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Meta-analysis of gut microbiome studies identifies
disease-specific and shared responses
Claire Duvallet1,2, Sean M. Gibbons1,2,3, Thomas Gurry1,2,3, Rafael A. Irizarry4,5 & Eric J. Alm1,2,3

Hundreds of clinical studies have demonstrated associations between the human microbiome

and disease, yet fundamental questions remain on how we can generalize this knowledge.

Results from individual studies can be inconsistent, and comparing published data is further

complicated by a lack of standard processing and analysis methods. Here we introduce the

MicrobiomeHD database, which includes 28 published case–control gut microbiome studies

spanning ten diseases. We perform a cross-disease meta-analysis of these studies using

standardized methods. We find consistent patterns characterizing disease-associated

microbiome changes. Some diseases are associated with over 50 genera, while most show

only 10–15 genus-level changes. Some diseases are marked by the presence of potentially

pathogenic microbes, whereas others are characterized by a depletion of health-associated

bacteria. Furthermore, we show that about half of genera associated with individual studies

are bacteria that respond to more than one disease. Thus, many associations found in

case–control studies are likely not disease-specific but rather part of a non-specific, shared

response to health and disease.
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The human gastrointestinal tract digests food, absorbs
nutrients, and plays important roles in maintaining
metabolic homeostasis. The microbes residing in our gut

harvest energy from the food we eat, train our immune system,
break down xenobiotics and other foreign products, and release
metabolites and hormones important for regulating our phy-
siology1–3. Chemical signals from our microbiota can act locally
within the gut, and can also have larger systemic effects (e.g., the
“gut-brain axis”)4–6.

Due to the physiological interplay between humans and our
microbial communities, many diseases are hypothesized to be
associated with shifts away from a “healthy” gut microbiome.
These include metabolic disorders, inflammatory and auto-
immune diseases, neurological conditions, and cancer, among
others1, 3, 7–9. Certain gut-related conditions (e.g., obesity and
inflammatory bowel disease) have been extensively studied in
human cohorts and in animal experiments, where significant and
sometimes causal microbial associations have been shown. These
studies have spurred research into a number of complex diseases
with unclear etiologies where a connection to the microbiome is
suspected.

Overall, our current understanding of the precise relationships
between the human gut microbiome and disease remains limited.
Existing case–control studies often report finding disease-
associated microbial “dysbiosis”. However, the term “dysbiosis”
is inconsistently and often vaguely defined, and can have a wide
range of interpretations10, 11. Thus, we lack a comprehensive
understanding of precisely how microbial communities and
specific microbes within those communities cause, respond to, or
contribute to disease. Are different diseases characterized by
distinct shifts in the gut microbiome? Are some diseases marked
by an invasion of pathogens, whereas others show a depletion of
beneficial bacteria? Can we identify microbial biomarkers for
certain conditions, which are consistently enriched or depleted in
a disease across many patient cohorts? Finally, are some bacteria
part of a non-specific “healthy” or “diseased” microbiome and
consistently associated with health or disease in general?

One approach to synthesize existing knowledge is to identify
consistencies across studies through a meta-analysis, which allows
researchers to find and remove false positives and negatives that
may obscure underlying biological patterns. However, prior meta-
analyses of case–control gut microbiome studies have yielded
mixed results and did not contextualize their findings across
multiple diseases12–14. For some conditions like inflammatory
bowel disease (IBD), an overall difference in the gut microbiota
was found within several studies, but no individual microbes were
consistently associated with IBD across studies12. For other
conditions like obesity, multiple meta-analyses have found little
to no difference in the gut microbiomes of obese and lean
patients12–14, even though the microbiome has been causally
linked to obesity in mouse models3, 15. These meta-analyses have
been limited by focusing on only one or two diseases, and thus do
not extend their findings across a broader landscape of human
disease to answer more general questions about overall patterns
of disease-associated microbiome shifts.

In this paper, we collected 28 published case–control 16S
amplicon sequencing gut microbiome data sets spanning ten
different disease states. We acquired raw data and disease meta-
data for each study and systematically re-processed and re-
analyzed the data. We investigated whether consistent and spe-
cific disease-associated changes in gut microbial communities
could be identified across multiple studies of the same disease.
Certain diseases (e.g., colorectal cancer (CRC)) are marked by an
enrichment of disease-associated bacteria, while others (e.g., IBD)
are characterized by a depletion of health-associated bacteria.
Some conditions (e.g., diarrhea) exhibit large-scale community

shifts with many associated microbes, while most show only a
handful of associations. However, many associations are not
specific to individual diseases but rather respond to multiple
disease states. In most studies, the majority of the individual
disease-associated microbes were part of this set of bacteria that
respond non-specifically to healthy and diseased states. Thus,
associations from individual case–control studies should be
interpreted with caution, as these microbes may be indicative of a
shared response to disease rather than part of disease-specific
differences. Together, these findings reveal distinct categories of
dysbioses, which can inform the development of microbiome-
based diagnostics and therapeutics.

