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Abstract

Background: When summary results from studies of counts of events in time contain zeros, the study-specific

incidence rate ratio (IRR) and its standard error cannot be calculated because the log of zero is undefined. This poses

problems for the widely used inverse-variance method that weights the study-specific IRRs to generate a pooled

estimate.

Methods: We conducted a simulation study to compare the inverse-variance method of conducting a meta-analysis

(with and without the continuity correction) with alternative methods based on either Poisson regression with fixed

interventions effects or Poisson regression with random intervention effects. We manipulated the percentage of zeros

in the intervention group (from no zeros to approximately 80 percent zeros), the levels of baseline variability and

heterogeneity in the intervention effect, and the number of studies that comprise each meta-analysis. We applied

these methods to an example from our own work in suicide prevention and to a recent meta-analysis of the

effectiveness of condoms in preventing HIV transmission.

Results: As the percentage of zeros in the data increased, the inverse-variance method of pooling data shows

increased bias and reduced coverage. Estimates from Poisson regression with fixed interventions effects also display

evidence of bias and poor coverage, due to their inability to account for heterogeneity. Pooled IRRs from Poisson

regression with random intervention effects were unaffected by the percentage of zeros in the data or the amount of

heterogeneity.

Conclusion: Inverse-variance methods perform poorly when the data contains zeros in either the control or

intervention arms. Methods based on Poisson regression with random effect terms for the variance components are

very flexible offer substantial improvement.
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Background
Meta-analysis is widely used in medical research to com-

bine information from independent studies to evaluate the

effectiveness of an intervention. When the outcome in

each independent study is a binary variable, the data can

be viewed as a two-by-two contingency table, with each

cell corresponding to counts of events (e.g. the number

of people with and without disease) in separate groups,

for example, participants assigned to treatment and con-

trol arms of an intervention study. The pooled effect size

typically of interest – a risk difference, relative risk or

odds ratio – is then based on the summary information
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collected from these studies. A related effect size, the

pooled incidence rate ratio (IRR), is instead based on

counts of events over time, for example per person-year,

recorded separately for each study arm. We refer to this

type of data as incidence rate data.

Our interest in this problem was initiated by an analy-

sis we recently undertook to evaluate the effectiveness of

installing barriers for reducing jumping deaths at known

suicide hotspots [1]. This is based on the premise that

restricting access to means is one of the few successful

suicide prevention strategies [2]. A total of eight studies

had previously counted the number of suicide deaths at

hotspots in the periods before and after the installation of

barriers and safety nets. In six of these studies there were,

however, no deaths following the installation of barriers.
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Two approaches have been proposed for conduct-

ing meta-analyses of incidence rate data. These are

the inverse-variance method [3,4] and using a Poisson

regression model with fixed intervention effects [5]. The

inverse-variance method is problematic when there are

“structural zeros” (data like ours where multiple studies

have counts of zero in one or both arms of a study) because

when a study contains a zero count, the study-specific log

IRR and the variance of the study-specific log IRR are both

undefined. Thus all studies with zero counts are omit-

ted from the analysis. One proposed remedy is to apply a

continuity correction [6]; although this has generally only

been considered when a single study has a zero count, not

multiple studies. Using a Poisson regression model with

fixed intervention effects has been proposed as a means

of dealing with varying exposure time [5], but may also

be useful for addressing problems where there is a num-

ber of zero counts in the data. Another option, which

has not been applied to meta-analysis problems before,

is to extend the previous model by estimating a Pois-

son regression models with random intervention effects

instead. The advantage of this approach is that, in addition

to potentially dealing with zero counts and varying expo-

sure time, it may resolve problems that occur when there

is heterogeneity in the intervention effect. This method,

although widely used, has not previously been applied to

meta-analysis problems.

