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Genome-wide association studies (GWAS) stand as powerful experimental 

designs for identifying DNA variants associated with complex traits and diseases. 

In the past decade, both the number of such studies and their sample sizes have 

increased dramatically. Recent GWAS of height and body mass index (BMI) in 

~250,000 European participants have led to the discovery of ~700 and ~100 

nearly independent SNPs associated with these traits, respectively. Here we 

combine summary statistics from those two studies with GWAS of height and 

BMI performed in ~450,000 UK Biobank participants of European ancestry. 

Overall, our combined GWAS meta-analysis reaches N~700,000 individuals and 

substantially increases the number of GWAS signals associated with these traits. 

We identified 3,290 and 716 near-independent SNPs associated with height and 

BMI, respectively (at a revised genome-wide significance threshold of p<1×10
-8

), 

including 1,185 height-associated SNPs and 554 BMI-associated SNPs located 

within loci not previously identified by these two GWAS. The genome-wide 

significant SNPs explain ~24.6% of the variance of height and ~5% of the 

variance of BMI in an independent sample from the Health and Retirement 

Study (HRS). Correlations between polygenic scores based upon these SNPs with 

actual height and BMI in HRS participants were 0.44 and 0.20, respectively. 

From analyses of integrating GWAS and eQTL data by Summary-data based 

Mendelian Randomization (SMR), we identified an enrichment of eQTLs 

amongst lead height and BMI signals, prioritisting 684 and 134 genes, 

respectively. Our study demonstrates that, as previously predicted, increasing 
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GWAS sample sizes continues to deliver, by discovery of new loci, increasing 

prediction accuracy and providing additional data to achieve deeper insight into 

complex trait biology. All summary statistics are made available for follow up 

studies. 

 

Over the past 15 years, genome-wide association studies have been increasingly 

successful in unveiling many aspects of the genetic architectures of complex traits and 

diseases
1–6

. GWAS have led to the discovery of tens of thousands of polymorphisms 

(SNPs in general) associated with inter-individuals differences in quantitative traits or 

disease susceptibility. They have also been used to generate experimentally testable 

hypotheses and predict traits and disease risk
7,8

. One of the early challenges faced by 

GWAS has been to bridge the gap between the amount of trait variance explained by 

genome-wide significant loci ( ����
� ) compared to estimates of heritabilities from 

family-based studies (����
� ). The reasons explaining the gap between ����

�  and ����
� , 

also termed as missing heritability, are now better understood. Contributions from 

Yang et al. (2010; 2015; 2017)
9–11

 and others
12

 have helped clarifying the distinction 

between what can potentially be explained by all SNPs (a.k.a SNP heritability, ����
� ) 

and what remains out of the reach of SNP-array based GWAS, for instance causal 

variants that are not tagged by genotyped or imputed SNPs. It is worth noting that 

untagged variants are often rare or even unique to single nuclear families. Therefore, 

their effects might remain statistically undetectable, despite still contributing to the 

difference between ����
�  and ����

� . Overall, clarifying the differences between ����
� , 

����
�  and ����

�  has been a major advance in the field and has helped providing 

theoretical guarantees that increasing GWAS sample sizes would continue to yield 

more discoveries, as long as the difference between ����
�  and ����

�
 persists.  

 

To date the largest published GWAS of height
5
 and BMI

6
 in ~250,000 participants on 

average have uncovered 697 and 97 near-independent SNPs associated with these 

traits and explaining ~15% and ~3% of trait-variance respectively. Compared with 

����
�  estimates of height and BMI, i.e. ~50% and ~30% respectively

9–11
, this 

indidicates an enormous potential for discoveries expected simply from increasing 

sample sizes.  However, the required sample size to explain all SNP heritability by 

identified individual genome-wide significant loci is not known because it depends on 
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the joint distribution of allele frequency and effect size at causal variants. Here we 

perform a meta-analysis of previous GIANT GWAS studies with new GWAS of 

height and BMI in ~450,000 participants of the UK Biobank (UKB). In total our 

sample size reaches ~700,000 which is unprecedented for GWAS of these traits. The 

present study is part of a larger effort led by the GIANT consortium, expected in the 

near future to yield one the largest GWAS ever conducted (N between 1.5 and 2 

million). We describe below our findings in terms of number of GWAS signals, 

variance explained, prediction accuracy and also conduct analyses to prioritize genes 

for follow-up investigations. The summary statistics of these two meta-analyses 

(height and BMI) are made available (URLs). 

