoelD.Common variants a
	We thank I. Brock, K. Butterbach, A. Chabrier, D. Chan-Lam, D. Connley, H. Cramp, R. Cutting, C. Dalley, H. Dykes, A. Gabbas, P. Gaddam, P. Hui, L. Irish, L. Jacobus, S. Kaul, L. Klareskog, A. Lai, J. Lunde, M. McAdams, L. Padyukov, D. Parisi, V. Rajamani
	ACKNOWLEDGEMENTS
	Authors contributions
	Additional information


