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Meta-analysis of host response networks identifies a common

core in tuberculosis
Awanti Sambarey1,2, Abhinandan Devaprasad2, Priyanka Baloni1,2, Madhulika Mishra2, Abhilash Mohan2, Priyanka Tyagi3, Amit Singh3,

JS Akshata4, Razia Sultana4, Shashidhar Buggi4 and Nagasuma Chandra2

Tuberculosis remains a major global health challenge worldwide, causing more than a million deaths annually. To determine newer
methods for detecting and combating the disease, it is necessary to characterise global host responses to infection. Several high
throughput omics studies have provided a rich resource including a list of several genes differentially regulated in tuberculosis. An
integrated analysis of these studies is necessary to identify a unified response to the infection. Such data integration is met with
several challenges owing to platform dependency, patient heterogeneity, and variability in the extent of infection, resulting in little
overlap among different datasets. Network-based approaches offer newer alternatives to integrate and compare diverse data. In
this study, we describe a meta-analysis of host’s whole blood transcriptomic profiles that were integrated into a genome-scale
protein–protein interaction network to generate response networks in active tuberculosis, and monitor their behaviour over
treatment. We report the emergence of a highly active common core in disease, showing partial reversals upon treatment. The core
comprises 380 genes in which STAT1, phospholipid scramblase 1 (PLSCR1), C1QB, OAS1, GBP2 and PSMB9 are prominent hubs. This
network captures the interplay between several biological processes including pro-inflammatory responses, apoptosis, complement
signalling, cytoskeletal rearrangement, and enhanced cytokine and chemokine signalling. The common core is specific to
tuberculosis, and was validated on an independent dataset from an Indian cohort. A network-based approach thus enables the
identification of common regulators that characterise the molecular response to infection, providing a platform-independent
foundation to leverage maximum insights from available clinical data.
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INTRODUCTION

Tuberculosis (TB) is the leading cause of death due to an infectious
agent, and continues to pose a global health challenge worldwide.
About one-third of the world’s population is estimated to be
exposed to Mycobacterium tuberculosis (Mtb), with a majority of
individuals carrying the bacilli in a latent form. In 2014 alone,
approximately 9.6 million people were estimated to have acquired
TB, resulting in 1.5 million deaths.1 Over time, Mtb has evolved
several immune evasion strategies that enable it to reside
successfully in the host, resulting either in the manifestation of
active disease or latent infection.2, 3 It has been well recognised
that the outcome of infection is a result of complex dynamics
between the host and the pathogen, triggering a series of
signalling cascades and cross-talk among various molecular
components.4 The importance of several innate immune
responses in clearing tuberculosis infection has been well
established, although their relative contribution in a quantitative
sense towards mounting adequate adaptive immune responses
still remain poorly understood. Decades of genetic and biochem-
ical experimental studies on TB have identified many important
factors that contribute to a disease phenotype,5, 6 with studies
reporting genetic polymorphisms in pattern recognition receptors
such as, the mannose receptor7 and Toll-like receptors,8 several
cytokines, chemokines,9, 10 LTA4H,11 VDR,12 as well as the

identification of genetic loci associated with increased risk
to TB.13 Independent analyses have identified processes of both
innate and adaptive immune responses as well as metabolic
processes to be significantly implicated in the disease.6, 14, 15

However, biological systems are inherently interconnected and
interdependent, and rarely will an alteration in a single gene or
gene product directly result in disease. Disease states are in fact
representations of perturbations in the underlying complex
interdependent molecular networks. It is thus important to adopt
a systems approach to address this fundamental complexity.
These approaches result in novel emergent properties that are
difficult to comprehend without considering the whole system.
Recent years have seen a surge in the availability of omics data

for the host in TB at different levels, furthering our understanding
of factors that influence predisposition to disease and markers
that correlate with disease severity.16–20 An integrated analysis of
insights obtained from multiple levels in the omics chain can
collectively shed light on changes that are effectively translated
from the genome and how they affect functions at the molecular
level, thereby providing a comprehensive and integrated per-
spective on the myriad changes that occur upon infection, as well
as on subsequent therapeutic intervention, paving the way
towards personalised medicine.
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Among the different levels in the host omics chain, exhaustive
coverage has been provided by the increased availability of
transcriptomic screens in TB across different populations as well as
in multiple cell and tissue types, including patient whole-blood
samples, isolated dendritic cells and neutrophils, and from
macrophage cell lines exposed to Mtb.21–26 These studies have
established that blood transcriptomics offers a robust approach
for studying the immunology of TB and lends itself to integrated
systems analysis to determine host responses in infection.27–29

