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Abstract

Background: The information from multiple microarray experiments can be integrated in an objective manner via meta-

analysis. However, multiple meta-analysis approaches are available and their relative strengths have not been directly

compared using experimental data in the context of different gene expression scenarios and studies with different

degrees of relationship. This study investigates the complementary advantages of meta-analysis approaches to integrate

information across studies, and further mine the transcriptome for genes that are associated with complex processes

such as behavioral maturation in honey bees. Behavioral maturation and division of labor in honey bees are related to

changes in the expression of hundreds of genes in the brain. The information from various microarray studies comparing

the expression of genes at different maturation stages in honey bee brains was integrated using complementary meta-

analysis approaches.

Results: Comparison of lists of genes with significant differential expression across studies failed to identify genes with

consistent patterns of expression that were below the selected significance threshold, or identified genes with significant

yet inconsistent patterns. The meta-analytical framework supported the identification of genes with consistent overall

expression patterns and eliminated genes that exhibited contradictory expression patterns across studies. Sample-level

meta-analysis of normalized gene-expression can detect more differentially expressed genes than the study-level meta-

analysis of estimates for genes that were well described by similar model parameter estimates across studies and had

small variation across studies. Furthermore, study-level meta-analysis was well suited for genes that exhibit consistent

patterns across studies, genes that had substantial variation across studies, and genes that did not conform to the

assumptions of the sample-level meta-analysis. Meta-analyses confirmed previously reported genes and helped identify

genes (e.g. Tomosyn, Chitinase 5, Adar, Innexin 2, Transferrin 1, Sick, Oatp26F) and Gene Ontology categories (e.g. purine

nucleotide binding) not previously associated with maturation in honey bees.

Conclusion: This study demonstrated that a combination of meta-analytical approaches best addresses the highly

dimensional nature of genome-wide microarray studies. As expected, the integration of gene expression information

from microarray studies using meta-analysis enhanced the characterization of the transcriptome of complex biological

processes.
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Background
One goal of microarray studies is to identify transcripts
that are regulated similarly across a variety of contexts.
The integration of gene expression information from mul-
tiple microarray studies can enhance the characterization
of gene expression profiles that are consistently expressed
across experiments. The across-study integration of infor-
mation can support a more accurate identification of tran-
scriptome biomarkers, functional categories, and
pathways associated with the process of interest than
results from individual studies.

Typical integration of information from multiple microar-
ray studies relies on a simple comparison of lists of genes
within study considered to be differentially expressed at a
predetermined statistical threshold [1]. This approach is a
useful first step to combine information across studies.
However, simple overlap of lists of genes can result in
potentially biased conclusions for two reasons. First,
genes that may exhibit the same pattern across studies, but
do not surpass the minimum threshold within one or
multiple studies, may not be detected by this approach.
Second, genes that may exhibit differential expression in
more than one study may not reach differential expression
when all the data across studies is considered, because the
variation across studies is greater than the variation within
study.

The usefulness of meta-analysis in clinical [2] and micro-
array studies [3,4] has been widely investigated. Rhodes et
al. [5] implemented a meta-analysis of microarray studies
by computing a summary statistic that consisted in sum-
ming the log-transformed significance P-values calculated
for each study using one-sided random permutation t-
tests. Some meta-analyses of microarray experiments aim
at identifying biomarkers with particular expression pat-
terns instead of exploring all possible profiles [6,7]. Other
meta-analysis implementations compare the list of top
ranking predictive genes using parametric and non-para-
metric rank aggregation approaches [8,9]. Although the
use of significance and rank-order metrics removes con-
cerns of incomparable expression levels across experi-
ments, these approaches did not consider the profile of
expression. Zhang and Fenstermacher [10] proposed the
identification of promising reporter genes using a rank-
sum test statistic, and the combination of expression lev-
els across studies using a linear index that is trained and
tested across data sets. A similar approach implemented
by Schneider et al. [11] confirms the expression signature
of selected genes found in one data set on other data sets.
This two-stage approach may result in loss of information
across stages, and accurate training and validation
requires a large number of studies. Conlon et al. [12] pro-
posed to use an indicator variable for differential expres-
sion that is a function of the total number of genes.

However, the number of genes can vary between studies,
and the indicator did not take into account the sign of the
differential expression.

Model-based meta-analysis is a suitable framework to
conduct an objective, integrative, and comparative study
of multiple related microarray gene expression experi-
ments, and help better understand the transcriptome and
genomic basis of complex traits. In model-based meta-
analysis, linear models are used to combine indicators of
expression patterns from individual studies (e.g. fold
changes or differences between mean groups, standard-
ized estimates, or normalized values) and associated test-
statistics or functions used to evaluate the expression pat-
tern across studies. Traditional meta-analytical
approaches that combine estimates (known as study-level
meta-analysis) or observations (known as sample-level
meta-analysis) across studies in one single step offer a
comprehensive solution to the simultaneous considera-
tion of multiple studies [3]. These approaches have a solid
and extensive theoretical framework, jointly model
expression patterns and associated measures of uncer-
tainty, and can be used to detect differentially expressed
genes across studies or to identify biomarkers associated
with the conditions of interest. In addition to providing a
list of genes differentially expressed, results from meta-
analysis approaches are customarily depicted in funnel
plots that facilitate the interpretation of results. However,
a small number of applications of model-based meta-
analysis to the expression of thousands of genes have been
reported [13,3], and none have compared the perform-
ance of alternative approaches for different gene expres-
sion scenarios and across studies with different levels of
relationship. Choi et al. [13] considered the meta-analysis
of standardized mean differences, or differences between
the means of the condition levels divided by the pooled
standard deviation. These Student's t-statistic values were
computed for each study and combined using fixed and
random effects meta-analyses. The difference between
these approaches is that random effects meta-analysis
accounts for heterogeneity across studies. Random effects
meta-analysis was more appropriate than fixed effects
meta-analysis when combining studies from different
research groups that may have substantial inter-study var-
iation [13]. Studies using simulated data sets have com-
pared the advantages of different approaches under
different circumstances that can be extrapolated to gene
expression data sets. Tudur-Smith et al. [14] conducted a
meta-analysis of 5 simulated trials and concluded the
absolute bias and spread of the estimate of the parameter
increased as the degree of heterogeneity across studies
increased. For a fixed underlying value of the parameter,
the absolute bias in the estimate of the residual variance
used in hypothesis testing did not exhibited a systematic
pattern for increasing values of simulated heterogeneity.
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Wu et al. [15] explored the power and consistency to
detect linkage and association of loci to a disease with
meta-analysis of P-values (Fisher's meta-analysis), and
pooled raw data analysis using simulated data. This study
showed that, under homogeneous conditions, the results
from meta-analysis and pooled data analysis were similar
with meta-analysis having minimal loss of power.