Results
Most disease states show altered microbiomes. To answer
questions about the reproducibility and generalizability of
reported associations between the human microbiome and dis-
ease, we collected, re-processed, and re-analyzed raw data from a
collection of microbiome data sets. We included studies with
publicly available 16S amplicon sequencing data (i.e., FASTQ or
FASTA) for stool samples from at least 15 case patients, which
also had associated disease metadata (i.e., case or control disease
labels). Studies which exclusively focused on children under 5
years old were excluded from our analyses. We identified over
50 suitable case–control 16S data sets, of which 28 were suc-
cessfully downloaded, processed, and included in a publicly
available database, which we called MicrobiomeHD16. Char-
acteristics of these data sets, including sample sizes, diseases and
conditions, and references, are shown in Table 1 and Supple-
mentary Table 1. For each downloaded study, we processed the
raw sequencing data through our 16S processing pipeline (https://
github.com/thomasgurry/amplicon_sequencing_pipeline) (see
Supplementary Tables 2 and 3 for detailed data sources and
processing methods). 100% de novo OTUs were assigned tax-
onomy with the RDP classifier17 (c = 0.5), converted to relative
abundances by dividing by total sample reads, and collapsed to
the genus level. OTUs which were not assigned at the genus level
were discarded. By collapsing data to the genus level, we lost the
sensitivity to detect fine-scale differences in species or strain
abundances across case and control groups, but we minimized
certain batch effects that plague comparisons across studies. Thus,
we took a course-grained approach to optimize our ability to
compare data across studies at the expense of phylogenetic
resolution.

We first asked whether reported associations between the gut
microbiome and disease would be recapitulated once we
controlled for processing and analysis approaches. To test
whether the gut microbiome is altered in a variety of disease
states, we built genus-level random forest classifiers to classify
cases from controls within each study. We compared the resulting
area under the receiver operating characteristic (ROC) curves
(AUC) across studies (Fig. 1a and Supplementary Fig. 1). We
could classify cases from controls (AUC> 0.7) for at least one
data set for all diseases except arthritis and Parkinson’s disease,
which each only had one study. Notably, all diarrhea data sets
(except Youngster et al.18, which had only four distinct control
patients and thus was not included in this analysis) had very high
classifiability (AUC> 0.9). We successfully classified patients
from controls (AUC> 0.7) in three out of four IBD studies and
all four CRC studies, which is consistent with previous work
showing that these patients can be readily distinguished from
controls using supervised classification methods12, 19–21. Thus,
the microbiome is indeed altered in many different diseases.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01973-8

2 NATURE COMMUNICATIONS | 8:  1784 |DOI: 10.1038/s41467-017-01973-8 |www.nature.com/naturecommunications

https://github.com/thomasgurry/amplicon_sequencing_pipeline
https://github.com/thomasgurry/amplicon_sequencing_pipeline
www.nature.com/naturecommunications


Loss of beneficial microbes or enrichment of pathogens. We
next wondered whether the specific type of alteration was con-
sistent across independent cohorts of patients with the same
disease. We performed univariate tests on genus-level relative
abundances for each data set independently and compared results
across studies (Kruskal–Wallis (KW) test with the
Benjamini–Hochberg false discovery rate (FDR) correction22).
Our re-analyses of the studies were largely consistent with the
originally reported results. The same taxonomic groups showed
similar trends as in the original publications, despite differences
in data-processing methodologies (see Supplementary Note 1 for
a full comparison of our re-analysis with previously published
results). Furthermore, we found that the disease-associated
changes in the microbiome could be categorized into mean-
ingful groups, which provide insight into possible etiologies or
therapeutic strategies for different types of disease.

In some diseases, microbiome shifts are dominated by an
enrichment of a small number of “pathogenic” bacteria. In these
cases, it is possible that the microbes play a causal role and that
they could be targeted with narrow-spectrum anti-microbials.
Colorectal cancer is characterized by such a shift, and we found
significant agreement across three of the four CRC studies8, 20, 21,
23 (Figs. 1b and 2, genus labels in Supplementary Fig. 2).
Dysbiosis associated with CRC is generally characterized by
increased prevalence of the known pathogenic or pathogen-
associated Fusobacterium, Porphyromonas, Peptostreptococcus,
Parvimonas, and Enterobacter genera (i.e., these genera were
higher in CRC patients in two or more studies, Figs. 2 and 3a,
genus labels in Supplementary Figs. 2 and 3). Fusobacterium is

associated with a broad spectrum of human diseases and
Porphyromonas is a known oral pathogen24, 25.

By contrast, other disease-associated microbiome shifts are
characterized by a depletion of health-associated bacteria in
patients relative to controls. In these cases, probiotics that replace
missing taxa may be a better treatment strategy than anti-
microbials. Across our four IBD studies, patient microbiomes
were dominated by a depletion of genera in patients relative to
controls, especially butyrate-producing Clostridiales19, 26–28

(Figs. 1b and 2, genus labels in Supplementary Fig. 2). In
particular, five genera from the Ruminococcacaea and Lachnos-
piracaea families were consistently depleted in IBD patients
relative to controls in at least two studies (Fig. 3a, genus labels in
Supplementary Fig. 3). While not all genera within Ruminococ-
cacaea and Lachnospiracaea are verified short chain fatty acid
(SCFA) producers, the dominant genera within these families are
known to harbor genes for short chain fatty acid production29

and are often associated with colonic health30–32. We found
similar results when comparing Crohn’s disease and ulcerative
colitis patients to controls separately, without any consistent
patterns across data sets that distinguished either IBD subtype
(Supplementary Note 2; Supplementary Figs. 4 and 5).