Study aims

The purpose of this study is to evaluate the usefulness

of a Poisson regression model with random intervention

effects for meta-analysis when the data contains struc-

tural zeros.We explore this using frequentist and Bayesian

implementations.Wemake comparisons with the inverse-

variance method (with and without the continuity cor-

rection) and the Poisson regression model with fixed

intervention effects. This extends previous work which

has focused on rare events and varying exposure time [3-

5,7], but not situations that result in structural zeros or

heterogeneity in the intervention effect.We evaluate these

methods through Monte Carlo simulation, manipulating

the number of zero counts, the amount of heterogeneity

in the control and intervention groups and the number of

studies within each meta-analysis. We then apply each of

thesemethods to data from two published studies: the sui-

cide prevention work outlined above [1], and a Cochrane

review which evaluated the effectiveness of condom use in

reducing heterosexual HIV transmission [8].

Methods
Inverse-variance methods

The inverse-variance method of meta-analysis synthesises

information frommultiple sources by calculating a pooled

estimate of the effect size of an intervention by taking

a weighted average of point estimates from independent

studies. This method is widely used and recommended in

the Cochrane Handbook [6] as well as other sources [3,4]

for pooling incidence rate data.

When the original effect sizes are odds ratios, hazard

ratios or risk ratios, then the estimates are first trans-

formed onto the log scale, since the sampling distribution

of the pooled estimate will be more approximately nor-

mally distributed than on the untransformed scale (thus

improving the accuracy of inferences based on asymptotic

theory) and because there is no closed form formula for

the variance of these effect sizes on the untransformed

scale. Risk-differences, or other absolutemeasures, are left

on their original scale. We briefly review the formalities of

the inverse-variance approach as it applies to estimating

pooled IRRs and the assumptions this requires.

We are interested in making inferences about the

parameter θi = log(IRRi) = log(λIi/λCi), the log IRR for

the ith study (i.e. pertaining to the target population of the

ith study) where λIi and λCi are the event rates in the inter-

vention and control arms respectively of the ith study. For

an individual study recording data on the counts of events

over time in intervention and control groups, an estimate

θ̂i of θi can be calculated from the observed log IRR as

θ̂i = log

(

EIi/TIi

ECi/TCi

)

(1)

where EIi and ECi represent the counts of the number of

events, and TIi and TCi the exposure time (e.g. in person

years), in the intervention and control groups respectively

for the ith study. Where a study contains a zero count in

either the control group or the intervention group, the

usual procedure is to add a “continuity correction” of 0.5

to the counts from both groups of the study [6] although

other values have been proposed in the context of pool-

ing odds ratios [9-11]. All estimates are then based on the

revised group sizes. The approximate standard error of

this estimate is

SE(θ̂i) =

(

1

EIi
+

1

ECi

)1/2

. (2)

Under the assumption of homogeneity, namely that θi is

constant across studies, a reasonable procedure to esti-

mate the study-independent log IRR θ is to take an average

of the study-specific estimates θ̂i weighted by the inverse

of their sampling variances. The resulting pooled estima-

tor [3,6] and its standard error are

θ̂ =

∑

wiθ̂i
∑

wi
(3)

SE(θ̂) =
1

√
∑

wi

(4)
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where wi is defined as

wi =
1

SE[ θ̂i]+τ 2
(5)

and the summations are over the study index i. In this for-

mulation, the parameter τ 2 represents the between-study

variance of θi to account for any heterogeneity in the effect

size. The parameter τ 2 can be estimated using the method

ofmoments formula [12]. Other estimators of heterogene-

ity have been proposed, for instance I2 [13,14], as well

as methods for constructing a confidence interval of the

heterogeneity estimate [15].

Before generalising the above by progressing to a regres-

sion setting, we mention a simpler method that aggregates

study-specific counts and the corresponding exposure

time in each arm across studies, and then calculates

the pooled incidence rate ratio using these totals. This

approach, sometimes referred to as the “naive method”

[16,17], estimates a pooled effect size that is the ratio of

exposure time-weighted averages of study-specific rates in

the intervention and control arms. The study by Weller

and David-Beaty [8], to which we return in the application

section, provides an example of this approach. The defi-

ciency with this method is that in order for it to produce

an unbiased estimate of an intervention effect it requires

the strong assumption that the population events rates in

both the control arms and intervention arms do not vary

between studies. Although this assumption can be tested

empirically using the data it seems unrealistic and is likely

to hold only very infrequently in practice. In addition, this

approach has been criticised because it fails to account

for between-study heterogeneity, and in the context of

network meta-analysis, breaks randomisation [16,17]. As

such, we do not consider this approach further.