The honey bee (Apis mellifera) is a well-established model
organism to study the genomic architecture of physiolog-
ical, neurological, and behavioral maturation [16].
Worker bee behavioral maturation results at the colony
level in an age-related division of labor; young bees work
in the hive for the first two to three weeks of adult life
(performing tasks including brood care or "nursing") and
older bees forage [17]. These behavioral changes are also
associated with profound physiological, neuroanatomi-
cal, and neurochemical changes. Gene expression studies
targeting specific honey bee genotypes (e.g. strains or sub-
species), time points, and environmental conditions (e.g.
host colony composition) have demonstrated that behav-
ioral maturation in honey bees is associated with simulta-
neous changes in expression of thousands of genes in the
brain [17-21]. Denison and Raymond-Delpech [22] pre-
sented an extensive review of changes in gene expression
that accompany the transition to foraging.

The goals of this study are 1) to demonstrate the comple-
mentary advantages of the meta-analytical approaches to
objectively integrate information across studies, and iden-
tification of genes with consistent expression profiles

across studies are demonstrated, and 2) to fully mine
information from eight microarray studies that have char-
acterized differences in brain gene expression between
one-day-old and forager honey bees. The performance of
three complementary approaches (overlap of lists of
genes, study- and sample-level meta-analyses) to detect
consistent differential expression on a genome-wide level
were compared. Functional analysis was performed to
support the results from meta-analysis. From a biological
perspective, the objective assessment of the degree of
agreement between studies can help identify common
regulatory genes and pathways that could be responsible
for simultaneous (parallel or orthogonal) fluctuation in
the expression of some genes and the inalterability in the
expression of other genes.

Results
A total of 7734 transcripts were analyzed and a summary
of the number of transcripts with significant (unadjusted
raw P-value < 1 × 10-3) differential expression obtained
from the individual-study, study-level, and sample-level
meta-analyses is presented in Table 1. The significance
threshold corresponded to an approximate false discovery
rate-adjusted P-value < 0.1 in the within study analyses. A
breakdown of the results by positive (transcript over-
expressed in forager compared to one-day-old honey
bees) and negative (transcript over-expressed in one-day-
old compared to forager honey bees) significant differen-
tial expression is provided in Additional file 1. The indi-
vidual studies correspond to eight independent
microarray datasets that do not share samples or microar-

Table 1: Detection of differential expression by analysis

Individual Analyses1 Meta-Analyses

AC AD AF AM LL LM ML MM Study Sample

AC 1522 93 55 60 15 21 21 26 6 123

AD 4.3%4 65 9 12 5 5 8 6 3 42

AF 38.5% 13.8% 143 53 19 24 12 18 9 99

AM 39.5% 18.5% 37.1% 310 20 35 37 38 6 168

LL 9.9% 7.7% 13.3% 6.5% 422 86 76 78 7 111

LM 13.8% 7.7% 16.8% 11.3% 22.8% 377 73 80 7 114

ML 13.8% 12.3% 8.4% 11.9% 18.0% 19.4% 540 57 6 126

MM 17.1% 9.2% 12.6% 12.3% 18.9% 21.2% 13.8% 413 8 117

Study 18.8% 9.4% 28.1% 18.8% 21.9% 21.9% 18.8% 25.0% 32 22

Sample 80.9% 64.6% 69.2% 54.2% 26.3% 30.2% 23.3% 28.1% 68.8% 853

1AC: Apis cerana bees raised on an Apis cerana colony; AD: Apis dorsata bees raised on an Apis dorsata colony; AF: Apis florea bees raised on an Apis 
florea colony; AM: Apis mellifera bees raised on an Apis mellifera colony, LL: Apis mellifera ligustica bees raised on an Apis mellifera ligustica colony; LM: 
Apis mellifera ligustica bees raised on an Apis mellifera mellifera colony; ML: Apis mellifera mellifera bees raised on an Apis mellifera ligustica colony; MM: 
Apis mellifera mellifera bees raised on an Apis mellifera mellifera colony.
2Number of transcripts with differential expression (P-value < 1 × 10-3) within individual analyses, study-level standardized (Study), and sample-level 
(Sample) meta-analysis (diagonals).
3Upper off-diagonals are the number of transcripts identified differentially expressed in all pairs of analyses relative to the maximum number of 
significant transcripts that can overlap in both analyses.
4Lower off-diagonals are the percentage of transcripts identified differentially expressed in all pairs of analyses relative to the maximum number of 
significant transcripts that can overlap in both analyses.



BMC Genomics 2008, 9:503 http://www.biomedcentral.com/1471-2164/9/503

Page 4 of 15

(page number not for citation purposes)

rays, and include brain gene-expression measurements
from one-day-old and forager honey bees. The eight stud-
ies were also divided into Group1 and Group 2, corre-
sponding to the two separate publications [20,21] in
which the studies were first presented. The four studies in
Group 1 correspond to four distinct species; A. mellifera
(AM), A. cerana (AC), A. dorsata (AD) and, A. florea (AF)
honey bees raised in colonies of the same species [21]. The
four studies in Group 2 correspond to A. mellifera (A. m.)
honey bees from two subspecies raised in two host colo-
nies: A. mellifera mellifera honey bees raised in an A. mel-
lifera mellifera (MM) host colony, A. mellifera mellifera
honey bees raised in an A. mellifera ligustica (ML) host col-
ony, A. mellifera ligustica honey bees raised in an A. mellif-
era ligustica (LL) host colony, and A. mellifera ligustica
honey bees raised in an A. mellifera mellifera (LM) host col-
ony. Thus, in addition to individual- and meta-analysis,
results from the two sets of studies (Group 1: studies AC,
AD, AF, AM, and Group 2: MM, ML, LM, LL) are also
described.

Comparison of individual-study and meta analyses

The number of transcripts with significant differential
expression between one-day-old and forager honey bees
obtained from the individual study analyses ranged from
65 to 540 (Table 1). The AD study had the lowest number
of differentially expressed transcripts and lowest overlap
with any other study. Excluding results from AD, the
number of differentially expressed genes present in at least
two studies in Group 1 (AC, AF, AM) was on average 55,
and slightly lower than the number of genes in at least two
studies in Group 2 that ranged between 73 and 86. The
percentage of cDNA transcripts differentially expressed
and overlapping among the studies ranged from 4.3% to
39.5% (average of 16.1%) relative to the number of
cDNAs identified in one of the studies. The highest and
lowest overlap of differentially expressed transcripts was
found in the comparison of studies AC against AM and
AD, respectively (Table 1). Using the number of differen-
tially expressed transcripts between one-day-old and for-
ager honey bees as an indicator of the similarity between
studies, AC, AF, and AM in Group 1 are more similar to
each other with an overlap ranging from 53 to 60 tran-
scripts, or approximately 38% of the significant genes. In
Group 2, all studies have a similar overlap in number of
significant transcripts, ranging from 57 to 86, or approxi-
mately 20% of the significant genes. The number of differ-
entially expressed transcripts found in studies from two
different groups ranged from 12 to 38, excluding AD that
also had the lowest overlap with studies from Group 2.
Across groups of studies, MM, ML, and LM are next in
proximity to AM with 38, 37, and 35 genes in common,
respectively. The highest overlap of differentially
expressed genes among studies from different Groups was
found between A. mellifera AM and MM studies.