Some conditions are characterized by a broad restructuring of
gut microbial communities. In these cases, full community
restoration strategies like fecal microbiota transplants may be
more appropriate. For example, diarrhea consistently results in
large-scale rearrangements in the composition of the gut
microbiome, which is likely reflective of reduced stool transit
time (Figs. 1 and 2). We saw many microbes consistently

Table 1 Data sets collected and processed through standardized pipeline

Dataset ID Controls N (controls) Cases N (cases) Reference

Singh 2015, EDD H 82 EDD 201 35

Schubert 2014, CDI H 154 CDI 93 33

Schubert 2014, non-CDI H 154 non-CDI 89 33

Vincent 2013, CDI H 25 CDI 25 34

Youngster 2014, CDI H 4 CDI 19 18

Goodrich 2014, OB H 428 OB 185 43

Turnbaugh 2009, OB H 61 OB 195 42

Zupancic 2012, OB H 96 OB 101 44

Ross 2015, OB H 26 OB 37 45

Zhu 2013, OB H 16 OB 25 1

Baxter 2016, CRC H 172 CRC 120 20

Zeller 2014, CRC H 75 CRC 41 21

Wang 2012, CRC H 54 CRC 44 8

Chen 2012, CRC H 22 CRC 21 23

Gevers 2014, IBD non-IBD 16 CD 146 26

Morgan 2012, IBD H 18 UC, CD 108 27

Papa 2012, IBD non-IBD 24 UC, CD 66 19

Willing 2010, IBD H 35 UC, CD 45 28

Noguera-Julian 2016, HIV H 34 HIV 205 39

Dinh 2015, HIV H 15 HIV 21 41

Lozupone 2013, HIV H 13 HIV 23 40

Son 2015, ASD H 44 ASD 59 7

Kang 2013, ASD H 20 ASD 19 2

Alkanani 2015, T1D H 55 T1D 57 59

Mejia-Leon 2014, T1D H 8 T1D 21 60

Wong 2013, NASH H 22 NASH 16 61

Zhu 2013, NASH H 16 NASH 22 1

Scher 2013, ART H 28 PSA, RA 86 52

Zhang 2013, LIV H 25 CIRR, MHE 46 51

Scheperjans 2015, PAR H 74 PAR 74 9

Non-CDI controls are patients with diarrhea who tested negative for C. difficile infection. Non-IBD controls are patients with gastrointestinal symptoms but no intestinal inflammation. Data sets are
ordered as in Fig. 1
ART arthritis, ASD autism spectrum disorder, CD Crohn’s disease, CDI Clostridium difficile infection, CIRR liver cirrhosis, CRC colorectal cancer, EDD enteric diarrheal disease, H healthy, HIV human
immunodeficiency virus, LIV liver diseases,MHEminimal hepatic encephalopathy, NASH non-alcoholic steatohepatitis, OB obesity, PAR Parkinson’s disease, PSA psoriatic arthritis, RA rheumatoid arthritis,
T1D type I diabetes, UC ulcerative colitis
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associated with both Clostridium difficile infection (CDI) and
non-CDI diarrhea (Figs. 2 and 3a)18, 33–35. In general,
Proteobacteria increase in prevalence in patients with diarrhea,
with a concomitant decrease in the relative abundances of
Bacteroidetes and some Firmicutes. In particular, we see a
reduction in butyrate-producing Clostridia, including genera
within Ruminococcaceae and Lachnospiraceae families, which
have been associated with a healthy gut36. We also see an increase
in prevalence of genera that contain organisms often associated
with lower pH and higher oxygen levels of the upper gut, like
Lactobacillaceae and Enterobacteriaceae, in patients with diarrhea
(Fig. 3a)37. Additionally, both CDI and non-CDI diarrhea
patients had lower alpha diversity, a measure of overall
community structure, than healthy controls in all studies
(Supplementary Figs. 6–8). Consistent with the CDI and non-
CDI diarrheal studies, we also found that organisms associated

with the upper gut, like Lactobacillus and Enterobacteriaceae,
appear to be enriched in IBD patients, who can present with
diarrheal symptoms (Supplementary Fig. 2)37, 38. IBD patients
also tended to have lower alpha diversities than controls (Crohn’s
disease vs. controls in three studies, ulcerative colitis vs. controls
in two studies; Supplementary Figs. 6–8), though this difference
was less drastic than in the diarrheal studies where all patients
had active diarrhea.