Poisson regression with fixed intervention effects

Inverse-variance weighted averages of study-specific log

IRRs can also be achieved by using a suitably specified

Poisson regression model [4,5]. In this approach, the data

are set up in a long form so that each observation rep-

resents the number of events in each arm of each study

(see the Additional file 1: Appendix for an example of

this data structure). The model is specified in such a way

that the regression coefficients represent the intervention

effect and the event rate of the control group in each

study. Each study arm’s exposure time is included as an

offset term, with robust standard errors (with the study

as the “cluster”) used to adjust the estimated precision

of the estimates for any between-study variability in the

intervention effect. Specifically we model the data as

yij = Poisson(μij)

μij = exp[βi + βint × j + log(timeij)]
(6)

where i = 1, 2, . . . ,K represents the study index across K

studies contributing data to the analysis, j represents the

intervention index (coded 0 in the control group and 1 in

the intervention group),μij is the expectation of yij, yij and

timeij are the event count and exposure time respectively

for the jth group in the ith study, βi is the logarithm of the

event rate in the control group of the ith study, and βint is

the logarithm of the pooled IRR.

The Poisson regression model presented above is able

to accommodate baseline variability (variance in the con-

trol event rates across studies). It does, however, assume

that the IRRs are constant across studies, so it does not

as specified above allow for heterogeneity in the inter-

vention effect that is not explained by baseline variability.

One could fit a saturated model interacting indicator vari-

ables for study with the binary intervention variable, for

example

exp[β1 + βint × j + β1 × βint × j + · · · + βk + βk × βint

× j + log(timeij)]

However, this would produce amodel that simply repro-

duces the data (i.e. observed and fitted values would be the

same) and likely over-fitted (i.e. have poor predictive per-

formance in out-of-sample testing). In the next section we

consider extending the Poisson regression model to relax

the assumption that βint is constant across studies (i.e. the

effect size is homogeneous across studies) and to allow for

(and quantify) any heterogeneity in a parsimonious way.

Poisson regression with random intervention effects

Poisson regression with fixed intervention effects can be

extended to measure baseline variability and between-

study heterogeneity in the intervention effect. We do this

by declaring the study-specific parameters in the linear

predictor to be random effects that are assumed to have

been drawn from a distribution of such effects across a

hypothetical population of similar studies. The parame-

ters governing the distribution of these random effects are

estimated from the data. One such model that allows us to

assess both baseline variability and between-study hetero-

geneity in the intervention effect has random effects for

both the intercept and intervention effect is

yij = Poisson(μij)

μij = exp[ (β1 + γi0) + (βint + γi1) × j + log(timeij)] ,

(7)

where γi0 ∼ N(0, σ 2) and γi1 ∼ N(0, τ 2). The param-

eters β1 and βint are fixed effect regression coefficients,

whereas γi0 represents the study-specific deviation from

the average event rate and γi1 represents the study-

specific deviations from the average intervention effect.

Their variances, σ 2 and τ 2, estimate the baseline variabil-

ity and between-study heterogeneity in the control group
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and intervention effect respectively. These are referred to

as random effects variance parameters.

As with the fixed effect model, exp(βint) represents the

pooled IRR. It appears in this model, however, with the

explicit acknowledgement that it is a population-averaged

parameter and that specific instances of the IRR may vary

between the sub-populations that are the targets of each

study. Note that while we focus on a two-group compar-

ison here, this approach is very flexible and can accom-

modate designs where there are multiple treatment arms

(i.e. a three-group comparison) through the use of indi-

cator variables and random-effects parameters for each

treatment arm in the model. We refer to this approach as

“Poisson regression with random intervention effects”.