The study-level and sample-level meta-analyses were able
to overcome the weak consistency among studies, identi-
fying 32 and 853 transcripts with significant differential
expression, respectively (Table 1). The overlap of tran-
scripts with differential expression between the study-
level and subject-level meta-analyses was 68.8% of the
minimum number of transcripts identified among both
analyses. The overlap of transcripts with significant differ-
ential expression between the individual-study analyses
and the study-level meta-analysis ranged from 18.8% to
28.1% of the transcripts identified within study, excluding
study AD that had an overlap of 9.4%. The overlap of tran-
scripts with significant differential expression between
individual studies and the sample-level meta-analysis
ranged from 23.3% to 80.9%.

The Venn diagram in Figure 1 depicts the overlap of tran-
scripts identified as differentially expressed by the study-
level and sample-level meta-analyses in at least two indi-
vidual-study analyses. Of the 853 transcripts detected by
the sample-level meta-analysis, 621 transcripts were not
detected in at least two individual-study analyses, and 349
transcripts were not detected by any single individual-
study analysis. Likewise, of the 32 transcripts detected by
the study-level meta-analysis, 17 were not detected in at
least two individual-study analyses. Of the 465 transcripts
differentially expressed in the analysis of at least two stud-
ies, 236 were detected by meta-analysis, and 229 tran-
scripts could not be confirmed by either the study- or
sample-level meta-analyses. The differential expression of
11 transcripts was corroborated in all three cross-study
approaches. The number of transcripts differentially

Venn diagram of the number of differentially expressed tran-scripts detected by at least two individual-study analyses (Ind), study-level (Study), and sample-level (Sample) meta-analysesFigure 1
Venn diagram of the number of differentially 
expressed transcripts detected by at least two indi-
vidual-study analyses (Ind), study-level (Study), and 
sample-level (Sample) meta-analyses.
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expressed in two, three, and more studies was 320, 100,
and 45 respectively (Additional file 2).

The number and percentage of transcripts detected by any
individual-study analysis and sample-level meta-analysis
is equal to or higher than the number of transcripts
detected by the same individual-study analysis and study-
level meta-analysis (Table 1). In addition, the relative per-
centage of genes that overlap between individual analyses
and sample-level meta-analysis is substantially higher and
more variable than the overlap with the study-level meta-
analysis in all the Group 1 studies, relative to the Group 2
studies. The analysis of the AC study had the highest rela-
tive overlap of differentially expressed transcripts with
sample-level meta-analysis among all individual-study
analyses (80.9%), but had an intermediate overlap with
the study-level meta-analysis results (18.8%) relative to
other individual-study analyses. Conversely, the analysis
of the ML study had the lowest overlap of transcripts dif-
ferentially expressed with the sample-level meta-analysis
among all individual-study analyses (23.3%), but had an
intermediate overlap with the study-level meta-analysis
(18.8%) relative to other individual-study analyses. The
overlap between the transcripts detected to be differen-
tially expressed by the individual analyses of Group 2
studies and study-level or sample-level meta-analyses
were consistent across studies (Table 1).

Consideration of gene expression profiles

Consideration of the sign (i.e. up- or down-regulation
profile) of the transcripts detected by the individual and
meta-analyses provided additional insights into the
results (Additional file 1). There were no changes in the
sign of transcripts detected as differentially expressed in
two or more individual-study analyses within group, with
the exception of 2 transcripts that had positive signs (over-
expression in forager compared to one-day-old honey
bees) in the analysis of the AM study, and had negative
signs in the analysis of the AF study. In addition, a few
transcripts exhibited changes in the expression pattern
when studies from both groups were considered simulta-
neously. Amongst the Group 1 individual-study analyses,
the AM study had the highest number of transcripts (14
transcripts) that had a different sign in at least one Group
2 individual-study analysis. The percentage of transcripts
differentially expressed with the same sign and overlap-
ping among the studies ranged from 1.8% to 43.2%, rela-
tive to the number of transcripts identified in one of the
studies. The highest and lowest overlap of differentially
expressed transcripts with the same sign was found in the
comparison of the analysis of the AC study against the AM
and AD studies, respectively (Additional file 1). The per-
centage of transcripts differentially expressed with differ-
ent signs and overlapping among the studies ranged from
0% to 4.8%, relative to the number of transcripts identi-

fied in one of the studies. The analysis of the AD study
resulted in the highest percentage of transcripts that had
an opposite sign in any other individual-study analysis
(4.8%), followed by the analysis of the AM study. The dif-
ference in ranking between absolute and relative counts is
due to the fewer number of significant transcripts detected
in the analysis of the AD study, compared to the AM
study.

All the transcripts that exhibited differential expression in
an individual-study analysis and study-level meta-analysis
had a consistent pattern or sign (Additional file 1). Most
transcripts that exhibited differential expression in an
individual-study analysis and sample-level meta-analysis
had a consistent pattern or sign. The transcripts that had a
different sign in an individual-study analysis compared to
the sample-level meta-analysis had the same sign as the
meta-analysis in other individual-study analyses. Most
analyses, individual-study and meta-study, had similar
numbers of differentially expressed transcripts with posi-
tive (over-expressed in forager compared to one-day-old
honey bees) and negative signs. In addition, no particular
sign or pattern of differential expression dominated across
analyses. The exception was study AM that had 97 and
213 positively and negatively differentially-expressed
transcripts, respectively (Additional file 1). Although
there were no substantial differences in the number of
positive and negative estimates across all analyses consid-
ered, the overlap of counts by sign between individual
analyses and sample-level meta-analysis did not necessar-
ily reflect the trends observed in the individual analyses.
This situation was observed in the LM, ML, and MM stud-
ies. For example, the total number of positive and nega-
tive results in ML was 263 and 277, respectively, yet the
overlap with sample-level meta-analysis was 67 and 49,
respectively (Additional file 1).

