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Abstract

Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six

susceptibility loci associatedwith lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS

of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3)

data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-

analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at

6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10−13), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10−10) and rs11610143

at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10−9). These findings identified new genetic susceptibility alleles for lung cancer in

never-smoking women in Asia and merit follow-up to understand their biological underpinnings.

Introduction

Lung cancer is the leading cause of cancer mortality among

adults worldwide, accounting for more than 1.59 million deaths

each year (1). The incidence rates of lung cancer among never-

smoking females in some parts of East Asia are among the

highest in the world (2). Previous studies have attributed the

excess lung cancer risk to environmental risk factors such as

exposure to environmental tobacco smoke (ETS) and household

air pollution (3,4), but in light of the emerging evidence of genetic

susceptibility to many cancers, including lung cancer, the
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opportunity to conduct studies in never-smoking females should

lead tonew insights into lung carcinogenesis, particularly as it re-

lates to primary carcinogenesis and not tobacco driven lung can-

cer, most commonly observed in Europe and the USA.

To further understand the genetic etiology of lung cancer

among Asian never-smoking women, we established the Female

Lung Cancer Consortium in Asia (FLCCA), which consists of 18

studies in Mainland China, Hong Kong, Taiwan, South Korea,

Singapore and Japan, with a total of 6609 cases and 7457 controls.

We then conducted a large-scale multistage genome-wide asso-

ciation study (GWAS) of lung cancer restricted to never-smoking

females and reported six susceptibility loci in our study popula-

tion including 3q28, 5p15.33, 6p21.32, 6q22.2, 10q25.2 and 17q24.3

(5). In addition, there have been three other GWAS over the past

several years for lung cancer in Asia among men and women

and smokers and non-smokers, which reported additional sus-

ceptibility loci which were not confirmed in our never-smoking

study in Asian women (6–8).

To discover additional lung susceptibility alleles among

never-smoking Asian females, we imputed the four published

GWAS data sets with a total of 6877 cases and 6277 controls

(5–8), and genotyped an additional 5878 cases and 7046 controls

for possible replication. We identified three new susceptibility

loci that achieved genome-wide significance for lung cancer risk.

Results

Study overview

We imputed four previously reported GWAS scans individually

and then combined the association test statistics for a total of 7

564 751 SNPs. We conducted a fixed-effects meta-analysis for a

total of 6877 cases and 6277 controls (see ‘Materials and Meth-

ods’ section and SupplementaryMaterial, Table S1). The genom-

ic control factor λ = 1.03 showed that there was very little

evidence of systematic inflation from population stratification

for the meta-analysis of the four GWAS scans in the discovery

stage (Supplementary Material, Fig. S1). We followed up 13 loci

thatwere associatedwith lung cancer risk at P < 5 × 10−5 (Supple-

mentary Material, Table S2) by genotyping the most promising

SNPs in an additional set of 5878 cases and 7046 controls from

12 different centers including Mainland China (n = 7), Japan (n =

4) and Taiwan (n = 1). The final meta-analysis combining both

discovery and replication stages included a total of 12 755

cases and 13 323 controls (Supplementary Material, Tables S1

and S2).

New lung cancer susceptibility loci reaching genome-
wide significance

We identified three new risk loci in our population of never-

smoking Asian females that were associated with lung cancer

risk: rs7741164 (P = 5.80 × 10−13) at 6p21.1, rs72658409 (P = 1.41 ×

10−10) at 9p21.3 and rs11610143 (P = 4.96 × 10−9) at 12q13.13, with

P-values exceeding the threshold for genome-wide significance.