Mixed-effect models can also be fitted by taking a

Bayesian approach, that is, specifying a full probabil-

ity model with distributional assumptions for both the

observed data and the model parameters. Such a speci-

fication is particularly suited to hierarchical models like

those used in meta-analysis, where the distribution of the

data (in the case of meta-analyses, the event counts) are

governed by parameters (the study-specific event rates

and intervention effect) that themselves have a population

distribution defined by a set of hyper-parameters (the ran-

dom effects variance parameters) and so on as we progress

through the levels of the hierarchy. The advantage of a

full probability model specification is that it produces a

joint posterior probability distribution for the parame-

ters, which allows for more flexible approach to inference

and incorporates explicitly the uncertainty of estimation

in all parameters. We refer to this approach as “Bayesian

Poisson regression with random intervention effects”.

The Bayesian approach comes at a cost, however, and

that is the need to specify prior probability distributions

for the unknown parameters (a sampling distribution for

the data is also required, but this is usually implicit in the

proposed regression model). It is well known that infer-

ences about variance parameters when the data are sparse

can be especially sensitive to the choice of prior distribu-

tions [18-20]. In this situation, non-informative prior dis-

tributions (prior distributions that are intended to allow

Bayesian inference when not much is known beyond what

is available in the data) are often employed. Several non-

informative prior distributions have been proposed for

estimating the variance parameters for continuous (nor-

mal) outcomes, i.e. estimating σ 2
α when θij ∼ Normal(μ +

αj, σ
2
y ) where αj ∼ Normal(0, σ 2

α ). These are the inverse-

Gamma distribution, the log-normal distribution and the

half-Cauchy distribution [19,21,22].

When the inverse-gamma distribution is used as a prior

distribution for the variance parameters, σ 2 ∼ 1/z and

τ 2 ∼ 1/z where z = Gamma(ǫ, ǫ). When ǫ = 0.001 this

is a proper prior distribution (i.e. it does not depend on

the data and integrates to 1 [23]) and close to uniform on

log(σ ) and log(τ ). The inverse-gamma(0.001, 0.001) dis-

tribution has a peak close to zero and a long tail, meaning

that low values for the variance components are supported

(although when σ 2 or τ 2 are not close to zero this may

unreasonably influence the posterior distribution).

If a log-normal prior distribution is employed as a prior

distribution for the variance parameters, then the log

standard deviations are normally distributed (e.g. σ ∼

Normal[ 0, 1002] and τ ∼ Normal[ 0, 1002]). A related

prior, which allows estimation of the standard deviations

on their natural scale is the half-Cauchy prior distribution,

i.e. σ ∼ half-Cauchy(C) and τ ∼ half-Cauchy(C). The

parameter C is the population median standard deviation.

In a pure Bayesian analysis, the value of C would be based

on prior information.

A final strategy is to take an empirical Bayes approach;

for example, allowing the specification of the prior distri-

bution for the variance parameters to depend on estimates

of their magnitude and precision based on results from a

non-Bayesian (frequentist) analysis. A possible prior dis-

tribution has the form σ ∼ Uniform[ 0, σ̂ + SE(σ̂ )] and

τ ∼ Uniform[ 0, τ̂ + SE(τ̂ )].

Simulation study
Overview

We use simulation methods to evaluate the performance

of six different methods of pooling IRRs. These are (1) the

inverse-variance method; (2) the inverse-variance method

with the continuity correction; (3) Poisson regression with

fixed intervention effects; (4) Poisson regression with ran-

dom intervention effects; (5) Bayesian Poisson regression

with random intervention effects with a inverse-gamma

prior for the variance parameters; and (6) Bayesian Pois-

son regression with random intervention effects with a

half-Cauchy prior for the variance parameters. The two

key manipulations were the number of zero counts and

the level of baseline variability and heterogeneity in each

meta-analysis sample. We also varied the number of stud-

ies within each meta-analysis.

Data generation

Table 1 shows the list of parameters and their assigned

values used to simulate the data. Simulated datasets were

drawn from a Poisson distribution using Eq. 7. Our sim-

ulations fixed βint at log(0.2) = −1.609, meaning that

the number of events in the intervention group were 80

percent less per unit of time than in the control group.