Transcript meta-analysis scenarios

To typify the strength of the different types of approaches
to integrate information across studies, results from the
individual-study, study-level and subject-level meta-anal-
yses for scenarios of particular statistical and biological
relevance were compared. Figure 2 presents the estimates
(and 95% confidence intervals) of differential expression
between forager and one-day-old honey bees correspond-
ing to four transcript scenarios. Figure 2A depicts a tran-
script case where meta-analysis detected differential
expression, meanwhile each individual-study analysis
failed to detect differential expression. Both the sample-
level and study-level meta-analyses detected differential
expression for transcript BB170018A20B07, with signifi-
cant differential expression across maturation stages.
However, none of the eight individual-study analyses
detected differential expression. This transcript represents
the honey bee gene GB10350-PA that is similar to the fruit
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fly gene (FlyBase ID) FBgn0029997 (GO:0005515, pro-
tein binding molecular function), which encodes a pro-
tein reported to interact with the Cyclin K and muscle LIM
proteins [23]. Figure 2B depicts a transcript (identifier
BB170024B10C11) that exhibited differential expression
in four individual-study analyses. Neither meta-analysis
was able to detect this transcript because there was an
inconsistent pattern of differential expression across the
studies considered. This transcript represents the honey
bee gene GB19001-PA that is similar to the fruit fly gene
FBgn0032832 (sick or sickie), which encodes a protein
reported to interact with a pall (pallbearer) protein [23].
Figure 2C depicts a transcript (identifier
BB170024B20H01) that was differentially expressed in all
except one individual-study analysis and the sample-level
meta-analysis. However, the study-level meta-analysis was
not able to uncover a significant difference. This transcript
represents the honey bee gene GB13606-PA, predicted to
code for a hypothetical protein. On the other hand, Figure
2D presents a transcript (identifier BB170004B20H08)
that was consistently and differentially expressed in three
individual-study analyses and in the study-level meta-
analysis, but the sample-level meta-analyses was not able
to uncover a significant difference. This transcript repre-
sents the honey bee gene GB15917-PA that is similar to
the fruit fly gene FBgn0040351 (GO:0005509, calcium
ion binding molecular binding), which encodes a protein
reported to interact with the Mephisto/Sickle and the
KCNQ potassium channel proteins [23].

Genes and Gene Ontology classes

Individual genes and Gene Ontology [24] categories
detected by the meta-analyses approaches were evaluated.
Of the 863 unique transcripts with differential expression
detected by either meta-analysis, 351 were new transcripts
that would have not been detected in at least one individ-
ual-study analysis. Of the 351 transcripts, 347 transcripts
were solely detected by the sample-level meta-analysis,
two transcripts were solely detected by the study-level
meta-analysis (identifiers BB160008A20A01,
BB170022B20E11), and two additional transcripts
(BB160014A10H01, BB170011B10F10) overlap between
the study-level and sample-level meta-analyses. The latter
four transcripts have not been assigned to honey bee
genes or fruit fly gene orthologs.

The 347 transcripts detected by the sample-level meta-
analysis mapped to 125 fruit fly genes with GO informa-
tion (Additional file 3). The representation of molecular
functions and biological processes among the 134 genes
was analyzed using Fisher's exact test [25]. Genes for two
molecular functions, cofactor binding (GO:0048037) and
purine nucleotide binding (GO:0017076) had significant
over-representation at P-value < 2.14 × 10-3 and P-value <
7.04 × 10-4, respectively. Biological processes in which

transcripts were significantly over-represented were mac-
romolecule metabolic process (GO:0043170), cellular
metabolic process (GO:0044237), and primary metabolic
process (GO:0044238) with P-values < 2.86 × 10-2, 4.69 ×
10-2 and 6.57 × 10-2, respectively. Functional analysis of
transcripts significant and differentially expressed from
the sample-level meta-analysis that overlapped with any
other individual-study or study-level meta-analyses iden-
tified enrichment of the following GO biological process
categories: generation of precursor metabolites and
energy (GO:0006091), cellular macromolecule metabolic
process (GO:0044260), transport (GO:0006810), cell dif-
ferentiation (GO:0030154), and system development
(GO:0048731).

In terms of individual genes, among the 347 transcripts
detected solely by the sample-level meta-analysis, two
transcripts merit special attention because they are new to
the list of genes associated with one-day-old and forager
differences, and because of their known biological role.
Transcript BB160024A10A12 similar to the fruit fly gene
FBgn0026086 (Adar), was over-expressed in forager rela-
tive to one-day-old honey bees, and is involved in adult
behavior (GO:0030534), adult locomotory behavior
(GO:0008344), and response to heat (GO:0001666).
Transcript BB170016B10A03, similar to fruit fly gene
FBgn0027108 (Innexin 2), was also over-expressed in for-
agers and is involved in olfactory behavior
(GO:0042048).

Forty-five genes were identified as differentially expressed
in four or more studies, of which 39 appeared in one or
both meta-analyses and 12 had GO information (Addi-
tional file 4). Genes over-expressed in foragers relative to
one-day-old honey bees include genes corresponding to
FlyBase IDs FBgn0038180, FBgn0051997 and
FBgn0003036. Gene FBgn0038180 exhibits Chitinase
activity and Chitin can be found in the exoskeleton of
insects. FlyBase ID FBgn0003036, the Para gene, functions
in male courtship behavior and veined wing generated
song production. Conversely, genes under-expressed in
foragers relative to one-day-old honey bees include Fly-
Base IDs FBgn0022355 (Transferrin 1, associated with
defense response and ion transport activities),
FBgn0035423 (associated with translation),
FBgn0037146 (oxidoreductase activity), FBgn0038471
(methyltransferase activity), FBgn0038516 (oxidoreduct-
ase activity), FBgn0050035 (carbohydrate transmem-
brane transport activity) and FBgn0030412
(neurotransmitter secretion). Two genes had opposite dif-
ferential expression patterns (signs) among studies. The
Sick gene (Flybase ID FBgn0032832), that participates in
the defense response to Gram-negative bacterium, was
over-expressed in forager relative to one-day-old honey
bees in studies LL, ML and MM, yet was under-expressed
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Figure 2
Funnel plots of differential expression estimates and 95% confidence interval limits for Apis mellifera tran-
scripts BB170018A20B07 (2A), BB170024B10C11 (2B), BB170024B20H07 (2C), and BB170004B20H08 (2D), 
by individual-study, study-level (Study), non-standardized study-level (N_Study), and sample-level (Sample) 
meta-analyses. Estimates and 95% confidence intervals for each analysis are represented by a square and a horizontal line, 
respectively. Study denotes study-level meta-analysis of standardized estimates, N_Study denotes study-level meta-analysis of 
non-standardized estimates, Sample denotes sample-level meta-analysis. AC: Apis cerana bees raised on Apis cerana colonies; 
AD: Apis dorsata bees raised on Apis dorsata colonies; AF: Apis florea bees raised on Apis florea colonies; AM: Apis mellifera bees 
raised on an Apis mellifera colony, LL: Apis mellifera ligustica bees raised on an Apis mellifera ligustica colony; LM: Apis mellifera 
ligustica bees raised on an Apis mellifera mellifera colony; ML: Apis mellifera mellifera bees raised on an Apis mellifera ligustica colony; 
MM: Apis mellifera mellifera bees raised on an Apis mellifera mellifera colony The size of the square denoting the estimate corre-
sponds to the number of observations in the study (AC, AD, AF n = 24; AM n = 22; LL, LM, ML, MM n = 12; study-level (Study) 
meta-analysis n = 8; sample-level (Sample) meta-analysis n = 142). Analyses detecting significant (P-value < 1 × 10-3) differential 
expression between forager and one-day-old honey bees are denoted by an asterisk.
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in forager relative to one-day-old honey bees in the study
AD. This gene is represented as a funnel plot in Figure 2B.
The Oatp26F gene (Flybase ID FBgn0051634) that partic-
ipates in organic anion transportation, was over-expressed
in forager relative to one-day-old honey bees in studies
AC, AF and AM, yet under-expressed in forager relative to
one-day-old honey bees in study MM.