The increasing availability of gene expression data across different
geographical locations makes collective analysis of different
datasets necessary in order to gain deeper insights into the host’s
specific response to TB. However, such collective analysis is met
with multiple challenges, and the measured signals in each study
are heavily influenced by individual experimental design, depend-
ing largely on the sensitivity of the probes used in different
platforms.30, 31 Heterogeneity among and between population
samples studies coupled with experimental biases further
compounds the problem of comparing different datasets describ-
ing TB.32 Transcriptomic studies of TB patients and their
corresponding healthy controls shed light on differentially
regulated genes [differentially expressed genes (DEGs)], and also
permit monitoring of such differential regulation upon treatment.
However, DEG-centric approaches cannot explain the underlying
mechanisms behind the observed differential regulation by
themselves, nor do they explain the functional consequences of
such expression in a systematic manner.
Analysis of host networks provides a useful alternative to study

molecular responses across multiple data platforms, enabling the
integration of different types of omics data and providing a
platform for visualisation and interpretation of changes triggered
upon perturbations such as infection. The causes and conse-
quences of differential regulation can be traced by monitoring the
interactions of DEGs in the network. Previously, we established a
methodology to construct response networks by integrating
macrophage expression data into a protein–protein interaction
network, and highlighted the ‘highest activities’ in the host
macrophage upon infection with Mtb.33 While the pathway
activities in the macrophage during infection provide insights
into the initial innate responses of the host, the immune response
to TB is complex and involves multiple players of both innate and
adaptive immunity, including macrophages, dendritic cells,
neutrophils, T cells, as well as several metabolic processes.5, 15

Whole blood captures a pool of immune cells that are trafficking
to and from the sites of active disease and lymphoid organs, and
serves as an easily accessible medium for analysis.
In this study, we describe a meta-analysis of multiple host

response networks generated by integrating whole blood expres-
sion profiles from TB patients across different studies in order to
find common disease-specific variations in an unbiased manner,
resulting in the emergence of a unified network, which we refer to
as the common core, reflective of the set of consistent changes in
the host in TB. Such an approach overcomes platform-
dependencies of individual microarray datasets, shifting focus
from DEGs alone towards a more comprehensive analysis of the
processes that are consistently altered, thereby shortlisting
important molecular players that drive the host outcome upon
infection. We observe the occurrence of the common core in an
independent dataset, further strengthening the analysis. The core
also shows variation in activity over the course of anti-tubercular
therapy, and a comparison with the response networks of other
inflammatory diseases such as pneumonia, sarcoidosis, Still’s
disease, and systemic lupus erythematosus (SLE) reveals that the
common core is a largely specific response to TB.

RESULTS

The overall approach implemented in this study and an overview
of the results are illustrated in Fig. 1.

DEGs show limited overlap across multiple datasets

A total of five datasets describing host whole blood transcriptional
expression in TB were used for meta-analysis, and are provided in
Table 1. The transcriptomic datasets for meta-analysis were
chosen such that they were from (a) whole-blood expression
profiles generated through microarray experiments of (b) adult TB
patients, (c) and have at least a few age-matched controls in the
same dataset. Although there are a few more datasets listed for
tuberculosis,16 several of them were from PBMCs and were
therefore not considered to eliminate any bias due to differences
in the source tissue. Those datasets that compared TB transcrip-
tomes with other diseases, but not with healthy controls were also
not considered. The 5 datasets chosen for this work have been
utilised in several studies and are well cited, and have led to
significant insights into the host response to tuberculosis, making
them well suited for meta-analysis. The first question to ask of this
data was to identify the set of genes that were consistently
differentially regulated in TB patients across all datasets. Surpris-
ingly, a comparison of DEGs across datasets showed very little
overlap, with only seven genes commonly up-regulated or down-
regulated across all five datasets considered (Fig. 2a). Such limited
overlap could be a result of multiple factors, including differences
in severity of infection, genetic heterogeneity among and
between population groups analysed, as well as variations in the
infecting strains in addition to platform-based dependencies for
individual datasets.
To understand the significance of such poor overlap despite a

large number of DEGs reported in each study, we first carried out a
clustering exercise for each dataset separately by considering the
normalised signal intensity values for these DEGS in each patient
and each healthy control individually within the dataset. A
hierarchical clustering was then performed using standard
protocols, which by and large yielded distinct clusters for healthy
and TB samples in each case, replicating the observations reported
in each study. Given this, we investigated if DEGs in different
datasets represent the same set of biological processes and
whether they represent different points of perturbation leading to
the same functional destinations. We therefore performed
individual gene set enrichment analyses for these DEGs, which
revealed similar processes that are differentially regulated in TB
across all datasets, implying that while each study may not report
the same DEGs, they may highlight different DEGs belonging to
common functional categories. (Fig. 2b). The DEGs computed for
individual datasets, their overlap as well as the commonly
enriched biological processes across these DEGs have been
provided in Supplementary Table S1.

Response networks capture disease-induced variations in an
unbiased fashion

To test whether the processes enriched in disease across datasets
are indeed related alterations, or if the different datasets have
neighbourhoods of alterations that are common, we employed a
networks-based approach and compared the top-ranked altera-
tions in different datasets. First, a comprehensive curated, well
annotated, global human protein–protein interaction network
(hPPiN) was constructed, accounting for several signalling,
metabolic and regulatory processes, thus providing a global
coverage into the human protein interactome. The master
network comprised 17,062 proteins (nodes) and 208,759 interac-
tions (edges), of which 168,237 edges had an assigned direction
based on their functional annotations, while the remaining 40,522
edges were considered bidirectional as they represent formation
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of structural complexes. The individual interactions in the network
along with network statistics have been listed in Supplementary
Table S2.
To obtain insights about the functional significance of variations