The values for time were integer values drawn from a

uniform distribution. In the control groups, time ranged

from two to ten years; in the intervention group it ranged

from two to five years. This mimicked the pre- and post-

intervention suicide studies discussed previously where

typically a larger amount of pre-intervention data was

available than post-intervention.
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Table 1 Values used in the simulation study

Assigned values

Methods evaluated

Inverse-variance method

Inverse-variance method with
continuity correction

Poisson regression model with fixed
intervention effects

Poisson regression model with
random intervention effects

Bayesian Poisson regression model
with random intervention effects
using inverse-gamma priors for τ 2

Bayesian Poisson regression model
with random intervention effects
using half-Cauchy priors for τ

Fixed parameters

Incidence rate ratio, exp(βint) 0.2

Time, intervention group, t1 t1 ∼ Uniform(2, 5)

Time, control group, t0 t0 ∼ Uniform(2, 10)

Number of simulated datasets per
scenario, Bs

500

Varied parameters

Percent of zero counts in the
intervention group, Poisson(β1 ∗ 0.2)

0.09%, 5%, 14%, 37%, 55%, 82%

Heterogeneity: control and
intervention groups, σ , τ

Scenario A (0.1, 0.5)

Scenario B (0.1, 2.5)

Scenario C (1.0, 0.5)

Scenario D (1.0, 2.5)

Scenario E (0.1 × β1 , 2.5)

Number of studies, k 5, 10, 20

We varied the percentage of zeros in the intervention

group from approximately 0.09 percent zeros to 82 per-

cent zeros. We did this through setting the values of β1 to

log(35), log(15), log(10), log(5), log(3) and log(1) so that

when we drew random observations a Poisson distribu-

tion with mean μ = exp(β1) × 0.2, the probability y = 0

would be 0.1, 5, 14, 37, 55 and 82 percent, respectively

(ignoring random-effects). These values provided a range

in which to explore the effect of increasing the percentage

of zeros in the data.

We also varied the amount of baseline variability and

between-study heterogeneity. We considered scenarios

where baseline variability was either σ = 0.1 or 1.0

or where the baseline variability was proportionate to

the baseline event rate (σ = 0.1 × exp(β1)). Similarly,

we examined two values of between-study heterogene-

ity in the intervention effect, τ = 0.5 or 2.5. In all, we

examined five combinations of σ and τ representing the

broad spectrum in which baseline variability and hetero-

geneity may influence real-world data. We refer to these

as “Scenario A”, “Scenario B”, and so on.

Finally, we varied the number of studies that comprised

each meta-analysis, setting k = 5, 10 and 20. We primarily

focus on reporting the results of k = 5 and k = 10 studies,

given that this represents the typical size of a systematic

review in medicine [9,24].

Implementation

Varying six values of β1, the five heterogeneity conditions

and the three study sizes, produced s = 90 scenarios for

comparison. We simulated Bs = 500 datasets for each of

the 90 scenarios, giving a total of 45,000 simulations. (We

chose this number of simulations to keep the computa-

tion time manageable.) We used Stata 13.1 [25] to gen-

erate the data and estimate parameters for the first four

methods of interest. We estimated parameters from the

inverse-variance method using the metan package [26] in

Stata. We used the poisson command in Stata to esti-

mate a Poisson regression model with fixed intervention

effects and the meqrpoisson to estimate the Poisson

regression model with random intervention effects. The

Bayesian Poisson regression models with random inter-

vention effects were estimated using JAGS 3.10 [27] and

rjags in R 3.1.1 [28]. For the Bayesian Poisson regres-

sion model with an inverse-gamma prior distribution for

the variance parameters we used ǫ = 0.001. For the equiv-

alent model with a half-Cauchy prior distribution we used

C = 1. The Bayesian models were fit using two chains

with an initial burn-in of 1000 iterations, followed by sam-

pling of 5000 iterations. We checked a random sample of

simulations from each scenario to determine if the chains

had mixed together and encountered no problems.