 

Results 

 

GWAS of height and BMI identify 3,290 and 716 associated SNPs respectively  

We first performed a GWAS of height and BMI in 456,426 UKB participants of 

European ancestry (Online methods). We tested associations of 16,652,994 genotyped 

and imputed SNPs (Online methods) with both traits using a linear mixed model to 

account for relatedness between participants and population stratification. Analyses 

were performed with BOLT-LMM v2.3
13,14

 using a set of 711,933 HapMap 3 (HM3) 

SNPs to model the polygenic component to control for relatedness and population 

stratification (Online methods). After fitting age, sex (inferred from SNP data
15

), 10 

genotypic principal components (PCs), recruitment centre, and genotyping batches as 

fixed effects, phenotypes were residualised (separately for males and females) and 

inverse-normally transformed before analysis. A parallel analysis of 451,099 

individuals and using a slightly different set of parameters for sample selection and 

adjustment revealed very similar results (Online methods) and so we proceeded with 

the larger sample of 456,426 UKB participants. We then performed fixed-effect 

inverse-variance weighted meta-analysis of UKB results with publicly available 

GWAS summary statistics of height
5
 (GIANTheight) and BMI

6
 (GIANTBMI) using the 

software METAL
16

. In total, our meta-analysis involves ~2.4 million HapMap 2 

(HM2) SNPs, N=693,529 participants on average for height and N=681,275 

participants on average for BMI. Fig. 1 shows Manhattan plots for both meta-

analyses. We found in both traits a marked deviation of the distribution of p-values 
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from the uniform null distribution (height: λGC=3.2; BMI: λGC=2.5), suggesting 

polygenicity and possibly population stratification. The mean of association chi-

square statistics is ~7.2 for height and ~3.4 for BMI, consistent with a randomly 

chosen SNP, on average, being associated with height at p<0.007 and with BMI at 

p<0.07. We performed LD score regression (LDSC)
17,18

 to quantify the contribution 

of population stratification to our results. We found that LDSC intercept (ILDSC) was 

inflated for both height (ILDSC =1.48, s.e. 0.1) and BMI (ILDSC =1.08, s.e. 0.02), 

suggesting a significant contribution of population stratification. However, although 

classically used, this statistic may not accurately reflect the contribution of population 

stratification as it can rise above 1 with increased sample size and heritability
13

. In 

contrast, the attenuation ratio statistic RPS = (ILDSC - 1)/(mean of association chi-

square statistics - 1), which does not have these limitations, was shown to yield a 

better quantification of population stratification
13

. We found for height and BMI that 

RPS equals 0.06 (s.e. 0.01) and 0.03 (s.e. 0.01), respectively, which implies that 

polygenicity is the main driver of the observed inflation of test statistics. We also used 

the LDSC methodology to estimate the genetic correlation between summary 

statistics from GIANTheight and that from UKB, as well as between summary statistics 

from GIANTBMI and that from UKB. We found a genetic correlation (rg) of 0.96 (s.e. 

0.01) for height and of 0.95 (s.e. 0.01) for BMI, highlighting a strong genetic 

homogeneity between UKB and previous meta-analyses, and thus confirming the 

validity of using a fixed-effect meta-analysis. Also, this analysis implied significant 

overlap of ~59,000 participants between UKB and GIANTheight (bivariate LDSC 

intercept: 0.17; s.e. 0.05), but not between UKB and GIANTBMI (bivariate LDSC 

intercept: 0.01; s.e. 0.01). The latter observation is surprising given that the vast 

majority of cohorts included in GIANTheight are also included in GIANTBMI. 

Analogous to the univariate case, we observed in simulations that large sample sizes 

and heritabilities can inflate the bivariate LDSC intercept even in the absence of 

sample overlap (Supplementary Note; Fig S1). We therefore conclude that sample 

overlap is likely negligible between UKB and GIANTheight as it is between UKB and 

GIANTBMI. 