No significant heterogeneity was observed across the four

GWAS scans as well as replication studies for these three SNPs

(Table 1). The SNP marker rs7741164 (G>A) maps to the intron

of FOXP4-AS1 and is ∼20 kb upstream of the FOXP4 gene on

6p21.1 (Fig. 1A). The SNP marker rs72658409 (C>T) maps 40 kb

downstream of CDKN2B-AS1 and 150 kb upstream of CDKN2B, a

well-known tumor suppressor gene on 9p21 (Fig. 1B). The SNP

marker rs11610143 (C>G) resides in an intron of ACVR1B, a gene

implicated in an inflammation pathway (9) (Fig. 1C). T
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Figure 1.Association results, recombinationhotspots and LDplot for three newly identified regions associatedwith lung cancer risk in never-smokingAsianwomen. (A–C)

Top, association P values from meta-analysis of four imputed GWAS scans included for discovery stage (gray diamond) were plotted on a negative log scale (left y-axis)

against genomic coordinates (hg19). For each region, meta-analysis result of replication sets (blue diamond), and overall combined meta-analysis (red diamond) for the

index SNPare also shown. Overlaid (blue line) are likelihood ratio statistics (right y-axis) for recombination hotspots inferred from the 1000 Genomes Project phase 1 Asian

populations (100 random samples). Bottom, Linkage disequilibrium heat map based on r2 using the 1000 Genomes Project phase 1 Asian data (n = 286). Shown are results

for (A) 6p21.1 (chr6:41395827-41593945); (B) 9p21.3 (chr9:22000247-22228756) and (C) 12p13.13 (chr12:52251272-52450046).
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In addition, we found suggestive evidence of association at

rs3794742 in the intron of SYNGR2 at 17q25.3 (P = 4.3 × 10−7) with

risk of lung cancer in this population (Supplementary Material,

Table S2). SYNGR2 belongs to the synaptogyrin gene family,

plays a role in membrane traffic regulation in non-neuronal

cells in vivo and is associated with neuronitis disease (10). In an

analysis of the ENCODE data set, rs3794742 and SNPs in high LD

are implicated in a rich set of putative functional elements in-

cluding promoter/enhancer histone marks, transcription factor

bindings,motif changes and DNAse peak (SupplementaryMater-

ial, Table S3). Still, further studies are needed to confirm this

locus and then laboratory studies are needed to explain the bio-

logical basis of the susceptibility allele.

In silico bioinformatics analyses

HaploReg data (11) (Supplementary Material, Table S3) showed

that the minor allele (A) of rs7741164 is present in a substantially

higher proportion of Asians [minor allele frequency (MAF) = 0.33]

compared with Europeans (MAF = 0.03). rs72658409 influences

both promoter histone marks of blood monocytes and enhancer

histone marks for cells derived from nine organs including lung

fibroblasts. Genotype-Tissue Expression (GTEx) (12) (see URLs)

data showed that genotypes for rs72658409 are suggestively asso-

ciated with expression level of CDKN2B gene (P = 0.04) but not

CDKN2B-AS1 (P = 0.1) in normal lung tissue samples (n = 123)

(Supplementary Material, Figs S2a and b). rs11610143 resides in

a conserved region inferred by both GERP(13) and SiPhy (14),

and it influences promoter histone marks in 8 organs including

lung carcinoma and enhancer histonemarks in 18 organs includ-

ing fetal lung. Additionally, rs11610143 has a RegulomeDB (15)

score of 4 with minimal evidence supporting transcription factor

binding site (Supplementary Material, Table S3).

Technical validation of imputed SNPs

In order to check the quality of imputation, we performed Taq-

Man genotyping on a subset of GWAS samples (details in ‘Materi-

als and Methods’ section). The squared correlation (r2) for the

allelic dosage between the imputed genotypes and the genotypes

measured by TaqMan were 0.21 (n = 2930), 0.979 (n = 606) and

0.997 (n = 674) for rs7741164, rs72658409 and rs11610143, respect-

ively. Since the technical validation of rs7741164 showed that the

correlation between the imputed and measured genotypes was

moderately low, we attempted to impute the same region includ-

ing rs7741164 based on an alternative imputation approach (de-

tails in ‘Materials and Methods’ section) and the r2 improved to

0.33. Nevertheless, the P value based on the replication stage

alone was 5.4 × 10−8. Furthermore, a total of 2930 samples scan-

ned at NCI as part of the discovery stage (∼30% of total) were gen-

otyped with an optimized TaqMan assay for rs7741164. For this

subset of discovery samples, the association result was P = 1.12 ×

10−4 when using the TaqMan genotypes versus P = 2.45 × 10−3

when using imputed genotypes. When combining all the sam-

ples with TaqMan genotype data available from the discovery

and replication stages (7293 cases and 8498 controls), the ass-

ociation result was P = 3.05 × 10−10 (Supplementary Material,

Table S4). Consequently, our finding is likely to be stable despite

the described imputation issue.