in expression in disease, the base network was rendered
condition-specific by mapping gene expression data in the form
of node and edge weights in the hPPiN. Each node was assigned a
weight proportional to the expression value of that gene in a
particular condition, and the corresponding edge weights were
inversely proportional to the weights of the node forming that
edge, such that a lower-edge weight implied a higher expression
value of the constituting nodes.33 Identification of high activities
in these weighted networks was posed as a problem of computing
shortest paths in each of the condition-specific networks. Shortest
paths among all nodes in the networks were computed using
Dijkstra’s algorithm, which computes a shortest path for each
given source node to a target node by traversing the lowest-
weighted edges in that route. Path cost is taken as the cumulative
sum of the weights of the edges constituting the path (Eq. 4).
Lower the path cost, higher is the perceived activity through that

path. Since condition-specificity is brought about by variations in
the weights on essentially the same blue-print, it is feasible to
identify differences in routes or paths in the networks between
healthy and disease. Differences in paths of high were thus mined
in an unbiased fashion by identifying shortest paths with least
path costs. The methodology utilising weighted networks has
been previously demonstrated to be significantly robust to noise
generated by minor variations in differential expression,34 and the
rationale for computing weighted shortest paths has been
discussed in Supplementary File S1.
Ten condition-specific networks were constructed, representa-

tive of five TB and five healthy conditions. In each of these
networks, the set of paths representing highest levels of activities
were first identified, which were then used to find active paths of
highest difference in TB compared to their corresponding controls.
We refer to these highest activity difference networks as ‘response
networks’, since they reflect a systems view of the differential
response observed in disease.
A total of 94,886,628 all-vs.-all shortest paths were computed for

all conditions. The path cost formulation was devised such that

Fig. 1 Workflow adopted in this study. Whole blood transcriptomic profiles from tuberculosis patients and corresponding healthy controls
were normalised and integrated into a curated human Protein–Protein Interaction Network (hPPiN) to generate condition-specific networks,
from which highest activity ‘response networks’ were identified. A comparison of these networks led to the identification of a common core
highly active in disease. The significance of this common core was assessed on an independent microarray dataset generated for the Indian
Cohort, and its specificity to tuberculosis was determined by monitoring its variation over treatment as well as by comparing similar response
networks generated for other inflammatory diseases Sarcoidosis, Pneumonia, Still’s disease and SLE, collectively termed as OD

Table 1. Transcriptome datasets used in this study. The number of samples selected reflect the samples chosen post normalisation and clustering in

each condition

ID Dataset Platforms Samples and condition studied Population cohort Reference

TB_1 GSE28623 Agilent Whole blood from 46 TB and 37 HC The Gambia 23

TB_2 GSE34608 Agilent Whole blood samples: 8 TB, 18 HC, and 16 Sarcoidosis Germany 24

TB_3 GSE56153 Illumina Whole blood samples: 18 TB and 18 HC London 25

TB_4 GSE19491 Illumina Whole blood samples: 56 TB, 30 HC, 29 Still’s disease, 28 ASLE UK, SA 21

TB_5 GSE42834 Agilent Whole blood samples: 35 TB, 62 HC, and 13 pneumonia samples London 22

TB_0, TB_2w, TB_2m,
TB_4m, TB_6m

GSE40553 Illumina Whole blood samples: 27 TB patients monitored at diagnosis,
2 weeks, 2 months, 4 months and 6 months post treatment.

SA 40

Meta-analysis of host response networks
A Sambarey et al

3

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017)  4 



paths with the least cost were considered to be most active,
expected to contain highly expressed genes. A percentile-based
ranking was adopted to rank paths, with lower cost paths
attaining higher ranks. Two thresholds were considered to
represent tiers of activity—paths in the 99.5th percentile were
considered to be of highest activity (Tier-1), while those in the

99th percentile were considered to be of high activity (Tier-2), and
were inspected for further analysis. While paths below this
threshold could still be significant and their exclusion may result
in the elimination of important genes, for purposes of identifying
the most significant responses, we lay emphasis on the high
activity paths alone, thereby erring on the side of caution. Both

Fig. 2 Comparison of whole blood transcriptomic datasets in tuberculosis at different levels reveals commonalities among differences.
a A Venn diagram illustrating very little overlap between DEGs reported by individual datasets b Comparison of gene ontology terms for the
DEGs however, reveal several common enriched biological processes across datasets c Pooled representation of individual response networks
generated for all five datasets, illustrates a considerable amount of overlap. Node colours and sizes are proportional to the number of
response networks the nodes occur in, with single occurrences seen at the periphery of the network (grey) and nodes occurring in all response
networks (red) forming a highly interconnected core in the centre highlighting their high centrality
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Tier-1 and Tier-2 paths were compared across the condition-
specific networks for HC and TB, and paths unique to each TB
network were considered. These unique highest activity paths in
TB are now representative of the most active difference responses
occurring in patients.
The nodes in the TB response networks expectedly comprise