 

Using an approximate conditional and joint multiple-SNP (COJO) analysis 

implemented in GCTA
19

 that takes into account linkage disequilibrium (LD) between 

SNPs at a given locus, we identified 3,290 and 716 SNPs (COJO p<1×10
-8

; Table 1) 
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associated with height and BMI respectively. This more conservative significance 

threshold was chosen from the recommendations of a previous study
20

 which showed 

that type I error was not properly controlled at the classical 5×10
-8

 thresold when 

using SNPs imputed to the Haplotype Reference Consortium or 1,000 genomes 

imputation reference panels. Compared to GIANTheight and GIANTBMI, our findings 

represent a ~5 and ~7-fold increase of the number of GWAS signals associated with 

height and BMI respectively. The 3,290 height-associated SNPs consist of 2,388 

primary associations and 902 secondary signals, i.e. genome-wide significant (GWS) 

in GCTA-COJO analysis only. These 3,290 SNPs clustered in 712 genomic loci 

(locus is defined as in ref.
5
 as one or multiple jointly associated SNPs located within a 

1-Mb window), including 409 loci not previously detected in GIANTheight. For BMI, 

the 716 SNPs identified consist of 450 primary associations and 266 secondary 

signals, clustered in 416 genomic loci including 353 loci not previously detected in 

GIANTBMI. We found that the average number of height and BMI associated SNPs 

per locus is 4.6 and 1.7 respectively, but also observed a large variability of that 

number (standard deviation: ~6 SNPs/locus for height loci and ~2 SNPs/locus for 

BMI loci). We found one locus on chromosome 12q23.2 (chr12:102,229,631-

103,278,745; genome build hg19) that concentrates up to 19 jointly significant signals 

for height within ~1.05 Mb. That locus contains the IGF1 gene which was previously 

identified in GIANTheight. Note however that only 2 independent associations within 

that locus were reported at that time, indicating that larger GWAS improves the 

characterisation of the allelic heterogeneity of genomic loci. 

 

We assessed the replicability of these associations by estimating the regression slope 

of SNP effect size estimated in an independent sample onto the SNP effect sizes 

(corrected for winnner’s curse effects
21,22

) from our meta-analyses, using 8,552 

unrelated individuals from the Health and Retirement Study (HRS). A similar 

approach to quantify replicability was been applied in Turley et al. (2017)
23

. We 

found significant regression slopes for height (0.90; s.e. 0.02) and BMI (0.91; s.e. 

0.04), both close to one and therefore suggesting a high level of replicability of our 

findings (Fig. 2). 

 

Predictive power of polygenic scores 
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We estimated in HRS participants using the GCTA-GREML approach
9,10,19

 that GWS 

SNPs explain 24.6% (s.e. 1.3%) and 5.0% (s.e. 0.7%) of the variance of height and 

BMI, respectively, adjusting for 20 PCs for both traits. This represents a ~1.5 and 

~2.6-fold improvement in comparison with previous meta-analyses (Fig. 3a-b). For 

each HRS participant, we also calculated genetic predictors of height and BMI from 

GWS SNPs as the sum of trait increasing alleles at these loci, weighted by their 

estimated effect sizes. We found the squared correlation between predicted height and 

actual height to be ~19.7% and between predicted BMI and actual BMI to be ~4.1% 

(Fig. 3c-d). We performed additional prediction analyses using SNPs with 

significance p-values larger than 10
-8

. We performed GCTA-COJO analyses for 

height and BMI and analysed SNPs with significance p-value below 10
-3

, 10
-4

, 10
-5

, 

10
-6

, 10
-7

 and 10
-8

. We therefore calculated 6 genetic predictors for each trait and 

quantified in HRS participants the fraction of trait variance explained by SNPs 

contributing to these predictors as well as their predictive capacity (Fig. 3). As 

reported in Wood et al. (2014), we found that including SNPs beyond GWS increases 

prediction accuracy and variance explained (Fig. 3) in both traits. For height, the 

variance explained increased from ~24.6% using 3,290 GWS SNPs to ~34.7% (s.e. 

1.9%) using ~15,000 SNP with p<0.001. The prediction R
2
 also increased from 

~19.7% to ~24.4%. For BMI, the variance explained using ~9000 SNPs selected in 

the COJO analysis at p<0.001 is ~10.3% (s.e. 1.4%) and the corresponding prediction 

R
2
 is ~8.6%, which is twice the prediction accuracy obtained using GWS loci only. 