In some studies, confounding variables may drive associations.
For example, there were no consistent differences between cases
and controls across HIV studies because of demonstrated
confounders39–41 (Figs. 2 and 3a). As in the original
Lozupone et al.40 study, we found enrichment in Prevotella,
Catenibacterium, Dialister, and Desulfovibrio in HIV-positive
patients, in addition to eight other genera (Fig. 2 and
Supplementary Fig. 2). We also found depletion of Bacteroides,
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Fig. 1 Most diseases show microbiome alterations, and consistent disease-associated shifts differ in their extent and direction. a Left: Total sample size for
each study included in these analyses. Additional information about each data set can be found in Table 1. Studies on the y-axis are grouped by disease and
ordered by decreasing sample size (top to bottom). Right: Area under the ROC curve (AUC) for genus-level random forest classifiers. X-axis starts at 0.5,
the expected value for a classifier which assigns labels randomly, and AUCs less than 0.5 are not shown. ROC curves for all data sets are in Supplementary
Fig. 1. Note that Youngster et al.18 had only four distinct control patients was excluded from the random forest analysis. b Left: Number of genera with q<
0.05 (Kruskal–Wallis (KW) test, Benjamini–Hochberg FDR correction) for each data set. If a study has no significant associations, no point is shown. Right:
Direction of the microbiome shift, i.e., the percent of total associated genera which were enriched in diseased patients. In data sets on the leftmost blue
line, 100% of associated (q< 0.05, FDR KW test) genera are health-associated (i.e., depleted in patients relative to controls). In data sets on the rightmost
red line, 100% of associated (q< 0.05, FDR KW test) genera are disease-associated (i.e., enriched in patients relative to controls). Supplementary Figs. 14
and 15 show q values and effects for each genus in each study
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Odoribacter, Anaerostipes, Parasutterella, and Alistipes in HIV-
positive patients relative to controls. However, the Noguera-Julian
et al.39 study showed that the genera that were significantly
associated with HIV in the Lozupone paper were strongly
associated with sexual behavior (e.g., men who have sex with men
were associated with much higher Prevotella levels), and our re-
analysis also found conflicting results between these two studies
(Fig. 2). Thus, there is no consensus on what genera are
associated with HIV. Obesity is another example where

confounding variables may drive microbiome alterations. Three
recent meta-analyses found no reproducible obesity-associated
microbiome shifts12–14, which is consistent with our classification
results where we were only able to accurately classify obese and
control patients in two out of five studies (Zhu et al.1, Turnbaugh
et al.42; Fig. 1a). Our genus-level re-analysis did find a few
consistent genus-level associations between lean and obese
patients1, 42–45. Two genera, Roseburia and Mogibacterium, were
significantly enriched in obese individuals across two of the
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Fig. 2 Comparing results from multiple studies of the same disease reveals patterns in disease-associated microbiome alterations. Heat maps showing
log10(q values) for each disease (KW test, Benjamini–Hochberg FDR correction). Rows include all genera which were significant in at least one data set
within each disease, columns are data sets. q values are colored by direction of the effect, where red indicates higher mean abundance in disease patients
and blue indicates higher mean abundance in controls. Opacity ranges from q= 0.05–1, where q values less than 0.05 are the most opaque and q values
close to 1 are gray. White indicates that the genus was not present in that data set. Within each heat map, rows are ordered from most disease-associated
(top) to most health-associated (bottom) (i.e., by the sum across rows of the log10(q values), signed according to directionality of the effect). The extent of
a disease-associated microbiome shift can be visualized by the number of rows in each disease heat map; the directionality of a shift can be seen in the
ratio of red rows to blue rows within each disease. See Supplementary Fig. 2 for genus (row) labels
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obesity studies (Fig. 3a). Furthermore, Anaerovorax, Oscillibacter,
Pseudoflavonifractor, and Clostridium IV were depleted in obese
patients relative to controls in two of the studies. However, two of
the five studies had no significant genus-level associations (q<
0.05), despite one having a large sample size (Zupancic et al.44).
This suggests that confounding factors like diet may have given
rise to certain associations found in our re-analysis and
previously reported in the literature14. More studies that control
for potential confounders, like host behavior and diet, will be
required for diseases like obesity and HIV, where associations
with the microbiome remain unclear. Finally, patients in
case–control cohorts are frequently on other medications such
as antibiotics which may confound disease-associated micro-
biome shifts. Six of our data sets included antibiotics metadata,
and of these only one data set (Schubert et al.33) had more than
five controls who were on antibiotics. Thus, it is very likely that
disease-associated genera in conditions which are often treated
with antibiotics (e.g., diarrhea, IBD) are confounded with
antibiotic usage. Future case–control studies should focus on
better separating treatment and disease variables by collecting
detailed metadata on antibiotic and other medication usage, and

perhaps also by recruiting controls undergoing a variety of
treatments.