Data extraction and analysis

From each simulation we extracted the estimated log IRR,

β̂inti, its standard error, SE(β̂inti), and the estimates of the

variance parameters, σ̂i and τ̂i. For β̂inti, we evaluate bias,

accuracy and coverage for each of the 90 scenarios of

interest; for σ̂i and τ̂i we evaluate bias only [29].

Bias in the log IRR was estimated by the percentage

bias (
¯̂
βint − βint/βint) × 100, where

¯̂
βint =

∑Bs
i=1 β̂inti/Bs

and βint = log(0.2) = −1.609. Accuracy was measured

by the mean square error, (
¯̂
βint − βint)

2 + (SE(β̂int))
2,

where SE(β̂int) is the empircal standard error over the Bs

simulations. We calculated coverage, the proportion of

simulation in which the 95% confidence interval β̂inti ±

1.96 × SE(β̂inti) includes βint.

The percentage bias in τ̂i was estimated for all models

except the Poisson regression model with fixed interven-

tion effects by ( ¯̂τ−τ/τ)×100, where ¯̂τ =
∑Bs

i=1 τ̂i/Bs. Only

the Poisson regressionmethods with random intervention
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effects estimate σ̂i. We therefore only extracted this in

these cases, estimating percent bias in the same way as

for τ̂i.

Empirical studies
Suicides from known jumping hotspots

In the introduction we briefly described the motivating

example for this simulation study – a meta-analysis of the

effectiveness of installing barriers on reducing suicide by

jumping at known hotspots [1]. Jumps from these sites

(bridges, viaducts and cliffs) generally have high fatality

rates, can cause significant distress or injury to bystanders

and often receive prominent media coverage, increasing

the risk of copycat acts [30]. A number of studies have

investigated the effectiveness of structural interventions

– such as barriers, fences or safety nets – on reducing

suicide by jumping at these sites [31-39]. Individual stud-

ies are typically before-and-after designs, with the pre-

intervention period considered the “control” group and

the post-intervention the “intervention” group. (Although

we do not show the data here, these studies also com-

pare suicide rates at nearby sites before and after the

introduction of barriers at the hotspot, thereby providing

additional information on the effectiveness of barriers.)

The data from the eight studies that examined the num-

ber of suicides by jumping before and after the installation

of barriers is shown in Table 2. Six of the studies had zero

events after the introduction of barriers at the hotspots

and exposure time ranged from approximately 5 months

to 22 years. Pirkis et al. [1] reported a pooled incidence

rate ratio of 0.14 with 95% CI 0.09 to 0.21, although this

estimate does not include a parameter for τ , the random-

effect parameter for between-study heterogeneity in the

intervention effect. We re-analyse this data using the six

methods outlined in the simulation study.

Condom effectiveness in reducing heterosexual HIV

transmission

Weller and Davis-Beaty [8] used meta-analysis to evalu-

ate the effectiveness of condoms in reducing the incidence

Table 2 Suicide counts and exposure time by study

Pre-intervention Post-intervention

Study no. No. events Time (years) No. events Time (years)

1 19 6 0 4

2 41 5 20 5

3 221 14 0 0.4

4 25 7 1 5

5 14 22 0 22

6 7 3 0 3

7 96 9 0 4

8 13 10 0 2

of HIV infection between heterosexual couples. They

included studies that examined the direction of trans-

mission from male to female partners, female to male

partners, and studies where the direction of transmission

was unknown. This was based on observational data, so

the “control” group was couples who never used condoms

and the “intervention” group was those who always used

condoms. The outcome of interest was the incidence of

HIV transmission.

Weller and Davis-Beaty [8] identified 14 studies that

met the inclusion criteria. The data used in their meta-

analysis is shown in Table 3. The unit of analysis was the

study/direction of transmission. Most studies are repre-

sented by a single row of data because they examine the

transmission in one direction only; however, two studies

(denoted as study numbers 1 and 2 and study numbers

11 and 12) are represented twice because they examined

transmissions in two directions. We use this unit of anal-

ysis to be consistent with the original study. The † symbol

indicates the data that Weller and Davis-Beaty used in

their primary analysis.