 

Gene prioritization 

We next attempted to identify genes whose expression levels could potentially 

mediate the association between SNPs and height or between SNPs and BMI. For this 

purpose, we performed a summary-data based Mendelian randomization (SMR) 

analysis
24

. This method aims at testing the association between gene expression (in a 

particular tissue) and a trait using the top associated expression quantitative trait loci 

(eQTL) as a genetic instrument. For this analysis, which only requires GWAS 

summary statistics, we used the publicly available GTEx-v7 database containing 

eQTLs for multiple genes in multiple tissues
25

. We identified 610 (Table 1; including 

444 identified by gene-based test) and 110 (Table 1; including 74 identified by gene-

based test) unique genes which genetic control suggestively overlaps (pSMR<5×10
-8

) 

that of height or BMI. Significant SMR test indicates evidence of causality or 
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pleiotropy but also the possibility that SNPs controlling gene expression are in 

linkage disequilibrium with those associated with the traits. These two situations can 

be disentangled using the HEIDI (HEterogeneity In Dependent Instrument) test 

implemented in the SMR software. The number of genes reported above corresponds 

to genes already filtered on statistical evidence supporting pleiotropy or causality 

rather than linkage between variants controlling gene expression and variants 

controlling height or BMI (PHEIDI > 0.05). We found that >95% (597/610=~98% for 

height and 105/110=~95% for BMI) of height- and BMI-associated genes identified 

via the SMR analysis show consistent direction of effects across multiple tissues. As 

an example, we found that higher expression of PIGP across 23 tissues is associated 

with increased height; and that higher expression of HSD17B12 across 41 tissues is 

associated with decreased BMI. We then quantified the enrichment of the genes 

identified via SMR and HEIDI tests, into biological pathways. Altogether, we found 

that height-associated genes are significantly enriched among genes contributing to 

skeletal growth, cartilage and connective tissue development; while BMI-associated 

genes are mostly enriched among genes involved in neurogenesis and more generally 

involved in the development of the central nervous system. These last results 

therefore confirm findings from Wood et al. (2014) and Locke et al. (2015) which 

previously implicated the same pathways and highlighted their connections with 

height and BMI. 

 

Mediation through epigenetic mechanisms 

We performed another SMR and HEIDI analysis to now prioritise CpG dinucleotides 

which  methylation levels mediate the association between SNPs and height or BMI. 

For this analysis, we used publicly available methylation QTL (mQTL) from the 

McRae et al. (2017) study
26

 in peripheral blood. We identified 775 and 176 (Table 1) 

DNA methylation sites showing pleiotropic associations with height and BMI 

respectively. Among all CpG sites identified, we found that increased DNA 

methylation at cg19825988 (within the ZBTB38 gene) has the largest positive 

mediation effect on height (~0.4 SD for 100% methylation; pSMR = 3.5×10
-9

). The 

ZBTB38 gene, located within a previously identified GWAS locus (GIANTheight), 

encodes a zinc finger transcriptional activator that binds methylated DNA. This gene 

was also detected in our first SMR analysis (using gene expression) described above. 

For BMI, the largest effect of DNA methylation was observed at cg03755535 (within 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2018. ; https://doi.org/10.1101/274654doi: bioRxiv preprint 

https://doi.org/10.1101/274654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8

the first exon of the CAMKV gene); where decreased DNA methylation correlates 

positively with increased BMI (-0.14 SD for 100% methylation; pSMR = 4.9×10
-8

). 

This gene was not detected in our first SMR analysis but is located within a 

previously identified GWAS locus. 

 

Discussion  

 

We have presented here the results of the meta-analysis of a single large study, the 

UK Biobank, with previously published GWAS of height and BMI. We found that the 

number of genomic loci associated with height and BMI is disproportionately 

increased compared to previously published GWAS, and that this increase correlates 

with increased trait variance explained and improved accuracy of genetic predictors 

from SNPs at these loci. In addition, we have shown that large GWAS enhance the 

power of integrative analyses such as pathway enrichment and summary-data based 

Mendelian randomization to unveil relevant genes to be prioritized for further 

functional studies.  