Discussion

Our first finding SNP rs7741164 maps to an intron of FOXP4-AS1

on 6p21.1. Other genetic variants at 6p21.1 have been shown by

multiple GWAS to be associated with multiple cancers. For in-

stance, rs2494938 was associated with lung, non-cardia gastric

and esophageal squamous cell carcinoma (ESCC) in Han Chinese

Figure 1 Continued
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(16), rs10484761 was associated with ESCC in a GWAS in Chinese

(17) and rs1983891 in the intron of FOXP4 was associated with

prostate cancer in Japanese (18). The pair-wise linkage disequilib-

rium (LD) among all four SNPs including our novel finding of

rs7741164 is low (r2 < 0.02 in 1000 Genomes Project data Asian

population). The nearest plausible candidate gene, FOXP4-AS1,

is a non-coding RNA gene (ncRNA) that belongs to the antisense

RNA class. Thus far, ncRNAs have demonstrated key molecular

functions such as the ability to regulate the expression of nearby

protein-coding genes and modulate carcinogenesis pathways

(19–21). As such, it is possible that FOXP4-AS1 acts by regulating

the expression of key genes to influence lung cancer risk.

Our second finding SNP rs72658409 maps to an intergenic re-

gion on 9p21. Variants in the 9p21 region have been associated

with risk for a number of cancers, including glioma (rs4977756

(22,23); rs1412829 (24)), melanoma (rs7023329 (25,26)), breast can-

cer (rs1011970 (27,28)), nasopharyngeal cancer (rs1412829 (29)),

childhood acute lymphoblastic leukemia (rs3731217 (30)), chronic

lymphocytic leukemia (rs1679013 (31)), basal cell carcinoma

(rs2151280 (32)) and lung squamous cell carcinoma (rs1333040

(5)). This region also harbors highly penetrant mutations that ex-

plain a substantial fraction of hereditary melanoma (33). How-

ever, the LD is low (r2 < 0.02 in 1000 Genomes Project data Asian

population) between our newly identified SNP rs72658409 and

each of the SNPs listed above as well as other SNPs in this region

reported to be associated with multiple cancers (34). Therefore,

our new finding represents a new independent locus and illus-

trates the complex genetic architecture of 9p21. Notably, somatic

9p21 deletions have been frequently observed in human cancers,

including lung cancer, lymphoid leukemia and esophageal can-

cer (35), and it is important to investigate how the germline sus-

ceptibility alleles inform such somatic alterations in different

cancer sites including lung. Further functional validation studies

are warranted for this complex locus in order to understand its

role in lung carcinogenesis as well as associations between

other independent SNPs and other cancers.

Our third finding SNP rs11610143maps to an intron ofACVR1B

on 12q13.13. A distinct intronic SNP, rs12809597, in ACVR1B

was previously reported in a population of European descent to

be associated with risk of lung cancer in never smokers (754

cases and 819 controls; OR = 0.72; P = 0.0002), especially among

women (OR = 0.72; P = 0.0013) and/or those with exposure to ETS

(OR = 0.67; P = 7.8 × 10−5) (36). However, this SNP is monomorphic

in Eastern Asian populations and therefore its association with

lung cancer observed in populations of European descent cannot

be directly assessed in our data set. Furthermore, the LD between

our novel SNP rs11610143 and rs12809597 is very low (r2 < 0.003 in

1000 Genomes Project data CEU population; BSD (between mark-

er distance) is 7.2 kb). Therefore, the SNP we identified in our

GWAS possibly tags an independent causal variant in this locus

and underscores the importance of fine-mapping and pursuing

further studies of this susceptibility allele.