genes that are upregulated in disease, but in addition they also
include those genes that are constitutively expressed and which
form mediating ‘bridges’ among such upregulated genes, thereby
providing mechanistic insights into the nature of the flow of such
differential regulation in the host, which would otherwise be
missed if the focus was on DEGs alone. Interestingly, we observe
that the Tier-1 response networks for each TB dataset comprises a
well-connected subnetwork of the hPPiN, implying that the
differences observed are interrelated in some sense and possibly
lead to a concerted set of variations as a collective response to
disease.
Pooling the individual TB response networks by taking a union

of the Tier-1 activities for individual datasets reveals the nature of
the overlap among different datasets. The network topology is
largely dependent on the degree or connectivity of each node,
and nodes with a higher degree will be situated towards the
centre of the network. As observed in Fig. 2c, the nodes present in
only 1 dataset (grey) align at the periphery of the network, and
increasing overlap of nodes in multiple response networks
correlates with a more central positioning of the genes. The
nodes that are present in all five response networks (red) are seen
to be localised at the centre of the cumulative network, forming
interconnected edges. The topological architecture of the pooled
network thus points to a central core subnetwork of genes that is
likely to drive the host responses in active tuberculosis,
independent of the population cohort analysed. It is thus apparent
that the DEGs in different datasets, although not identical, belong
to common neighbourhoods in interaction networks. Analysis of
such a subnetwork would thus lead to deeper insights into the
primary processes that are regulated in the host in TB.

Emergence of an active interconnected ‘common core’ in disease

Comparison of different response networks reveals a higher
overlap among nodes, in contrast to the comparison of DEGs
alone, suggesting that despite limited commonalities observed at
the individual gene level, the response networks can capture
multiple similarities in biological processes and participating
nodes. To identify the individual interactions driving such similar
processes across datasets, the computed shortest paths for
individual tier-1 TB response networks were compared, and a
set of 713 common pathways was identified. These paths
constitute an interaction network comprising 380 nodes and
467 edges, which we refer to as the common core. The common
core is seen to be largely interconnected with only a few sparse
edges, implying extensive cross-talk across multiple nodes that
contribute to the molecular response in TB. To assess the
probability of emergence of the common core out of chance, a
permutation test was carried out as described in the Methods. The
distribution of the overlap between randomly picked genes and
the common core genes revealed that the maximum overlap with
the common core in all the 10^5 random selections was 6%, clearly
showing the probability of picking up these genes just by chance
is very low.
As seen in Fig. 3a, the common core is largely centred around

STAT1, a transcription factor that primarily mediates pro-
inflammatory responses as well as links other important signalling
processes in the host. The other hubs in the network include
genes PLSCR1, DAZAP2, C1QB, OAS1 and GBP2. Response networks
can thus capture common regulatory mechanisms across datasets
encompassing multiple populations. The most enriched processes
in the common core have been shortlisted in Fig. 3b. The common

core interactions and detailed pathway enrichment have been
enlisted in Supplementary File S3.
We observe the enrichment of several inflammatory processes

involving signalling mediated by cytokines and their receptors,
particularly by pro-inflammatory cytokines IL2, IL11, IL3, IL6, IL5,
TNF and IFNG. Subsequently, the activation of anti-inflammatory
processes mediated by cytokines IL-4 and TFG-beta is also
observed. Complement and coagulation cascades are seen to be
at play along with other signalling processes such as Kit receptor
signalling and Notch Signalling pathways, as well as natural killer
cells-mediated cytotoxicity, characteristic of tubercular infection.
Cytoskeletal remodelling is actively observed, and can be
attributed to structural changes in the cell during phagocytosis
of Mtb along with leucocyte endothelial migration involved in the
activation of T cell responses by chemokines secreted from
macrophages and dendritic cells towards lymph nodes. While
signalling processes are highly activated, host lipid signalling and
metabolic processes are conspicuously absent in the common
core. The subnetwork centred around STAT1 involves multiple
players that respond to both Type I and Type II interferons.35

PLSCR1 is a calcium binding protein which is induced by
interferons and several growth factors, and is known to mediate
the movement of plasma membrane phospholipids in several
processes including apoptosis and cellular injury.36 It is a
significant contributor to the infection-triggered apoptotic
responses observed in tuberculosis triggered by CASP8, and also
serves as a receptor for the secretory leucocyte proteinase
inhibitor SLPI,37 implicated in antimicrobial responses, which has
been captured in the common core. DAZAP2 is known to be
influential in mediating Wnt signalling, and also participates in
multiple signalling pathways38 including interactions with TGF-
beta, a cytokine known to play a central role in curtailing
inflammatory responses in TB. A C1QB-centred subnetwork
highlights the activation of complement signalling. Several genes
participating in the innate immune response are captured in the
common core, including OAS1, GBP1, GBP2, BCL6 and members of
the TNF superfamily. While the common core consists of only 380
genes, these genes show a similar functional enrichment to that of
the individual response networks containing significantly larger
number of genes, implying that it is this common core that
predominantly drives the relevant processes in the host in TB.
To identify additional processes in the host, the tier-2 paths