 

Our analyses revealed a number challenges to address when dealing with very large 

GWAS. One of these challenges relates to conclusions from LDSC, a method now 

routinely used for quality control (detection of confounding effects) and inference of 

genetic parameters like heritability and genetic correlation. Following the recent study 

by Loh et al. (2018), which pointed out a number of caveats relative to the 

interpretation of the univariate LDSC intercept as an indicator of confounding due to 

population stratification or other artefacts, we have shown here that caution must also 

be applied when interpreting the intercept of the bivariate LDSC. These two 

problems, which are directly related to each other, both illustrate how the  effect of 

very subtle population stratification can be dramatically magnified when sample sizes 

are large. We recall here the suprising observation that, despite considering the same 

sets of cohorts, the conclusions about sample overlap from bivariate LDSC intercept 

were radically different between GWAS of height and GWAS of BMI. Similar to the 

univariate case, we recommend the use of an attenuation ratio statistic to measure 

how much of the inflation in the bivariate LDSC intercept is explained by correlated 

population stratification or sample overlap.  
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Another challenge faced in this study relates to the over-correction of population 

stratification. In general, setting up expectations with respect to how many GWAS 

signals can be reasonably detected or how much variance can be explained from SNPs 

identified in a GWAS of a given sample has always been a difficult question. In 

particular, the detection of “too many” GWAS signals has often been a concern in the 

GWAS literature and seen as an indication of potentially uncorrected population 

stratification. With very large datasets like UKB, some of these questions can be now 

addressed. We observed that the number of variants and fraction of variance 

explained by GWAS hits identified from random subsets of UKB of the same size as 

GIANTheight or GIANTBMI was larger than that discovered in those studies (Table 2). 

Multiple reasons could explain these differences, as for example genetic and 

phenotypic heterogeneity between cohorts included in these two meta-analyses
27

. 

Nonetheless, we argue that methods classically used to correct for the effects of 

population stratification may have removed a substantial amount of the signal to be 

detected. To further illustrate this point, we re-analysed the data from Locke et al. 

(2015). Our new analysis consisted of deflating the genomic control (GC) corrected 

standard errors of estimated SNP effects with a factor equal to the square-root of the 

LDSC intercept. This transformation constrains the LDSC intercept to be 1 but is less 

conservative than the double GC correction (i.e. GC correction in each cohort 

included in the meta-analysis, and GC correction applied to the outcome of the meta-

analysis) used in Locke et al. (2015). We found in this secondary analysis that the 

number of GWAS signals (at p<10
-8

) increased from 77 to 210 (~3-fold increase), the 

variance explained increased from ~1.8% to ~2.8% and the prediction accuracy of 

genetic predictors using those SNPs from 1.8% to 2.4% (Fig. S2). This observation 

demonstrates that a correction based on LDSC intercept performs better than GC 

correction but still remains imperfect, since we know that LDSC intercept also 

increases with sample size. New methods must therefore be developed in order to 

maximize the potential of discovery of forthcoming GWAS of ever-larger sample 

sizes.  

 

In summary, our study confirms the potential for new discoveries of large genome-

wide association studies and announces a gargantuan number of new discoveries for 
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the next iteration of meta-analyses of the GIANT consortium based on sample sizes in 

the order of 1 million and more. 
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Online methods 

 

UK Biobank analyses 

Sample selection 

We analysed data from 488,377 genotyped participants of the UK Biobank (UKB). 

We restricted the analysis to 456,426 participants of European ancestry. Ancestry was 

inferred using a two-stage approach. The first step consisted of projecting each study 

participant onto the first two genotypic principal components (PC) calculated from 

HapMap 3 SNPs genotyped in 2,504 participants of 1,000 genomes project
28

. We then 

used five super-populations (European, African, East-Asian, South-Asian and 

Admixed) as reference and assigned each participant to the closest population. 

Distance was defined as the posterior probability under a bivariate Gaussian 

distribution of each participant to belong to one of the five super-populations. This 

method generalizes the k-means method and takes into account the orientation of the 

reference cluster to improve the clustering. Vectors of means and 2×2 variance-

covariance matrices were calculated for each super-population, using a uniform prior.  