Shared vs. disease-specific microbial responses. Finally, we
sought to determine whether a unified microbiome response to
general health and disease could be identified. Previous studies
have proposed that reduced alpha diversity is a reliable indicator
of disease-associated dysbiosis34, 42, 46. In our re-analysis, we
found no consistent reduction of alpha diversity in case patients,
with the exception of diarrhea and perhaps IBD (Supplementary
Figs. 6–8). These results are consistent with previous meta-ana-
lyses, which found inconsistent relationships between alpha
diversity and disease and very small effect sizes in non-diarrheal
diseases12, 13. To further address the question of whether we
could find a robust, generalized signal for diseased microbiomes
regardless of the disease type, we built random forest classifiers to
distinguish healthy patients from any type of case patient. The
AUCs from these general healthy vs. disease classifiers correlated
strongly with the original single data set classification results,
indicating that there is indeed a general microbiome signal that
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Fig. 3 The majority of disease-associated microbiome associations overlap with a non-specific microbial response to disease. a Non-specific and disease-
associated genera. Genera are in columns, arranged phylogenetically according to a PhyloT tree built from genus-level NCBI IDs (http://phylot.biobyte.de).
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sets with at least one significant association are shown. c Overall, abundance and ubiquity of non-specific genera across all patients in all data sets. Non-
specific genera on the x-axis are as defined above

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01973-8

6 NATURE COMMUNICATIONS | 8:  1784 |DOI: 10.1038/s41467-017-01973-8 |www.nature.com/naturecommunications

http://phylot.biobyte.de
www.nature.com/naturecommunications


can be identified even across different diseases (see Supplemen-
tary Note 3 and Supplementary Fig. 9).

Having putatively shown the presence of a generalized
microbial response to disease, we next sought to identify
individual genera which respond non-specifically to health and
disease. We considered a genus to be part of the non-specific,
shared microbial response if it was significantly enriched or
depleted (q< 0.05) in at least one data set from at least two
different diseases (see Supplementary Note 4 and Supplementary
Figs. 10 and 11 for further discussion on alternative definitions
and statistical significance of shared response). We identified 24
health-associated genera and 20 disease-associated genera out of
the 152 genera that were significant in at least one data set
(Fig. 3a, genus labels in Supplementary Fig. 3). We also found
seven genera that were both health- and disease-associated (i.e.,
they were enriched in controls across at least two diseases, but
were also depleted in controls in different comparisons across at
least two diseases) (Fig. 3a, black). Perhaps these genera represent
bacteria disproportionately affected by confounders or technical
artifacts. Alternatively, different species or strains within these
genera may play alternate roles across diseases or community
contexts, giving rise to variable responses at the genus level.

We identified distinct subgroups of microbes within the
Bacteroidetes and Firmicutes phyla that respond non-specifically
to health and disease (Fig. 3a). The order Clostridiales (specifically
the Lachnospiraceae and Ruminococcacaea families) is associated
with health across multiple diseases while the order Lactobacil-
lales and family Clostridiales Incertae Sedis XI are associated with
disease. The majority of the the non-specific responders in the
order Clostridiales were associated with health, comprising the
majority of all of the microbes which were non-specifically
associated with healthy patients (17 genera out of 24 total health-
associated genera). All five of the non-specific responders in the
order Lactobacillales were enriched in case patients across
multiple diseases. Lactobacillales genera are adapted to the lower
pH of the upper gastrointestinal tract37. Perhaps the shared
disease-associated taxa are indicators of shorter stool transit times
and disruptions in the redox state and/or pH of the lower
intestine, rather than specific pathogens. These non-specific
responders are consistent with the results from a recent meta-
analysis of six metagenomics data sets, which also found
Lactobacillales and Clostridiales microbes among the most
discriminative classification features across multiple studies47.
Finally, we found that the order Bacteroidales is more mixed: two
Bacteroidales genera were non-specifically associated with health,
one with disease, and two with both health and disease.

A majority of bacterial associations within individual studies
overlap with the shared response. For each data set that had at
least one significant (q< 0.05) association, we calculated the
percent of associated genera which were also part of the non-
specific response in the same direction (Fig. 3b). Strikingly, the
majority of microbial responses were not specific to individual
diseases; on average, 51% of a data set’s genus-level associations
were genera that were associated with more than one disease. In
light of this finding, it is important that researchers performing
future case–control studies consider whether an identified
microbial association is truly specific to their disease of interest
or is instead responding to a common symptom (e.g., diarrhea) or
perhaps generally associated with health or sickness. Additionally,
they can use the knowledge that many microbes respond non-
specifically to disease to narrow putative causal or diagnostic
biomarkers to microbes which fall outside of the shared response,
and are thus more likely to be specific to the disease being
studied. Researchers can access an updated list of shared
microbial responders from this analysis at the MicrobiomeHD

database16, or they can curate their own lists by performing
similar cross-disease meta-analyses.