were compared across individual response networks, revealing an
overlap of 1869 paths. These paths constituted a network of 747
genes and 920 edges (Fig. 4), largely retaining the topological
architecture of the tier-1 common core. Additional subnetworks
emerged around newer hub nodes SP1, COPS5, JAK2 and TLR4,
highlighting processes of immune activation and proteolysis. The
topmost enriched KEGG pathways in each subnetwork around
these hub nodes are also illustrated.
While transcriptomic changes provide insights into variations in

gene expression, inspecting genetic polymorphisms reported by
single nucleotide polymorphism (SNP) studies and genome-wide
association studies in multiple populations in the context of
response networks could depict how changes at the gene level
are carried forward to result in variations in expression. Genes with
genetic polymorphisms implicated with increased susceptibility to
tuberculosis reported in literature12 and from the Online
Mendelian Inheritance in Man database39 were enlisted, and 30
of these genes were seen to occur in the common core. These
include STAT1, CXCL10, TLR2, IRF1, RBBP8, VDR, IL10, IFNG, IFNGR1,
AKT1, CCR2, CCR5, CISH, CYBB, IKBKG, IL12A, IL12B, IL12RB1, IL12RB2,
IL1B, IRF8, MMP9, MYD88, NGFR, NR1H2, PAK2, TBK1, TBX21,

TNFRSF1A, and TOLLIP, and are highlighted in Fig. 4.
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Fig. 3 a The emergent common core characteristic of the host response in tuberculosis. b Pathway enrichment (p≤ 0.05) highlights most
significant biological pathways in the a
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Fig. 4 The Tier-2 common core depicting highly active nodes and their corresponding pathways enriched in disease. The STAT-1 centric
responses are retained at Tier 2 and the emergence of other well connected hubs such as MAPK1 and SP1 is also observed, encompassing
myriad signalling processes and their crosstalk across multiple cell and tissue types, captured in the whole blood milieu. Genes reported to
have SNPs in different studies ascribing susceptibility to tuberculosis are marked in red in this network

Meta-analysis of host response networks
A Sambarey et al

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2017)  4 



The common core can sufficiently distinguish between diseased
and healthy samples

To investigate if the common core was sufficiently characteristic of
TB relative to healthy controls, we carried out a principle
component analysis using the expression values of the genes
constituting the common core from individual samples across all
five datasets chosen for the meta-analysis. Figure 5 depicts the
observed separation using the first two principal components of
the common core across datasets, demonstrating the ability of the
common core to yield a relatively a high extent of separation
between healthy controls and diseased samples. This analysis
serves to demonstrate that the common core can discriminate
between the two conditions, laying further emphasis on its
specificity to active disease.

The common core exhibits partial reversal upon anti-tubercular
treatment

As the above analysis is strongly suggestive of pathological
relevance to the common core, we wanted to investigate if it
showed variations over anti-tubercular treatment. Response net-
works were constructed from whole blood samples capturing
expression profiles from patients subjected to standard anti-
tubercular therapy.40 Samples were monitored at diagnosis of
tuberculosis (TB_0), 2 weeks (TB_2w), 2 months (TB_2m), 6 months
(TB_6m) and 12 months (TB_12m) post treatment. The response
networks at different time points were constructed relative to
TB_0. Analysis of these response networks revealed a change in
the network topology within 2 weeks of treatment (Fig. 6a), with
STAT1 no longer being a central node, implying the reduction in
inflammatory responses. Instead, IL2-mediated responses emerge
as a significant hub, and the type 1 interferon responses are
retained. The interactions mediating complement signalling are
lost in TB_2w. The common core was observed at TB_0 but its
presence witnesses a gradual disappearance over time, further
strengthening the observation that the core is an infection-
induced response in the host. Figure 6b reveals a subnetwork of
the core that is completely lost after 12 months of treatment, and
Fig. 6c reports the emergence of newer subnetworks around the
hubs NT5E, CRIP2, TRAF2, NOTCH4, MNAT, ADCY9, NMUR1, PLCG1,
ESR1, PRKCB and PRKCG upon completion of therapy, many of
which emerge at time point TB_6m. In addition to these hubs,
several interactions at TB_6m are largely retained at TB_12m,

indicating that these genes could possibly reflect the end points
of successful treatment. The individual response networks at
different time points of therapy are provided in Supplementary
table S4.

A common repressed network highlights processes that are
downregulated in disease

To determine the network of processes that are downregulated in
TB, top-repressed networks were also constructed by considering
all those paths that were downregulated in disease as compared
to the controls, and a common repressed network was
subsequently identified. This common repressed network is
constituted by 125 genes, with 105 interactions between them.
Contrary to the common core, this downregulated network is
largely disconnected, with distinct modules forming around
certain hub genes, as depicted in Supplementary Fig. S1a.
Significant genes that mediate such downregulation include the
chemokines CCL7, CCL20, CCL25, RPS3, MYC, CYP2E1, CD19, ADCY8,
FYN, IRF3, WNT1 and WNT3. The genes PAK6 and CRIP2, which are
present in this repressed network are also seen to emerge in the
active response networks post anti-tubercular treatment, further
strengthening the finding that these are indeed infection-induced
downregulations which respond to treatment. Biological pro-
cesses affected by these genes include Wnt signalling, Hedgehog
signalling, signalling mediated by G-protein coupled receptors,
cAMP signalling pathway, regulation of lipolysis, fatty acid omega
oxidation, PPAR signalling pathway and tryptophan metabolism in
the host, among others, as depicted in Fig. S1b.