Results
Simulation study

Figure 1 shows the percentage bias in the pooled IRR on

the log scale across the scenarios. The plots are grouped

by method (columns) and scenario (rows) and are pre-

sented separately for k = 5 (top panel) and k = 10 studies

Table 3 Heterosexual HIV transmission counts and

exposure time by study

Always use condoms Never use condoms

Study no. No. events Person-years No. events Person-years

1 0 11.5 † 2 6.9 †

2 0 8.4 † 4 21.1

3 1 101 † 13 185.3

4 1 8.54 † - -

5 - - 1 .006

6 0 45.2 † - -

7 4 136.1 † - -

8 0 28 † - -

9 5 362.5 † - -

10 - - 0 5 †

11 - - 2 60.4 †

12 - - 10 147 †

13 - - 8 139.3

14 0 7.5 † 0 9.6

15 0 249.6 † - -

16 0 6 † 0 24 †

† Included in the primary analysis.
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Figure 1 Percentage bias in the estimate of
¯̂
βint by number of studies, estimation method and percentage of zeros in the data. The true value is

log(0.2) = −1.609 and the estimates are unbiased if they fall along the x = 0 line. (A) k = 5 studies and (B) k = 10 studies.
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(bottom panel). (All results for k = 20 are presented in

the Additional file 1: Appendix.)Within each plot, the per-

centage of zeros in the data increases as the values on

the y-axis increase from approximately 0.1% zeros to 82%

zeros. The pooled log IRR,
¯̂
βint, is unbiased if it falls along

the vertical line at x = 0.
As the percentage of sparse data within the interven-

tion group increases, the point estimate of the pooled

log IRR derived from the inverse-variance method dis-

play increased bias (column 1). For instance, in scenario

A (σ = 0.1, τ = 0.5) with k = 5 studies, the percent-

age bias is approximately 0% when there is effectively no

zeros in the data. With 5% zeros, the percentage bias is

5%, increasing to 50% when there is around 82% zeros in

the data. This pattern is replicated for all other scenarios

and when k = 10 and k = 20 (see the Table A1 in the

Additional file 1: Appendix). This pattern occurs because

the log IRR for an individual study is undefined when

there are zero events, and as a result, studies with zeros

are excluded from the estimate of the pooled effect size,

biasing the results. This pattern is exacerbated by larger

heterogeneity values (τ = 2.5 in scenarios B, D and E). For

instance, when there is 82% zeros in the data, the percent

bias is 133%, 116% and 130% in these scenarios respec-

tively for k = 5, and by a similar amount for k = 10 and 20.

The continuity correction does not remedy any of these

problems (column 2).
The Poisson regression model with a fixed intervention

effect (column 3) displays only a small amount of bias in

the pooled log IRR when there is low baseline variabil-

ity (σ = 0.1 in scenarios A and C). In these scenarios,

the percentage bias ranged from 0.6% to 8% for all val-

ues of k. But when heterogeneity was larger (τ = 2.5 in

scenarios B, D and E) then this method produced point

estimates of the pooled log IRR that diverge substantially

from their true values. For example, the percentage bias

in scenario B is approximately 100% for k = 5 regardless

of the amount of zeros in the data, and range from 120%

to 134% when k = 10. In contrast to this, the Poisson

regression model with random intervention effects (col-

umn 4) produced estimates of the pooled log IRR that

were close to their true value in all scenarios. The percent-

age bias ranged from approximately 0% to 11% for k = 5

and between 0% and 7% when k = 10. The size of any bias

was unrelated to the percentage of zeros in the data or by

baseline variability and between-study heterogeneity.
A Bayesian approach to the Poisson regression model

with random intervention effects produced biased pooled

log IRRs. When the variance parameters were estimated

using an inverse-gamma prior distribution, the pooled log

IRR was close to the true value in scenarios when there

was only a small amount of zeros in the data (column

5). For instance, when k = 5 and there was no zeros in

the data, the percentage bias was just 2.2% in scenario A,

16% in scenario B, 6% in scenario C, 13% in scenario D

and 29% in scenario E. As the percentage of zeros in the

data increased, the amount of bias increased, such that,

for instance, when there were 82% zeros in the data, the

percentage bias was 61%, 121%, 73%, 95% and 112% in

scenarios A through E respectively. While these effects

were attenuated when k = 10 and k = 20 (Additional

file 1: Appendix, Table A1), the general pattern remained.