In summary, themeta-analysis of four imputed GWAS of lung

cancer among never-smoking women in Asian with further rep-

lication in independent case/control sets from similar popula-

tions has yielded three new risk loci for lung cancer at 6p21.1,

9p21.3 and 12q13.13. More than 80% of cases in our study were

adenocarcinoma, and the effect sizes of these new loci were simi-

lar in a logistic regressionmodel that analyzed only adenocarcin-

oma cases with controls (Supplementary Material, Table S5). In

addition, we found no evidence of association (P > 0.05) for

these three loci in a lung cancer GWAS study (5713 cases and

5736 controls) comprised mostly of smokers of European decent

(37) (results not shown), although there was a limited number of

non-smokers (355 cases). Further work is needed to fine-map

each region to identify the optimal alleles for laboratory studies

that could further our understanding of the biological mechan-

ism underlying these susceptibility alleles and their interactions

with environmental factors such as coal, which is widely used in

this region.

Materials and Methods

Study population

The discovery stage included lung cancer studies in Asian never-

smoking women with subjects drawn from four independent

GWAS, namely NCI FLCCA (5), two other GWAS studies from

Japan (6,8) and one from China (7). Details about each GWAS

can be found in previous publications. For FLCCA, we excluded

53 GELAC cases and 51 GELAC controls that were genotyped on

the Illumina 370 K SNP microarray, resulting in a slightly smaller

total number of individuals (5457 cases and 4493 controls) as

compared with the original paper (5) but these remaining sam-

ples were all genotyped on comparable SNP microarrays (Illumi-

na 660 W or Illumina 610 K). For the other three GWAS studies,

the never-smoking women component was extracted for this

analysis. Thenumberof cases andcontrols is listed in Supplemen-

tary Material, Table S1. All lung cancer cases were histologically

confirmed. Each studywas approved by their local institutional re-

view board and all study participants provided informed consent

prior to participation. We cannot make the full meta-analysis re-

sults publicly available mainly because we included one GWAS

study from China and two GWAS studies from Japan in addition

to the NCI GWAS, which has already been deposited into dbGaP

(Accession: phs000716.v1.p1).

Genotype imputation

Genotype imputation was conducted by each center but followed

a similar protocol as detailed below.

For bothNCI andNanjing studies, SNPswith a call rate < 95%

or Hardy–Weinberg proportion test P-value < 0.000001 or minor

allele frequency (MAF) < 1% were further removed prior to im-

putation for the current analysis. Imputation was conducted

by using IMPUTE2 software version 2.2.2 (see URLs) and version

3 of the 1000 Genomes Project Phase 1 data as the reference

set. First, the genomic coordinates were lifted over from

NCBI human genome build 36 to build 37 using the UCSC lift

over tool (see URLs). Second, the strand of the inference data

was aligned with the 1000 Genomes data by simple allele

state comparison or allele frequency matching for A/T and

G/C SNPs. A pre-phasing strategy with SHAPEIT software

version 1 (see URLs) was adopted to improve the imputation

performance. The phased haplotypes from SHAPEIT were

input directly into the IMPUTE2 program. Two Japanese studies

were imputed slightly differently. For quality control, we

removed SNPs with call rates <99% or Hardy–Weinberg pro-

portion test P-values < 0.000001 or that were monomorphic

(i.e. MAF = 0). SNPs with large allele frequency difference

between reference and inference sets were also excluded

(threshold was set to 0.16). Imputation used MaCH (38) and

minimac2 (39), and the same version of 1000 Genomes as

reference set, but only included Asian individuals (n = 286; in-

cluding JPT, CHB and CHS). For all four imputed sets, imputed

loci with INFO score (r2 for MaCH) < 0.3 or MAF < 0.01 were ex-

cluded from further association analysis.