Validation of the common core

In order to validate the common core, we performed the following
analyses—(a) analysis of transcriptome data from a fresh Indian
cohort of TB patients and healthy controls to test whether the
common core is consistent in these samples and (b) assessing the
specificity of the core compared to other pathologically similar
diseases.

Comparison with a fresh cohort

To validate the significance and reproducibility of the common
core, we sampled microarray data on an independent dataset from
the Indian population. Whole blood samples were taken from five

Fig. 5 2-Dimensional Principal Component Analysis plots using the common core reveal significant separation between individual TB patients
and HC samples across all datasets
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TB patients and two healthy controls, meeting the inclusion and
exclusion criteria as described in the methods. Response networks
were constructed and the subsequent high activity shortest paths
and networks were analysed at Tier-1 and Tier2 to assess the
extent of overlap of the common core in this dataset. The pathway
enrichment for the tier-1 response network for this dataset
revealed similar processes to the common core, including Type II
interferon signalling, Oncostatin M pathway, cytokine and
chemokine signalling including pathways mediated by IL6, IL1,
IL3, IL4, IL5, IL2, TGF-beta and its receptors, antigen processing and
presentation, phagocytosis mediated by Fc gamma receptors, and
Fc epsilon RI signalling pathway, NOD-like receptor signalling, HIF1
pathway and other oxidative stress, among others. These DEGs in
this response networks and the enriched pathways are provided
in Supplementary Table S5. Analysis of the shortest paths at Tier-1
revealed an overlap of 453 paths with the Tier-1 paths constituting
the common core, and a significant subnetwork of 291 genes out
of the 380 genes in the common core was reproduced in this
response network, and was seen to adopt a similar network
topology as that of the common core, centred around STAT1. Other
hubs that are also observed are PLSCR1, DAZAP2, TNFSF10 and
C1QB. Relaxing the threshold to tier-2 also showed an overlap of
1236 paths out of the 1869 tier-2 common paths generated by the
meta-analysis. Such similarities and reproducibility of the core
serve to further strengthen the significance of the approach.

Supplementary Fig. S2 highlights the overlap between the genes
in the common core and the corresponding tier-1 response
network generated for this dataset.

Specificity of the core

Several inflammatory diseases report a phenotype similar to
tuberculosis with a marked inflammatory response, further
impeding diagnosis of TB. To test the specificity of the common
core, we compared it with the corresponding response networks
of Sarcoidosis, Still’s disease, pneumonia, and SLE, which are
collectively termed as other diseases (OD). The datasets selected
for ODs are described in Table 1. Tier 1 comparisons of the OD
response networks with the paths constituting the common core
show little to no overlap, indicating that the common core is a
largely specific TB response. There are 18 paths overlapping with
TB and pneumonia, representing the PLSCR1 hub and its
interacting partners. Interestingly, while STAT1 also emerges in
the Tier-1 network in pneumonia, it makes a different set of
interactions in pneumonia as compared to tuberculosis. Since it is
the set of specific routes that constitute the top network for each
condition, we focused on the similarities in these networks
generated by common paths instead of the common nodes
among the conditions. Further, additional similarities such as
between the core and OD networks may emerge at lower

Fig. 6 Monitoring the common core upon treatment. a Variation in network topology observed in individual response networks at time points
of diagnosis, 2 weeks, 2 months, 6 months and 12 months post anti-tubercular therapy. The hub nodes occurring at different time points are
highlighted b Subnetwork of the common core lost gradually over 6 months of treatment c Subnetwork emerging post 6 months of treatment
indicating possible end points of therapy
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thresholds, for purposes of analysis only the Tier-1 comparisons
were considered, indicating specificity in the processes of highest
activity in TB. The individual Tier-1 paths for ODs are presented in
Supplementary Table S6, and the overlap between the common
core and ODs are highlighted in Supplementary Fig. S3.

DISCUSSION

For several infectious diseases including TB there now exists
extensive transcriptome data generated from individuals suffering
from the same condition in geographically distant locations or in
diverse cohorts and settings.41 Reconciliation of such data
from diverse sources is becoming necessary to derive general
patterns of disease biology for diagnosis, therapy or prevention in
the future.42 A clear example of this difficulty is the observation of
only 7 genes as common DEGs among the different cohorts of
pulmonary tuberculosis patients. A DEG-centric approach alone
may not necessarily be suggestive of disease pathology nor can it
reveal general patterns of variation in the system. A network
approach is useful to probe if the different sets of DEGs ultimately
culminate in the modulation of the same functional modules.
Monitoring the variations in the interacting partners of DEGs in
the context of their interaction networks would facilitate such an
analysis. Large scale networks typically used for studying
biological systems can be broadly classified into two types—gene
expression correlation networks and protein–protein interaction
networks. The former, which is more frequently represented in
current literature, reflect associations between gene-pairs whose
expression patterns are correlated. The latter, on the other hand
capture interactions between proteins that can lead to decipher-
ing flows, of which biochemical or signalling pathways form
classic examples. Approaches such as Weighted Gene Co-
expression Network Analysis43 show the commonalities in
modules between the different datasets but rely on networks
based on co-expression patterns. The network reported in this
study is based on high-confidence, physical interactions that have
been experimentally verified bearing evidences in literature. A
drawback of the protein-interaction networks, however, is that
they are limited in coverage by the availability of interaction data.
There could also be noise in the direction information, since
directions may be condition-specific in some cases, whereas the
networks will include data from multiple experiments. Never-
theless, the networks have been useful in obtaining a global
perspective of variations in disease,33 leading to increased usage
of protein interaction networks. Protein–protein interaction net-
works on their own suffer from the limitation of providing only a
static picture of the system at a given time. However, integrating
such networks with transcriptome or proteome data derived from
patient samples for example, and if available over the course of
disease or even treatment progression, will render the networks
condition-specific, thereby providing a dynamic view of global
changes in the system.
Networks intrinsically have the advantage of placing the nodes