Discussion
Comparison of individual-study and meta analyses

Figure 1 demonstrates the capability of meta-analysis to
synergistically integrate consistent information across
studies regardless of the significance level within study.
Meta-analyses detected 627 differentially expressed tran-
scripts that were not detected by overlap of lists of signifi-
cant transcripts in at least two individual-study analyses.
The failure of meta-analyses to detect 229 transcripts
detected in at least two-individual analyses can be linked
to contradictory or variability in the information provided
by the individual studies. Although the relative overlap
between the individual-study and study-level meta-analy-
sis was always lower or equal than the overlap of the indi-
vidual-study and sample-level meta-analysis, the
variability of the overlap across studies further confirms
that the advantages of the study- and sample-level meta-
analysis depend not only on the transcript, but also on the
studies being integrated (Table 1). The overlap in number
of differentially expressed transcripts between the individ-
ual-study and meta-analyses approximately doubled rela-
tive to the values presented in Table 1 when the statistical
significance threshold of the false discovery rate adjusted
P-values was set to 0.2. The increment of the overlap was
higher in the comparisons between individual-study and
study-level meta-analysis (on average 2.3 fold) than in the
comparisons between individual-study and sample-level
meta-analysis (on average 1.9 fold). This slight difference
may be due to the low sample size of the individual-study
analyses and study-level meta-analyses that were more
benefited by a less stringent significant threshold than the
sample-level meta-analysis.

Transcripts with an inconsistent direction of differential
expression or significance across the different meta-analy-
ses require further study within and across studies. Ade-
quate characterization of these possible scenarios can help
design additional targeted experiments aimed at resolving
the discrepancies among studies. The sample-level meta-
analysis detected more differentially expressed transcripts
than the study-level meta-analysis in cases with consistent
expression profile across studies that exceeded potential
variation across studies. The study-level approach was
more appropriate to detect differential expression in tran-
scripts with patterns that were consistent across studies,
but less pronounced than the variation across studies.
Because study is the experimental unit of the study-level

meta-analysis, this approach may have insufficiently con-
sistent and precise information to detect differential
expression when a limited number of microarray experi-
ments are available. A clear demonstration of the comple-
mentary advantage of the meta-analytical approaches
across gene and study scenarios is provided in Figure 2.
For example, Figure 2A illustrates the ability of the meta-
analyses to combine consistent expression patterns of
genes across studies and gain precision of estimates.

The imperfect overlap of results from the individual- and
meta-study analyses corroborates reports that the associa-
tion between the expression of numerous genes and
behavioral maturation is highly sensitive to other genetic
or environmental factors [22]. The complementary nature
of the individual and meta-study approaches allows the
identification of study-independent and study-dependent
gene expression patterns. Evaluation of the overlap
between individual-study analyses and sample-level
meta-analysis provided insights into the multi-study sce-
narios that benefit the most from meta-analyses. For
example, among Group 1 studies, the AM study had the
highest overlap in number of significant transcripts with
other studies, followed by AC and AF studies (Table 1).
The same trend was observed in the overlap between these
studies and the sample-level meta-analysis. On the other
hand, the greater overlap in significant transcripts
between Group 2 studies (plus the moderate overlap with
Group 1 studies) relative to the overlap among Group 1
studies was not reflected in the overlap between Group 2
studies and the sample-level meta-analysis. An explana-
tion for the seemingly contradictory behavior of sample-
level meta-analysis and Group 1 versus Group 2 studies is
the dimensionality of the overlap across more than two
studies. Most of the overlaps between studies within
Group 1 and other studies were generally observed only
on pairs of studies, whereas most overlaps between stud-
ies within Group 2 and other studies were generally
observed on more than two studies.

Another insight gained from the application of model-
based meta-analysis approaches to the eight honey bee
studies was the assessment of the variation in brain gene
expression across studies, relative to the variation across
honey bee genotypes. The reason for the higher overlap of
differentially expressed genes among Group 2 studies, rel-
ative to the overlap among Group 1 studies, is that the
samples pertain to A. mellifera subspecies while Group 1
studies corresponded to A. mellifera and other honey bee
species. As expected, the transcripts identified in the anal-
yses of the AM study in Group 1 exhibited the higher over-
lap with results from the Group 2 studies that used two A.
mellifera subspecies (Table 1).
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The transcripts detected in the analysis of the AC study
had the highest relative overlap with sample-level meta-
analysis and average overlap with the study-level meta-
analysis results (Table 1). These results are consistent with
the high overlap between the lists of transcripts detected
by AC, AF and AM. The superior performance of the sam-
ple-level relative to the study-level meta-analysis for this
study suggests that the analysis of the observations was
able to pool the consistent information across studies that
have low study-to-study variation. The combination of
eight consistent estimates of differential expression in the
study-level meta-analysis was not able to compensate for
the number of estimates, and thus the overlap between
the lists of transcripts from individual studies was lower.
The inability of study-level meta-analysis to overcome
partial consistency on a limited number of studies was
also observed in the meta-analysis of mouse embryo stud-
ies [3].

Consideration of gene expression profiles

Although the list of transcripts detected in the analysis of
the AM study had high overlap with the lists of transcripts
differentially expressed in the AC and AD studies, the AM
list of transcripts had the lowest overlap with the sample-
level meta-analysis list of genes. This result was related to
the change in the sign or pattern of the differential expres-
sion of one-day-old relative to forager honey bees
between the individual analysis and sample level meta-
analysis (Additional file 1). The consideration of the over-
lap of significance P-values and sign of the estimates is
critical to understanding this scenario. Although there was
a high number of transcripts with significant differential
expression in AM and AC or AD, the sign of some of these
transcripts differed between these studies, and conse-
quently, the meta-analysis did not detect these transcripts.

The analyses of AF and AD studies had the highest and
lowest overlap of transcripts with study-level meta-analy-
sis, respectively (Table 1). The former outcome suggests a
situation where consistent estimates in AF and other stud-
ies, together with the low variation within study, over-
comes the limited number of studies (eight estimates)
analyzed, enhancing the capability of the study-level
meta-analysis to detect differential expression. In this sit-
uation, the sample-level meta-analysis was unable to
detect differential expression because the consistency of
the results across studies was not able to compensate for
the variation across studies. The outcome associated with
the AD study is due to the low consistency of estimates
between AD and other studies together with limited
number of studies analyzed.