Bacteria which are non-specifically associated with health are
both ubiquitous and abundant across people, whereas bacteria
which are non-specifically associated with disease are abundant
when present but are not ubiquitous. We calculated the average
relative abundance (i.e., the total relative abundance across all
patients divided by the number of patients with non-zero
abundance) and ubiquity (i.e., the number of patients with
non-zero abundance divided by the total number of patients) for
each genus in the shared response. We found that health-
associated genera were more ubiquitous than disease-associated
ones, but not necessarily more abundant (Fig. 3c). Thus,
presence/absence of the non-specifically disease-associated genera
appears to be a better indicator of disease-associated microbial
shifts than changes in their relative abundances. However, a small
subset of the non-specifically disease-associated genera were
relatively ubiquitous across patients. Among the most ubiquitous
were Escherichia/Shigella and Streptococcus. Escherichia includes
common commensal strains as well as pathogenic strains48, and is
frequently present in healthy people’s guts as well as over-
represented in sick patients. Genera within Enterobacteriaceae,
Lactobacillaceae, and Streptococcaceae families are dominant in
the upper gastrointestinal tract37, 49 and are present in many
people’s stool at low frequency. These taxa likely become enriched
with faster stool transit time (i.e., signatures of diarrhea)37, 50.

Within and cross-disease meta-analysis improves interpret-
ability. Identifying disease-specific and non-specific microbial
responses required comparing studies both within and across
multiple diseases. Multiple studies of the same disease were
necessary to identify shifts consistently associated with individual
diseases. We did not find consistent bacterial associations for
conditions with fewer than four data sets (Figs. 1 and 3a). Within-
disease meta-analysis also increased our ability to interpret the
results from any one data set. Despite few significant differences,
some of these studies (e.g., Zhang et al.51, Zhu et al.1) had high
classifiability of patients vs. controls (AUC> 0.7, Fig. 1a), indi-
cating that there may be a disease-associated shift that was not
detected by univariate comparisons. However, because few other
studies of the same disease were available for comparison, we
could not confidently interpret the classification results beyond
the reported AUC. For other studies with high AUCs but few
univariate associations (e.g., Vincent et al.34, Morgan et al.27, and
Chen et al.23), our confidence that the high AUCs reflect true
disease-associated differences increased because the high AUCs
were consistent with other classifiers from the same disease type.

Meta-analysis identified potential false positives and false
negatives across studies and conditions. For example, we found
that reported associations between alpha diversity and disease
within individual studies tended to lose significance when looking
across studies, except in the case of diarrhea and perhaps IBD
(Supplementary Figs. 6–8). Another example of a potential false
positive was the association between Prevotella and disease.
Autism2, rheumatoid arthritis52, and HIV40, 41 have each been
reported to be associated with Prevotella. For each of these
diseases, the associations with Prevotella were weakly significant
or complicated by confounding factors. In our more statistically
conservative re-analysis, we found no association between autism
or arthritis and Prevotella. As mentioned previously, in the case of
HIV, the association with Prevotella was due to demographic
factors unrelated to disease39. Regardless of whether shifts in
Prevotella are truly biologically related to each studied disease
state, it is clear that such shifts are not specific to one particular
condition and should not be reported as putative disease-specific
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biomarkers. We also found that certain signals picked out by
meta-analysis did not always hold within individual studies. For
example, studies with small sample sizes often had few or no
significant associations (e.g., Vincent et al.34, Chen et al.23, and
Willing et al.28). Here the fact that other studies analyzing the
same diseases consistently found associations strengthens the
hypothesis that the lack of microbiome-associated signal in these
studies was due to low power rather than a lack of true signal.
Because individual studies are plagued by low statistical power,
confounding variables, and batch effects which can obscure
biological signals, the identification of disease-specific and non-
specific microbial associations will continue to improve as more
data sets and diseases are included in future meta-analyses.

Discussion
Here we report patterns of disease-associated shifts in the human
gut microbiome that differ in their directionality (i.e., fraction of
disease-enriched vs. disease-depleted genera) and extent (i.e., total
number of genera that differ between cases and controls). Some
diseases are characterized by an invasion of pathogenic or
disease-associated bacteria (e.g., CRC), while others largely show
a depletion of health-associated microbes (e.g., IBD). Diarrheal
illnesses induce large-scale rearrangement of many members of
the microbiota, whereas other conditions show fewer associations.
We also find a set of microbes which are non-specifically asso-
ciated with multiple diseases and show that these microbes
comprise many of the disease-associated genera within any given
study.

The identification of a non-specific microbial response is an
important concept that should be considered in future
case–control microbiome studies. It suggests that studies should
be interpreted with extra caution, as many identified microbial
associations may be indicative of a shared response to health or
disease rather than a disease-specific biological difference.
Microbes that are non-specifically associated with multiple dis-
eases would not be useful as disease-specific diagnostics or to
address causality10. On the other hand, bacteria that are asso-
ciated with healthy patients across multiple diseases could be
developed into a general probiotic which may be suited for many
different conditions.

Additionally, characterizing “dysbioses” by their directionality
and extent is a useful framework to generate hypotheses for future
research on complex, heterogenous diseases with links to the
microbiome. For example, the search for microbiome-based
diagnostics may be more appropriate for diseases with con-
sistently enriched disease-associated microbes, like CRC. On the
other hand, patients with diseases which are characterized by
depletion of health-associated microbes, like IBD, may benefit
from prebiotic or probiotic interventions designed to enrich for
these taxa. Furthermore, conditions which are characterized by
large-scale shifts in community structure may be well suited to
treatment with fecal microbiota transplantation, as in CDI18.
While many of these conditions are unlikely to be fully treated by
antibiotics, probiotics, or fecal microbiota transplants, our pro-
posed framework could guide the search for new therapies and
etiologies by generating testable hypotheses with higher like-
lihoods of success10.