For the 6p21.1 locus harboring rs7741164, we also attempted

imputation of the NCI data set using minimac2 (39) for a 4 Mb

626 | Human Molecular Genetics, 2016, Vol. 25, No. 3

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
5
/3

/6
2
0
/2

3
8
4
6
6
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv494/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv494/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv494/-/DC1


window ranging from 39 493 412 to 43 493 412 (hg19) using only

the ASN subset (n = 286) from the same version of 1000 Genomes

data as the referencewith the phased inference haplotypes either

from SHAPEIT (40) or MaCH (38) program. In either approach, we

obtained very similar imputed genotypes. When the imputed

genotypes were compared with the TaqMan data generated for

technical validation, the squared correlation of allelic dosage

improved to 0.33 from 0.21 for data generated from the IMPUTE2

approach detailed in the paragraph above. We found the LD be-

tween all the genotyped SNPs and the imputed SNP rs7741164

is moderately low. The best genotyped SNP rs2477842 has a

pair-wise r2 of only 0.3. The low LD makes the imputation of

the SNP rs7741164 intrinsically difficult.

Replication genotyping

The TaqMan custom genotyping assay (Applied Biosystems, CA,

USA) was used to genotype all the samples except for BBJ_NCCH,

where Invader assayswere used, for the set of 13 significant SNPs

from the discovery meta-analysis on an additional 5878 cases

and 7046 controls. The replication samples consisted of subjects

from China (seven centers), Japan (four centers) and Taiwan (one

center) thatwere not previously included in the FLCCAGWASand

meta-analysis. More information on each replication data set is

found in Supplementary Material, Table S1.

Statistical analysis

For the discovery stage data, the association testing for each SNP

(trend effect) was performed using SNPTEST software version 2.2

(see URLs) and based on a multivariate logistic regression model

adjusting for age, study group and significant eigenvectors,

which controls for population stratification. For the replication

stage data, the association testing for each SNP (trend effect)

was performed using GLU software (see URLs) and based on a

multivariate logistic regression model adjusting for age only.

Fixed-effects meta-analysis was used to combine individual as-

sociation estimates from four imputed GWAS scans as well as

each replication data set. Test for genetic effect differences across

studies/data sets was assessed by using I2 and P value calculated

from theCochran’sQ statistic, which is distributed as a χ2 statistic

with (n− 1) degrees of freedom where n is the number of sets in-

cluded in the meta-analysis.

Technical validation of imputed SNPs

To technically validate our imputation findings, we optimized

three TaqMan assays (Applied Biosystems) for rs72658409,

rs11610143 and rs7741164, respectively. Because the MAF for

rs72658409 is only 7%, we first selected 67 samples with geno-

types having one or two rare alleles for rs72658409, and then ran-

domly selected a number of samples that were previously

scanned in FLCCA for TaqMan genotyping. For rs7741164, we

tried to genotype asmany samples as possible because of its rela-

tive low imputation quality. The squared correlation (r2) for the

allelic dosage between the imputed genotypes and the genotypes

measured by TaqMan was calculated.

Recombination hotspot inference

Likelihood ratio statistics for recombination hotspots were esti-

mated by SequenceLDhot (41) software based on background re-

combination rates inferred by PHASE v2.1 (42,43) using the 1000

Genomes CHB, CHS and JPT data.

In silico bioinformatics analysis

We searched the GTEx database (see URLs) to look for potential

eQTLs for the associated SNPs.WeusedHaploReg v3 (11) andReg-

ulomeDB v1.1 (15) to explore potential functional annotations

within the ENCODE database in the genomic region surrounding

our index SNPs and all neighboring SNPs having a pair-wise

r2 > 0.8 with the index SNP in each of the new regions that we

identified (Supplementary Material, Table S3).

URLs

IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

(20 December 2015, date last accessed)

UCSC lift over tool, http://hgdownload.cse.ucsc.edu/downloads.

html (20 December 2015, date last accessed)

glu module, http://code.google.com/p/glu-genetics/ (20 December

2015, date last accessed)

SHAPEIT, http://www.shapeit.fr/ (20 December 2015, date last

accessed)

GTEx, http://www.gtexportal.org/ (20 December 2015, date last

accessed)

SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/

snptest/snptest.html (20 December 2015, date last accessed)

Supplementary Material

Supplementary Material is available at HMG online.
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