The sample-level meta-analysis detected more differen-
tially expressed transcripts than the study-level meta-anal-
ysis in the presence of consistent patterns of expression in

a few studies, and small variation between studies relative
to the overall signal of differential expression. This is par-
ticularly evident on the ability of the sample-level meta-
analysis to detect differentially expressed transcripts that
overlap with individual studies, even though the signs
may differ (Additional file 1). Transcripts with significant
yet different expression patterns in one study and sample-
level meta-analysis were detected in other studies with
patterns consistent with the meta-analysis. There was no
change in the sign of the profile of differential expression
between individual analyses and study-level meta-analy-
sis. Thus, the analysis of eight estimates by the study-level
meta-analysis was not able to detect transcripts that may
be significant in multiple studies but have different sign,
for the levels of variation within study in the present work.

Comparison to previous work

Results from the analyses of individual studies were con-
sistent with results from the combined analysis of the AC,
AD, AF, and AM studies presented by Sen Sarma et al. [21],
and with results from the combined analysis of the MM,
ML, LM, and LL data sets presented by Whitfield et al. [20]
and Rodriguez-Zas et al. [17]. Sen Sarma et al. [21]
reported a total of 1772 genes with differential expression
(P-value < 1 × 10-3) between one day-old and forager
honey bees across all four species (AC, AD, AF, AM), and
of these, 218 genes were differentially expressed in two or
more species. In the present analysis, 521 transcripts were
differentially expressed in at least one species, and 113
transcripts were differentially expressed in two or more
species in Group 1, also studied by Sen Sarma et al. [21]
(Additional file 2). In the present study, a simple compar-
ison of lists of differentially expressed genes indicated that
AC and AM had the highest number of genes in common
(Table 1). This result is consistent with the fact that,
among all four species, AC and AM are most similar in
ecological, physiological, and behavioral characteristics
[21].

The difference on the total number of differentially
expressed genes reported by Sen Sarma et al. [21] and in
this study can be attributed to two reasons. First, the size
of the data sets in the individual analyses presented in our
study is approximately one-fourth of the total data set
analyzed in Sen Sarma et al. [21]. The combined analysis
of all four data sets is likely to offer more precise adjust-
ments for technical sources of variation. Because a pur-
pose of this study was to demonstrate the implementation
of meta-analysis to integrate multiple studies, the four
species were treated and analyzed as independent studies,
thus potentially reducing the capability of each analysis to
detect differentially expressed transcripts. Second, the
model used to detect differential expression in Sen Sarma
et al. [21] (including analysis of ratios using two ANO-
VAs) differed from the model considered in this study.



BMC Genomics 2008, 9:503 http://www.biomedcentral.com/1471-2164/9/503

Page 10 of 15

(page number not for citation purposes)

Similarly the lower number of genes with differential
expression detected in any one individual analysis in the
present study (1752 transcripts) compared to Whitfield et
al. [20] (3745 genes) was attributed to different sample
sizes and experimental models. Whitfield et al. [20] ana-
lyzed brain gene-expression measurements from 108
microarrays including one-day-old, forager, and honey
bees at four additional intermediate stages of develop-
ment, all arranged in a loop design. In the present study,
only data from one-day-old and forager honey bees were
compared, thus reducing the size of the data analyzed and
information available to adjust for technical sources of
variation. This difference in data sets was accompanied by
a difference in the model used by Whitfield et al. [20].

The higher number of genes exhibiting differential expres-
sion between one-day-old and forager honey bees found
in Group 2 studies relative to Group 1 studies is consistent
with the higher number of differentially expressed genes
reported by Whitfield et al. [20] relative to the number
reported by Sen Sarma et al. [21] (Additional file 2). In the
present work, the analyses of the LL and LM studies, that
shared the subspecies of bee and differ on the colony, had
the highest number of differentially expressed genes that
overlapped (Table 1). This result is in agreement with
Rodriguez-Zas et al. [17] that reported that the vast major-
ity of the genes with differential expression across six time
points in A. mellifera ligustica honey bees exhibited the
same pattern across colonies.

The higher overlap of differentially expressed transcripts
observed between pairs of Group 2 studies was expected,
as all the samples corresponded to closely related honey
bees subspecies (A. mellifera mellifera and A. mellifera ligus-
tica). Also, the highest overlap of differentially expressed
genes among studies from different Groups was found
between AM and MM, followed by AM and ML. This result
reflects that samples from the same bee species (A. mellif-
era) were used in both Groups, and confirms the stronger
association of the bee species relative to the colony species
on the gene expression patterns [20]. Results from the
present studies also identified similarities between AM
and LM that share the same colony subspecies (A. mellif-
era). This similarity may be due to the adjustment or adap-
tation of A. mellifera ligustica bees to the A. mellifera
mellifera host colony. The reason for the limited overlap
between genes differentially expressed across groups of
studies, even within honey bee species, may be the use of
different populations and environments. The four species
of honey bees used by Sen Sarma et al. [21] were all col-
lected from suburban areas of Bangalore, while the honey
bees in Group 2 [20] were collected in France.

Gene Ontology classes and individual genes

Gene Ontology analysis identified enrichment of genera-
tion of precursor metabolites and energy, cellular macro-
molecule metabolic process, transport, cell
differentiation, system development, cofactor binding
and purine nucleotide binding. These results were consist-
ent with Sen Sarma et al. [21] that identified enrichment
of numerous GO categories including protein binding,
ion binding, and nucleic acid binding functions, response
to biotic and abiotic factors, metabolism, pigmentation,
and regulation of circadian rhythm, among others. Func-
tional analysis of "hive to forager" genes found by Whit-
field et al. [20], with hive encompassing 0-, 4-, 8-, 12-, and
17-day old bees, identified enrichment of genes associated
with energy pathway physiological processes.

Among the transcripts only found differentially expressed
in the sample-level meta-analysis, transcripts correspond-
ing to the fruit fly genes Adar and Innexin 2 were over-
expressed in forager relative to one-day-old honey bees.
The Adar gene is associated with adult locomotory behav-
ior and Innexin 2 is associated with olfactory behavior,
both behaviors critical for honey bee foraging.