This analysis is the first to compare microbiome studies across
more than two different diseases and highlights the importance of
making raw data and associated patient metadata publicly avail-
able to enable future, more comprehensive analyses. This analysis
does not include all possible studies, and certain important gas-
trointestinal diseases (e.g., irritable bowel syndrome) are missing,
largely due to data and metadata availability. Future studies
should expand on this work by including more cohorts from the

same diseases as well as more diseases. To re-analyze these stu-
dies, we applied standard methods commonly used in the field
and assumed that the original study designs and patient selection
methods were adequate. We were reassured to find that a
straightforward and standardized approach was able to recover
very similar results to those previously reported in the various
papers. Thus, we did not formally investigate heterogeneity
between cohorts or technical inter-study batch effects. However,
it is clear from our genus-level results that there is significant
variation even across studies of the same disease. There are many
possible reasons for this variation (experimental and sequencing
artifacts, host-related covariates, stochastic disease-associated
community changes, etc.11, 53, 54), and future analyses should
consider methods to correct for host confounders and technical
batch effects. Concerns about batch effects motivated us to ana-
lyze the data at the genus level, which necessarily limited our
resolution and biological interpretations of identified associations
(e.g., different species or strains within a genus may have different
associations with disease, which would not be captured in this
analysis). Making raw data from case–control studies publicly
available will also allow researchers to develop methods to correct
for these batch effects, in addition to enabling more compre-
hensive future meta-analyses.

Despite the limitations of this study, our results provide more
nuanced insight into dysbiosis, revealing distinct types of altera-
tions that more precisely describe disease-associated microbiome
shifts. As the number of case–control cohorts increases, similar
meta-analyses could be used to compare related diseases and
identify microbiome alterations associated with general host
physiological changes. For example, there may be a group of
microbes which respond to or cause systemic inflammation.
Could we identify these microbes by comparing multiple
inflammatory or auto-immune diseases and study them to better
understand the interactions between the microbiome and our
immune system? Furthermore, some microbes may be con-
sistently associated with neurological conditions and could con-
tribute to the gastrointestinal symptoms that accompany or
precede neurological manifestations2, 9. Studying these microbes
could help us understand the “gut-brain axis” by identifying
common neuroactive molecules produced by these bacteria,
which could also be used as targets for new treatments4–6. Finally,
meta-analysis could be used to identify subsets of patients who
exhibit distinct microbiome shifts within heterogenous diseases
like IBD or in conditions which exhibit stochastic microbial
responses, allowing for further stratification of disease subtypes
and microbiome disruptions11, 28, 55. This work demonstrates
that employing standard methods to contextualize new results
within the broader landscape of clinically relevant microbiome
studies is feasible and adds value to individual analyses. As
excitement in this field grows, researchers should harness the
increasing number of replicated case–control studies to swiftly
and productively advance microbiome science from putative
associations to transformative clinical impact.

Methods
Data set collection. We identified case–control 16S studies from keyword searches
in PubMed and by following references in meta-analyses and related case–control
studies. We included studies with publicly available raw 16S data (fastq or fasta)
and metadata indicating case or control status for each sample. Most data were
downloaded from online repositories (e.g., SRA) or links provided in the original
publications, but some were acquired after personal communication with the
authors (Supplementary Table 3). We did not include any studies which required
additional ethics committee approvals or authorizations for access (e.g., controlled
dbGaP studies). In studies where multiple body sites were sampled or where
multiple samples were taken per patient, we also required the respective metadata
to include those metadata. We analyzed only stool 16S samples, and excluded
studies with fewer than 15 case patients. In CRC studies with multiple control
groups (e.g., healthy and non-CRC adenoma), only the healthy patients were used
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as controls for all of our comparisons. In studies with non-healthy controls (e.g.,
non-IBD patients), these patients were used as controls (as in the original papers).
In the Schubert et al. CDI study33, which had both CDI and non-CDI diarrheal
patients, each group was used as an independent case group compared with
controls. We also analyzed the NASH and obese patients from the Zhu et al. study1

as independent case groups. When obesity studies reported body mass index
instead of obesity status, we considered patients with BMI less than 25 as our
control group and patients with BMI greater than 30 as the case group.