 

SNP selection 

We analysed SNPs imputed to the Haplotype Reference Consortium (HRC) 

imputation reference panel
29

 with an imputation quality score above 0.3. For each 

UKB participant, we hard-called genotypes with posterior probability larger than 0.9 

and kept SNPs with call rate >0.95, minor allele frequency >0.0001, and p-value for 

Hardy-Weinberg test larger than 10
-6

. In total we analysed 16,653,239 SNPs. For the 

meta-analysis, we considered a subset of ~2.3 millions (out of 16,653,239) SNPs 

showing consistent alleles with UKB and HRS (used as LD reference) as well as 

consistent allele frequency (maximum difference < 0.15 for minor and major allele). 

 

Association testing 

We ran a genome-wide association study of height and body mass index (BMI) in 

456,426 UKB participants using linear mixed model association testing implemented 

in BOLT-LMM v2.3
13

 software assuming an infinitesimal model. We used 657,524 

HapMap 3 SNPs (LD pruned for SNPs with r
2
 > 0.9) as model SNPs in our analysis. 

Height and BMI were adjusted for age, sex, recruitment centre, genotyping batches 
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and 10 PCs calculated from 132,102 out the 147,604 genotyped SNPs pre-selected by 

the UK Biobank quality control team
15

 for principal component analysis. The 

difference is explained by the quality control of SNPs (minor allele frequency >0.01,  

genotype call rate > 95% and Hardy-Weinberg test p-value > 10
-6

) applied to a 

different set of samples as compared to Ref
15

. PCs were calculated using the 

flashPCA software
30

. In a parallel effort, to provide a sensitivity analysis, using 

slightly different parameters for sample selection and adjustment, we selected 

451,099 indivdiuals of European genetic ancestry as described in Ref.
31

. Analyses 

performed on this second set of UKB participants revealed highly concordant findings 

compared with the set of 456,426 participants. We therefore reported here results 

from the larger set of individuals. 

 

Replication 

We used genotypes imputed to the 1,000 genomes reference panel and phenotypes 

(height and body mass index) from 8,552 unrelated (GRM < 0.05) participants of the 

Health and Retirement Study (HRS) to assess the replicability of SNPs found to be 

associatd with height and BMI. We also used these data to assess the variance 

explained by different sets of SNPs as well as the out-of-sample prediction accuracy 

of genetic predictors using these sets of SNPs. Analyses were restriced to 2,484,330 

HapMap 2 SNPs with an imputation quality score >0.3, a minor allele frequency 

>0.01 and a p-value from Hardy-Weinberg equilibrium test >10
-6

. 

 

Given that replication of individual SNP is not feasible because of the limited sample 

size of our replication cohort, we assessed the overall replicability of SNP-traits 

associations using the regression slope of estimated SNP effects from the replication 

study onto estimated SNP effect sizes from the discovery study. Values of this slope 

of ~1 indicate good replicability of GWAS findings. SNPs brought forward for 

replication are subjected to the winner’s curse effect and their effect sizes are 

biased
21,22

. We therefore used the correction proposed by Zhong & Prentice (2018) 

(ref.
20

) before estimating the replication slope. 

 

Summary statistics QC and meta-analyses 

Summary statistics of GWAS of height and BMI from the Wood et al. (2014) and 

Locke et al. (2015) studies were downloaded from the following website: 
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https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_d

ata_files. Before meta-analysis with UKB, we filtered out SNPs which reported pairs 

of alleles did not match the pairs of alleles in the HRS and UKB and also which had 

reported allele frequency too different (absolute difference > 0.15) from that 

calculated using unrelated participants of HRS. Fixed-effect inverse variance 

weighted meta-analysis was performed using the software METAL
16

. 

 

Linkage disequilibrium score regression 

We performed linkage disequilibrium (LD) score regression to quantify the level of 

confounding in GWAS due to population stratification as well as quantifying the 

sample overlap between cohorts involved in previous meta-analyses and the UK 

Biobank. Analyses were performed using the LDSC software v1.0.0 

(https://github.com/bulik/ldsc). We used default parameters but did not apply any 

threshold on the maximum association chi-square statistics of SNPs included in the 

analyses. We used LD scores from Europeans participants of the 1,000 genomes 

project that can be downloaded from the LDSC website.  