Consistent with Sen Sarma et al. [21] and Whitfield et al.
[20], the expression of the honey bee orthologs to the fruit
fly genes Tctp and PebIII was lower in forager compared to
one-day-old honey bees, but the differential expression
was only significant for Tctp. Whitfield et al. [20] reported
a list of candidate genes for honey bee behavioral matura-
tion that span all six maturation stages (0, 4, 8, 12, 17 day-
old nurse and 17 day-old forager honey bees) considered.
Out of this list, the percentages of transcripts differentially
expressed (P-value < 1 × 10-3 or borderline) in two or
more individual-study analyses in the present work and in
at least one species studied by Sen Sarma et al. [21] were
70% and between 58 and 75%, respectively. This result
suggests that the results from the meta-analysis are sup-
ported by a previous independent study, and reiterates the
superior ability of meta-analysis to detect differentially
expressed transcripts compared to individual studies (i.e.
70% vs 58%). Among the genes detected in Whitfield et
al. [20] and by meta-analysis in the present study are Inos,
Cah1, Hsc70cb, Mlc-c, Bm-40-spa, Zormin, Smd3, Tctp, Orc1,
Ef2b, Sh3beta, PebIII, Rfabp, Fax, and Mmpp2, and the Fly-
Base IDs were FBgn0050387 (receptor signaling protein),
FBgn0037146 (glutamate 5-kinase), FBgn0037303
(cysteine protease inhibitor), FBgn0037140 (organic cat-
ion porter).

Model extensions

The effect of behavior on gene expression may vary with
other (secondary) factors or covariates. The interaction
between the main (behavior) and secondary factors may
originate at the study or sample level. Study-level factors
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influence all samples within a study in a similar fashion;
meanwhile sample-level factors can have variable effects
among honey bee samples. Study-level secondary varia-
bles can be included in the meta-analysis model. In this
study, adjustment for secondary study-level factors, like
study group, can be incorporated into the individual or
traditional estimate-based meta-analysis because there are
multiple studies per level of secondary factor. Group rep-
resents a study-level covariate, and thus, unbiased esti-
mates can be obtained even in the presence of maturation
stage heterogeneity across studies [2]. Colony is an exam-
ple of a within-study source of variation that can also be
included in the meta-analysis model. Group was not
included in the present meta-analysis because the main
goal was to investigate the benefits of meta-analysis
expected in most situations, and because of the limited
number of studies (four) per group. The availability of
multiple studies per group that would allow an accurate
adjustment for group effects is rare. In addition, the honey
bee sample effect included in the individual-study and
sample-level meta-analysis models also accounted for the
previous sources of variation.

Conclusion
The objective combination of information implemented
in the complementary meta-analytical approaches was
able to mine the signal of differential expression of data in
different scenarios. Model-based meta-analysis
approaches can rise above seemingly weak consistency
among studies based on simple comparison of lists of
genes. The sample-level meta-analysis detected more dif-
ferentially expressed transcripts than the study-level meta-
analysis among transcripts with consistent patterns of
expression in a few studies, transcripts with expression
well-described by similar model parameter estimates
across studies, and transcripts with low variation between
studies relative to the overall signal of differential expres-
sion. Study-level meta-analysis is the appropriate
approach when only estimates of differences in expression
among conditions of interest are available. Genes that do
not conform to the assumptions of the sample-level meta-
analysis, and have consistent expression patterns but sub-
stantial variation across studies, are benefited by the
study-level meta-analysis.

Meta-analytical approaches uncovered genes associated
with differences between one-day-old and forager honey
bees across studies, regardless of the species or sub-species
of honey bee sampled or in the colony. Among these,
genes Adar, Innexin 2, Chitin, Para, Transferrin 1, Sick,
Oatp26F, FBgn0022355, FBgn0035423, FBgn0037146,
FBgn0038471, FBgn0038516, FBgn0050035,
FBgn0030412, FBgn0032832, and FBgn0051634 are
strong candidates for additional studies.

Methods
Data Sets

Eight microarray gene expression studies from two exper-
iments were available for the meta-analysis. Four studies,
hereby denoted Group 1 studies, are described in Sen
Sarma et al. [21] and encompass the comparison of one-
day-old and forager honey bees from four distinct species;
Apis mellifera (AM), A. cerana (AC), A. dorsata (AD) and, A.
florea (AF) raised in colonies of the same species. The
remainder four gene expression studies, hereby denoted
Group 2 studies, are described in Whitfield et al. [20] and
Rodriguez-Zas et al. [17]. These studies encompassed
comparisons of one-day-old and forager Apis mellifera (A.
m.) honey bees from different subspecies. These compari-
sons included A. mellifera mellifera honey bees raised on
an A. mellifera mellifera (MM) host colony, A. mellifera mel-
lifera honey bees raised on an A. mellifera ligustica (ML)
host colony, A. mellifera ligustica honey bees raised on an
A. mellifera ligustica (LL) host colony, and A. mellifera ligus-
tica honey bees raised on an A. mellifera mellifera (LM)
host colony. The honey bee species A. mellifera and A. cer-
ana are closer to each other than to A. dorsata and A. florea
[26,27]. Meta-analysis of these studies can improve the
detection of genes that are consistently over- (or under-)
expressed in forager honey bees relative to one-day-old
honey bees, regardless of the genetic make-up of the spe-
cies or sub-species of the honey bee sampled or colony.
Meta-analysis also supports the detection of genes that
have unique expression patterns across species or within
groups of species.

In all studies, forager honey bees were identified as honey
bees that had pollen loads on hind legs. In Group 2 stud-
ies, forager honey bees could also have distended abdo-
mens containing nectar or water load, and were 16-day to
17-day-old after adult emergence. The number of observa-
tions per study ranged from 12 (studies LL, LM, ML, and
MM) to 24 (studies AC, AD, AF), and study AM had 22
observations. Due to variations in the size of the brain
across honey bee species, brain samples were pooled (30
to 60 brain samples per pool) in the Group 1 studies.
One-day-old and forager honey bees pertaining to the
same colony (three colonies) were hybridized to the same
microarray in a direct design with reverse labeling in all
Group 1 studies. Direct comparison of one-day-old and
forager honey bees was obtained using four microarrays
(two microarrays per dye-labeling assignment) per colony
for a total of 12 microarrays per study in Group 1. Individ-
ual brain samples were used in all Group 2 studies, each
study including 20 microarrays in a loop design. Each 20-
microarray loop corresponded to one combination of
honey bee subspecies and colony (LL, LM, ML, and MM).
One of the microarrays in all Group 2 studies included a
direct comparison between one-day-old and forager
honey bees, and an indirect comparison through 4 inter-
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mediate maturation stages [17]. Brain gene-expression
data from all six stages in Group 2 studies was normalized
together to improve the adjustment for technical varia-
tion. Only the normalized gene expression observations
from one-day-old and forager honey bees were analyzed
to make the models and analyses across all studies, regard-
less of group, comparable.

The expression of genes from individual brains was
assessed using the double-spotted A. mellifera brain 9 K
version 3.0 cDNA microarray [17]. A total of 5001 cDNA
transcripts in the microarray were assigned to 3610 indi-
vidual genes in the honey bee genome assembly version 2,
and approximately 1970 genes have Gene Ontology infor-
mation. Although an A. mellifera microarray was used to
study different honey bee species and subspecies (AF, AD,
AC, and A. ligustica), hybridization efficiency differences
were minimal [20,21].