16S processing. Raw data were downloaded and processed through our in-house
16S processing pipeline (https://github.com/thomasgurry/amplicon_sequencing_
pipeline). Data and metadata were acquired as described in Supplementary Table 3.
When needed, we de-multiplexed sequences by finding exact matches to the
provided barcodes and trimmed primers with a maximum of one mismatch. In
general, sequences were quality filtered by truncating at the first base with quality
score Q < 25. However, some data sets did not pass this stringent quality threshold
(i.e., the resulting OTU table was either missing many of the original samples, or
the read depth was significantly lower than reported in the original paper). For 454
data, we loosened the quality threshold to 20, whereas for paired-end Illumina data,
we removed reads with more than two expected errors. If possible, all reads were
trimmed to 200 bp. In cases where this length trimming discarded a majority of
sequences, we lowered our threshold to 150 or 101 bp. The specific processing
parameters we used for each data set can be found in Supplementary Table 2. To
assign OTUs, we clustered OTUs at 100% similarity using USEARCH56 and
assigned taxonomy to the resulting OTUs with the RDP classifier17 and a con-
fidence cutoff of 0.5. For each data set, we removed samples with fewer than 100
reads and OTUs with fewer than 10 reads, as well as OTUs which were present in
fewer than 1% of samples within a study. We calculated the relative abundance of
each OTU by dividing its value by the total reads per sample. We then collapsed
OTUs to genus level by summing their respective relative abundances, discarding
any OTUs which were un-annotated at the genus level. All statistical analyses were
performed on this genus-level relative abundance data.

Statistical analyses. To perform supervised classification of cases and controls
within each data set, we built Random Forest classifiers with fivefold cross-
validation. To build our train and test sets, we used the python scikit-learn Stra-
tifiedKFold function with shuffling of the data57. To build our classifiers, we used
the RandomForestClassifier function with 1000 estimators and other default set-
tings57. We found no significant effect of various Random Forest parameters on the
AUCs (Supplementary Figs. 12 and 13). We calculated the interpolated area under
the ROC curve (AUC) for each classifier based on the cross-validation testing
results. To account for spurious high classifiability due to class imbalances, we also
calculated the Cohen’s kappa score for each classifier using sklearn.metrics.
cohen_kappa_score on the test set predictions (Supplementary Table 4). The kappa
scores correlated well with the AUCs (Pearson ρ = 0.9), indicating that the majority
of the classifiers performed well even when considering their underlying data
distributions. We excluded Youngster et al.18, which had only four distinct control
patients, from all classifier analyses.

We performed univariate analyses on the relative abundances of genera in cases
and controls with a non-parametric Kruskal–Wallis test using the scipy.stats.
mstats.kruskalwallis function58. We corrected for multiple hypothesis testing in
each data set with the Benjamini–Hochberg false discovery rate using statsmodels.
sandbox.stats.multicomp.multipletests with method='fdr_bh'22. We performed all
univariate analyses on genus-level relative abundances within each dataset
individually, and then compared these results across all studies.

We considered a genus to be consistently associated with a disease (Fig. 3a,
bottom) if it was significantly associated (q< 0.05) with the disease in the same
direction in at least two studies of that disease. We considered a genus to be a non-
specific microbial association (Fig. 3a, top) if it was significantly associated (q<
0.05) in at least one data set of at least two different diseases in the same direction.
When we defined these non-specific genera, we did not include data sets which
used non-healthy controls (Papa et al.19 and Gevers et al.26) and the Lozupone
et al. data set40, where the microbiome signal reflected behavior rather than disease
state39.

To build our generalized healthy vs. disease classifiers (Supplementary Fig. 9),
we first concatenated metadata and genus-level abundance data for all data sets that
had healthy controls (i.e., all data sets except Papa et al.19 and Gevers et al.26, which
used non-IBD patients as controls, and CDI Youngster18, which had only four
distinct controls). We performed leave-one-dataset-out and leave-one-disease-out
cross-validation and calculated an AUC for each of the cross-validation testing
results.

Microbiome community analyses. Alpha diversities were calculated based on the
non-collapsed 100% OTU-level relative abundances, and included OTUs un-
annotated at the genus level. We calculated alpha diversity metrics with the skbio.
math.diversity.alpha.chao1, shannon, and simpson implementations.

We calculated the average abundance and ubiquity (Fig. 3c) of each genus as the
mean of its average values in each data set across all patients with 16S data,
regardless of their disease state. To calculate the abundance of each genus, we first

calculated each genus’s mean abundance within each data set. We counted only
patients with non-zero abundance of the genus in this calculation. We then took
the average of these mean abundances across all data sets. To calculate the ubiquity
of each genus, we calculated the percent of patients with non-zero abundance of
that genus in each data set. We then took the average of these ubiquities across all
data sets.

Code availability. The code to reproduce all of the analyses in this paper is
available at https://github.com/cduvallet/microbiomeHD. We encourage research-
ers to incorporate their existing and future case–control studies into the Micro-
biomeHD database by contacting us.

Data availability. Raw sequencing data for each study can be accessed as described
in Supplementary Table 3. The raw processed OTU tables can be accessed at the
MicrobiomeHD database, available at https://doi.org/10.5281/zenodo.84033316.
Supplementary Files, including the q values for all genus-level comparisons in every
data set, disease-associated genera for the diseases with more than three data sets,
and a list of non-specific genera are available at https://github.com/cduvallet/
microbiomeHD. All other relevant data supporting the findings of the study are
available in this article and its Supplementary Information files, or from the cor-
responding author on request.
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