 

SMR and HEIDI analyses 

Summary-data based Mendelian Randomization (SMR) and HEterogeneity In 

Dependent Instrument (HEIDI) tests were implemented in the SMR software 

(http://cnsgenomics.com/software/smr/). SMR analyses were performed using default 

parameters but specifying a window of 2 Mb up- and downstream genes (expression 

probes) to include relevant cis-eQTL (instrument) for those genes. The same approach 

was applied for detecting CpG methylation sites associated with height or BMI. SMR 

analyses were based on eQTLs from publicly available databases from GTEx-v7
25

 

and McRae et al. (2017) 
26

.  Both sets of eQTL in SMR format can be downloaded 

from the SMR website: http://cnsgenomics.com/software/smr/. 

 

 

Data download 

GWAS summary statistics can be downloaded from the GIANT consortium website: 

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_d

ata_files. 
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Fig. 1. Manhattan plot showing association ��statistics of association between SNPs and height (panel a) or body mass index (BMI, panel b).
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Fig. 2. Regression of SNPs effect estimated from the meta-analysis of GWAS of 

height in UKB and GWAS of height from Wood et al. (2014) (panel a); and GWAS 

of body mass index (BMI) in UKB and GWAS of BMI from Locke et al. (2015) 

(panel b) onto SNP effects on height and BMI estimated in HRS. 
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Fig. 3. Variance explained and prediction accuracy (squared correlation between trait value and its predictor from SNPs) calculated from 6 

nested sets of SNPs selected at different significance threshold. Variance explained and prediction accuracy is calculated among 8,552 unrelated 

participants of the HRS cohort. 

 

.
C

C
-B

Y
-N

C
-N

D
 4

.0
 In

te
rn

a
tio

n
a
l lic

e
n
s
e

a
c
e
rtifie

d
 b

y
 p

e
e
r re

v
ie

w
) is

 th
e
 a

u
th

o
r/fu

n
d
e
r, w

h
o
 h

a
s
 g

ra
n
te

d
 b

io
R

x
iv

 a
 lic

e
n
s
e
 to

 d
is

p
la

y
 th

e
 p

re
p
rin

t in
 p

e
rp

e
tu

ity
. It is

 m
a
d
e
 a

v
a
ila

b
le

 u
n
d
e
r 

T
h
e
 c

o
p
y
rig

h
t h

o
ld

e
r fo

r th
is

 p
re

p
rin

t (w
h
ic

h
 w

a
s
 n

o
t

th
is

 v
e
rs

io
n
 p

o
s
te

d
 M

a
rc

h
 2

2
, 2

0
1
8
. 

; 
h
ttp

s
://d

o
i.o

rg
/1

0
.1

1
0
1
/2

7
4
6
5
4

d
o
i: 

b
io

R
x
iv

 p
re

p
rin

t 

https://doi.org/10.1101/274654
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

 

 

Fig. S1. Statistics from the LD score regression applied to 9 simulated GWAS in two 

independent (non-overlaping) sub-samples of unrelated participants of the UK 

Biobank (Supplementary Note). Panels a and b show univariate LD score regression 

intercepts and estimates of heritability respectively obtained from analyzing summary 

statistics from each sub-sample separately, then averaged between the two 

independent sub-samples. Panels c and d  show estimates of genetic correlations 

(expected to be equal to 1, Supplementay Note) between the two sub-samples and 

bivariate LD score regression intercepts respectively, indicating sample overlap 

between the two sub-samples of UKB, in particular when the underlying heritability is 

> 0.5. The latter observation illustrates that biviate LD score regression intercept can 

be inflated even in the absence of sample overlap. 
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Fig. S2. Variance explained and prediction accuracy (squared correlation between the 

trait value and SNP preditors of that trait) of genetic predictors calculated from 6 

nested sets of SNPs selected at different significance threshold. Variance explained 

and prediction accuracy is calculated among 8,552 unrelated participants of the HRS 

cohort. Two versions of the GWAS summary statistics from the Locke et al. (2015) 

study were used: Locke et al., as released from the initial publication and Locke et al. 