Data processing and individual-study analysis

Data processing included the removal of spots that were
flagged by the scanning software [28] or did not surpass a
minimum threshold of 200, and log2 transformation of
the background-subtracted foreground intensities. Log-
transformed values were normalized using a global LOW-
ESS transformation [29] to remove dye bias within micro-
array, and duplicate spots within gene were averaged.
Microarray elements that did not have observations in all
samples were removed from analysis to ensure the availa-
bility of the maximum possible information to estimate
the parameter. A two-stage approach was used to adjust
for technical sources of variation [30]. In the first stage,
global dye and microarray effects were removed across all
microarray elements or cDNAs transcripts, and in the sec-
ond-stage individual-study or meta-analyses were imple-
mented.

The individual-study analysis encompassed the second-
stage model that described each transcript within study
with the fixed effects of dye, maturation stage (one-day-
old or forager), and the random effect of honey bee sam-
ple. Sample (honey bee) effects were assumed to be iden-
tically and independently distributed (iid), and from a
Normal distribution with mean zero and a common
honey bee variance σ2

b. This common honey bee variance
was due to the fact that the limited number of observa-
tions per sample precluded the precise estimation of sep-
arate honey bee variances. A microarray effect was not
included in the model due to the design of Group 2 stud-
ies that included two honey bee samples not present on
multiple microarrays. The number of transcripts studied
within study ranged from 7734 to 7737. The number of
gene expression measurements available per gene, study,
and maturation stage ranged from 6 (Group 2 studies) to
12 (Group 1 studies AC, AF and AM).

Three approaches that combine the information on
expression patterns in one-day-old versus forager honey
bees across studies and within transcript were considered.
The approaches were: standard overlap of genes with sig-
nificant differential expression across studies (detected by
the individual-study analyses), study-level meta-analysis
of expression contrast estimates (obtained by the individ-
ual-study analyses), and sample-level meta-analysis of
transcript expression across studies.

Study-level meta-analysis

The study-level meta-analysis approach is pertinent when
estimates of expression between conditions of interest
(i.e. forager and one-day-old stages), and not the raw or
normalized measurements of gene expression intensity,
are available. The study-level meta-analysis (or Study)
combines summary measurements across studies. The
summary measurements are the estimates of the differ-
ence in brain gene expression between forager and one-
day-old honey bees obtained from the individual-study
analyses, standardized by the corresponding standard
error. A study-level meta-analysis of non-standardized
estimates (N_Study) was implemented to facilitate the
comparison of study-level meta-analysis to individual-
study and sample-level meta-analysis because the stand-
ardized estimates are unit-less, and therefore the results of
the N_Study would have the same units as the results from
the other analyses. An advantage of the standardized
study-level meta-analysis is that the estimates have
already been adjusted for technical sources of variation
(i.e. dye, microarray) during the individual-study analysis
stage.

A hierarchical mixed effects model was used to incorpo-
rate all sources of variation associated with the study-level
standardized estimates combined in the study-level meta-
analysis. For each transcript, the study-specific estimate is
described with an overall difference in expression effect
(μ), and the random effect of study (si):

where yi is the (standardized) estimate of difference in
expression (forager versus one-day-old) obtained from
the analysis of the ith study (i = 1 to 8), ρ2 is the error var-
iance, and s is the vector of study effects. Study was
assumed to have a Normal distribution with mean zero
and variance-covariance matrix ∑ of dimension k × k,
where k is eight, the number of studies. The variance-cov-
ariance matrix had a diagonal structure with off-diagonals
of zero, and diagonals representing the variance of the
estimate of differential expression within study. The
study-level meta-analysis model accounted for potential
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heterogeneity of variance among studies, and this is par-
ticularly important when combining information from
potentially different subspecies. Meanwhile the standard-
ized estimates of differential expression (yi) are adjusted
for all other sources of variation fitted in the within-study
model (i.e. dye and array effects), and standardized by the
standard error of the estimate. In comparison, Choi et al.
[13] considered the meta-analysis of differences between
the means of the condition levels standardized by the
pooled standard deviation.

Sample-level meta-analysis

Like the individual-study analyses, the sample-level meta-
analysis encompassed the second-stage model describing
each transcript with the mixed effects model:

where yijklm is the normalized log-transformed brain gene
expression corresponding to mth observation, from the lth
honey bee sample, at the jth maturation stage, pertaining
to the kth study, labeled with the ith dye. Study effect was
assumed to have a Normal distribution with mean zero
and diagonal variance structure U of dimension k × k with
a potentially different variance for each study. Sample
effects were assumed to be iid and from a Normal distri-
bution with mean zero and a common microarray vari-
ance σ2

b, because of the limited number of observations
per sample. Microarray was not included in the model so
the sample-level meta-analysis model would be as similar
as possible to the individual-study analysis model. A total
of 142 observations were analyzed.

General analysis considerations

Individual-study, study-level, and sample-level meta-
analysis estimates were obtained using a restricted maxi-
mum-likelihood approach, and implemented using the
SAS mixed procedure [31]. An experiment-wise type I
error rate α = 1 × 10-3 was used to identify transcripts dif-
ferentially expressed across maturation stages. This signif-
icance threshold is equal to the threshold used by Sen
Sarma et al. [21] and Whitfield et al. [20]. This threshold
also proved to be a good compromise between the
number of differentially expressed genes detected and the
type I error rate while allowing to explore the overlap of a
substantial number of genes across analyses. The analyses
were compared in terms of overall number of transcripts
identified as differentially expressed and the direction
(sign) of the differential expression (over or under
expressed in forager versus one-day-old honey bees).

The meta-analyses results of 7734 transcripts allowed the
identification and characterization of different gene
expression scenarios that benefited from different meta-
analytical approaches. These scenarios were further
explored using funnel plots that depict the estimate of dif-
ferential expression between forager and one-day-old
honey bees, and the associated confidence interval
obtained in the individual-study, study-level, and sample-
level meta-analysis. Four transcript cases were of particu-
lar statistical and biological relevance. First, transcripts
that were not found differentially expressed in any indi-
vidual study, yet were detected by the study-level or sam-
ple-level meta-analyses. Second, transcripts that had
differential expression in opposite directions across stud-
ies and were not identified in the study-level or sample-
level meta-analyses. Third, transcripts that were found dif-
ferentially expressed in multiple individual studies and
the sample-level meta-analysis, but were not detected by
the study-level meta-analysis. Fourth, transcripts that were
found differentially expressed in multiple individual stud-
ies and the study-level meta-analysis, but were not
detected by the sample-level meta-analysis. Adequate
characterization of these possible scenarios can help
design additional targeted experiments to resolve the dis-
crepancies among studies.

Results from the study-level and sample-level meta-analy-
ses were further examined using functional enrichment
analysis. Lists of differentially expressed genes were
assigned to Gene Ontology (GO) biological processes and
molecular functions classes based on fruit fly annotations.
Representation of genes in GO classes was evaluated using
Fisher's exact (two-tailed) test and False Discovery Rate
multiple test adjustment [25].
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