in their functional contexts and facilitating the tracing of pathways
leading to a given biological goal. If different datasets contain
variations in the participating nodes at different points in these
pathways, they can be easily captured in the networks. In the
common core, pro-inflammatory responses modulated by inter-
ferons via STAT1, and apoptotic responses among others, are
highly enriched although the points of alteration may not be
exactly the same across individual datasets. While the DEG overlap
among different datasets was minimal, we observe the occurrence
of several genes such as AIM2 and ID1 which are not upregulated
in all datasets, and hence they do not intersect, but are present in
the common core as they have a common regulator in STAT1. The
approach can thus highlight common regulators that mediate
infection-induced responses. It must be pointed out that the
formulation does not impose connectivity at any stage.

Many studies have suggested the importance of Type-1
interferon system in response to TB. Similarly, the involvement
of the STAT1-VDR interaction44, 45 and the importance of
Complement Signalling have also been noted earlier. In addition,
many new genes are identified in these networks that vary in two
or more datasets and linked to the same functional modules. The
networks are thus able to capture the entire set of perturbations in
an unbiased manner in a single analysis. More importantly, the
new finding in this study is the identification of these modules as
the common minimal determinants of TB infection. Thus, a
networks approach identifies a set of genes that are pathologically
most important, providing important pointers for use in diagnosis
and therapy. Upon anti-tubercular treatment, the common core
shows variation, again emphasising their relevance to disease, and
genes belonging to the common repressed network emerge in
the response network 6 months’ post treatment, signifying
reversals in activity. The common core is also fairly specific to TB
and differs from the corresponding response networks generated
for similar inflammatory diseases.
Many routes are identified by this approach, and some of these

could be newly identified pathways, while many are rewired
routes in disease as compared to healthy controls. Future studies
which could follow up on some of these shortlisted routes in the
laboratory and obtain some experimental support, would lead to
the identification of newer biological pathways. Such an
integrated approach thus provides a platform-independent
foundation to attain maximum insights from available clinical
data in a systematic, unbiased manner, and sheds light into the
molecular characterisation of the host response to perturbations
such as infection.

MATERIALS AND METHODS

Dataset selection and processing
Whole-blood microarray profiles of patients with active pulmonary
tuberculosis with corresponding healthy controls were obtained from five
different studies reported in the NCBI Gene Expression Omnibus (GEO)
representing multi-platform data. Similar datasets were also available for
TB patients monitored over the course of standard anti-tubercular
treatment, and for patients diagnosed with sarcoidosis, pneumonia, Still’s
disease and SLE. Background corrected files were processed by performing
platform-specific normalisation in R using the package limma46 for Agilent
data and lumi47 for Illumina datasets. All data was quantile normalised and
log2 transformed. Post normalisation, individual datasets were subjected
to hierarchical clustering using the package ‘hclust’ in R, utilising the
Pearson’s correlation coefficient with default distance parameters (Eucli-
dean) to detect sample outliers. The median values of control, disease and
treatment samples were chosen to represent each condition in the dataset.
Student’s t-test was employed to compute p-values for individual genes.
Genes whose expression values changed by at least 2 fold as compared to
the corresponding controls were considered differentially expressed.
A p-value≤ 0.05 was used to determine if the fold change for each gene
was significant and consistent across all samples in each condition.

Protein–protein interaction network construction
A comprehensive genome-scale human protein–protein interaction net-
work was constructed and curated to include functional annotations and
directions. High confidence, experimentally verified interactions were
extracted from multiple protein–protein interaction sources and pathway
databases, and additional interactions were mined from primary literature.
Interactions of highest confidence having a combined score >900 were
derived from The Search Tool for The Retrieval of Interacting Genes/
Proteins (STRING) version 10.48 Regulatory interactions pertaining to
transcriptional, post-transcriptional and pathway regulators were extracted
from SignaLink 2.0.49 The Cancer Cell Map50 contains information about
genetic and physical interactions among genes and their products in any
cell, and how these interactions are impacted by alterations in the genes.
This map was queried to identify interactions present in non-diseased
conditions in the host. Further, the BioGRID database51 was mined to
identify additional unique interactions not reported by the other resources
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used. In addition to PPI databases and resources, primary literature was
explored to identify experimentally verified interacting proteins in the
human proteome. Interactions were extracted from a study by Khurana
and co-workers52 who reported the construction of an integrated human
PPI network termed ‘Multinet’, and from the macrophage interaction
network constructed by Sambarey et al.33 The functional nature of the
interactions was identified by surveying literature as well as from network
repositories such as GeneMania53 and the ‘protein actions’ file from STRING
to assign directions to the edges accordingly. Functional annotations of
interactions such as ‘activation’, ‘inhibition’, ‘phosphorylation’, ‘proteolysis’
and ‘ubiquitinylation’ were considered to determine the nature and
direction of each edge. Some interactions described a physical binding
event, and were considered as bidirectional. Additionally, those interac-
tions which had high confidence scores and experimental evidence but
did not have any functional annotation were also kept as bidirectional.
All interactions were combined to give a unified, curated and high
confidence human protein–protein interaction network which we report as
hPPiN.