(LDSC corrected) in which test statistics were inflated with the inverse of the LD 

score intercept (here ILDSC = 0.68). The latter method increases power while 

constraining the LD score intercept to be exactly 1. These two sets of summary 

statistics were meta-analysed with GWAS summary statistics from UK Biobank 

(UKB) and resulting asscocation statistics are labeled UKB+Locke et al. and Locke et 

al. (LDSC corrected) respectively. 
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Summary of results 
Meta-analysis of height 

(mean N~693,529) 

Meta-analysis of BMI 

(mean N~681,275) 

Number of genome-wide signficant SNPs (GWS; p<10
-8

) 3,290 716 

Number of main / secondary associations 2,388 / 902 450 / 266 

Number of loci identified 712 416 

Number of new loci* 409 353 

Number of genes identified through SMR analysis 610 110 

Number of methylation sites identified 

through SMR analysis 
775 176 

   

Prediction accuracy (R
2
) in HRS from GWS SNPs 19.7% 4.1% 

Prediction accuracy (R
2
) in HRS from SNPs at p<0.001 24.4% 8.6% 

Variance explained in HRS from GWS SNPs 24.6% 5.0% 

Variance explained in HRS from SNPs at p<0.001 34.7% 10.2% 

 

Table 1. Summary of results from the meta-analysis of GWAS of height and body mass index (BMI) in N~700,000 individuals of European 

ancestry and from downstream analyses such as gene-based association tests or Summary-data based Mendelian Randomization (SMR). 

Prediction accuracy (squared correlation R
2
, between genetic predictors and traits) and variance explained (estimated using GCTA software)  is 

assessed in 8,552 unrelated participants of the Health and Retirement Study (HRS). *New loci refer to loci not identified in Wood et al. (2014) 

or in Locke et al. (2015).  
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 Height BMI 

 
Random sample  

from UKB 
Wood et al. (2014) 

Random sample  

from UKB 
Locke et al. (2015) 

Number of genome-wide 

signficant SNPs (GWS; p<10
-8

) 
850 594 160 82 

Variance explained by GWS 14.0% 12.8% 2.3% 1.8% 

Prediction accuracy (R
2
) 14.0% 10.9% 2.5% 1.8% 

 

Table 2. Number, percentage of variance explained and accuracy of genetic predictors from SNPs found associated (p<10
-8

) with height or body 

mass index (BMI) in a random sample of 250,000 unrelated participants of the UKB. For comparison, similar statistics are reported from GWAS 

hits identified in Wood et al. (2014) and Locke et al. (2015). Prediction accuracy (squared correlation R
2
, between genetic predictors and traits) 

and variance explained (estimated using GCTA software)  is assessed in 8,552 unrelated participants of the Health and Retirement Study (HRS).
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Supplementary Note 

 

We performed a simulation to quantify the inflation of the bivariate LD score 

regression (LDSC) intercept created when the sample size of each GWAS and the 

heritability are large. We used for our simulations genotypes at 1,123,348 HapMap 3 

SNPs (Online methods) from 348,502 unrelated (genetic relationship < 0.05) 

participants of the UK Biobank (UKB) with European ancestry (Online methods). To 

mimic independent GWAS, we randomly split our dataset in two sub-samples of 

equal size (N1 = N2 = 174,251), and simulated 9 traits with the same 10,000 causal 

variants (randomly sampled among HapMap 3 SNPs) and with an heritability varying 

from 0.1, 0.2,…, up to 0.9. Each trait was simulated with same SNPs effect sizes in 

each sub-sample so that the genetic correlation is expected to be 1. We then 

performed a GWAS of these nine simulated traits in each sub-sample separately, then 

used GWAS summary statistics to perform a bivariate LD score regression. LD score 

regression was performed using the LDSC softare v1.0.0 and using LD scores from 

European samples of the 1,000 genomes reference panel. We present the results our 

this simulation in Fig. S1. Overall, we found when the heritability is larger than 0.5,  

the bivariate LDSC intercept can be as large as ~0.1 (s.e. 0.02), which would falsely 

indicate a potential overlap of ~0.1����� � 8,712 samples between the two sub-

sets. We also observed an inflation of the univariate LDSC intecept (Fig. S1, panel b), 

but as mentioned previously, this observation is expected under the theory derived in 

Bulik-Sullivan et al. (2014). 
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