Weighing the network to form condition-specific response
networks
The normalised intensities for each condition and corresponding healthy
controls were mapped on to the curated protein–protein interaction
network in the form of node and edge weights, to generate condition-
specific response networks. The formulations are adapted from the study
published by Sambarey et al.33 The node weight for node i in a diseased
condition A is computed as:

NiðAÞ ¼ FCiðABÞ
´ SIiðAÞ; ð1Þ

where FC is the fold change of gene i, SI the normalised signal intensity of
the gene, A the diseased state, and B the healthy control. For the TB
response networks, FC for gene i in TB was computed with respect to HC,
while the FC for HC response network was kept as 1. The antilog values of
the respective signal intensities were used to compute fold changes.
The edge weight in a given condition for edge e in condition A (We(A))

comprising nodes Ni(A) and Nj(A) is computed as:

WeijðAÞ ¼ Inverse
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NiðAÞ ´NjðAÞ

q

ð2Þ

To generate repressed networks, the node weight for node i in condition
A with respect to its corresponding control (condition B) was computed as:

NiðAÞ ¼ FCiðB
A
Þ ´ SIiðBÞ ð3Þ

Shortest path analysis
Shortest paths were computed for the individual response networks by
considering all nodes, using the Dijkstra’s algorithm, implemented in
python. The algorithm computes minimum weight shortest paths, in which
each path begins from a source node and ends with a sink node, through
interacting proteins, choosing the least-cost edge in every step. The
rationale For a path of length n in condition A, the path cost was computed
as a summation of the edge weights constituting the path. The resultant
shortest paths were ranked-based on their path cost using a percentile
approach, with paths having a lower path cost given a higher rank.

Path cost ¼
X

n

e¼1

WeðAÞ ð4Þ

Network visualisation
All networks were visualised in Cytoscape version 3.3.54 Network properties
were computed using the NetworkAnalyzer plugin for Cytoscape, and the
Allegro Spring-Electric layout was selected for representation of the
network topology.

Gene and pathway enrichment
Gene set enrichment analysis was implemented using the Panther
database to identify significantly enriched Gene ontology biological
processes. The EnrichR server55 was used to identify significantly enriched
KEGG Pathways and WikiPathways, which were pooled and ranked based
on the combined score.

Permutation test
A permutation test was performed to assess the extent of overlap between
response networks expected by chance, as described in ref. 56. The same
number of genes present in the common core were randomly picked 10^5

times to obtain 10^5 different random gene-sets. The extent of overlap
between these random sets and the common core were compared, with
the null hypothesis that there is no difference between random gene-sets
and the common core. The p-value for this comparison was computed as:

p ¼
No: of Rg > 0:1

No: of permutations

where Rg is a random node-set from the generated graphs.

Dataset generation and sample processing
For purposes of validation, independent whole-blood samples were
collected from freshly diagnosed TB patients in the Indian Cohort, from
the SDS-TRIC Rajiv Gandhi Institute for Chest Diseases, Bangalore. The
patients had to be 18 years and above, first-episode, sputum tested
positive for tuberculosis with the diagnosis confirmed by a pulmonologist.
The exclusion criteria included absence of any other form of tuberculosis
or co-morbidities such as HIV, chronic bronchitis, diabetes mellitus, cancer,
sarcoidosis or Cytomegalo Virus infection. Pregnant women, lactating
mothers and those on any co-medication were also excluded. Written
consent was obtained from all patients.

RNA extraction and microarray analysis
Total RNA was isolated from whole blood samples using the Ribopure RNA
isolation kit (Ambion Inc.) according to the manufacturer’s instructions.
RNA was quantified using a NanoDrop-1000 spectrophotometer. The
microarray experiment was carried out using Agilent platform 039494 from
Genotypic Technology. The scanned images were analysed with Feature
Extraction Software 10.7.3.1 (Agilent) using default parameters to obtain
background subtracted and spatially detrended Processed Signal inten-
sities. The data was processed using the limma package in R where it was
log2 transformed and quantile normalised.

Availability of data and materials
The computational pipeline adopted in this study to generate response
networks is available on GitHub (https://github.com/AbhinandanD/RNG.
git). Gene expression data from the Indian Cohort has been deposited on
NCBI GEO and is available with the identifier GSE81746.
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