A similar picture emerged when the variance parame-

ters were estimated using a half-Cauchy prior distribution

(column 6).

Figure 2 shows the accuracy of the different methods for

k = 5 and k = 10 measured by the mean square error.

The plots are arranged as above. Smaller mean square

error values are preferable to larger values, all else being

equal. When k = 5, all methods show larger mean square

error values when there is a a high percentage of zeros

in the data compared with when there is only a small

amount of zeros. For example, for scenario A, using the

inverse-variance method, mean square values range from

0.06 (when there is approximately 0.1% zeros in the data)

to 0.85 (when there is 82% zeros). Mean square error

values were largest on average for the Bayesian Poisson

regression models with random intervention effects and

smallest for the inverse-variance method with the con-

tinuity correction. The Poisson regression model with

random intervention effects had the next smallest mean

square error values on average. When k = 10, the mean

square error wasmuch smaller for all models and the Pois-

son regression model with random intervention effects

had the smallest average value in four of the five scenarios.

Figure 3 shows the coverage of each method. The line

at x = 95 indicates the nominal 95% confidence inter-

val (i.e. where estimated confidence interval includes the

true value in 95% of simulations). The inverse-variance

methods (with and without the continuity correction) and

Poisson regression model with fixed intervention effects

(columns 1–3) had consistently poor coverage for both

values of k. The coverage for the Poisson regression model

with random intervention effects was slightly below the

nominal 95% value while the coverage for the two Bayesian

implementations of this model was slightly above the 95%

value.

Finally Figures 4 and 5 show the percentage bias in

the variance components σ̂ and ¯̂τ by method (noting

that σ̂i is not estimated using inverse-variance methods

and that neither σ̂i nor τ̂i is estimated with the Pois-

son regression model with fixed intervention effects). For
¯̂σ , all methods displayed bias, but the bias was small-

est and most consistent for the the Poisson regression

model with random intervention effects (range 20% to

49% bias for k = 5 in scenario A versus, for instance, 20%

to 180% for the equivalent Bayesian Poisson regression

model with a gamma prior distribution for the variance
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Figure 2 Mean square error by number of studies, estimation method and percentage of zeros in the data. Lower values are preferable to higher

values. (A) k = 5 studies and (B) k = 10 studies.
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Figure 3 Coverage by number of studies, estimation method and percentage of zeros in the data. Methods with good coverage will have values

close to x = 95 percent. (A) k = 5 studies and (B) k = 10 studies.
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Figure 4 Percentage bias in the estimate of ¯̂σ by number of studies, estimation method and percentage of zeros in the data. The estimates are

unbiased if they fall along the x = 0 line. (A) k = 5 studies and (B) k = 10 studies.
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Figure 5 Percentage bias in the estimate of ¯̂τ by number of studies, estimation method and percentage of zeros in the data. The estimates are

unbiased if they fall along the x = 0 line. (A) k =n 5 studies and (B) k = 10 studies.
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components.) A similar picture emerged for ¯̂τ . All meth-

ods displayed bias and the bias was exacerbated by the

percentage of zeros in the data and the number of stud-

ies within each meta-analysis. But the bias for the Poisson

regression model with random intervention effects was

generally smaller than for the competing methods, espe-

cially when k = 10 or 20 (Additional file 1: Appendix,

Tables A4 and A5). For example, in scenario A when k =

10, the percentage bias ranged from 7% to 85% using the

inverse-variance method but from 8% to 26% using the

the Poisson regression model with random intervention

effects.

Empirical studies

Table 2 shows the counts of jumping suicides and the

exposure time for each study reported by Pirkis et al.

[1]. The zero values in six of the intervention groups

means the study-specific log IRR and its standard error

can only be calculated for the two remaining studies (stud-

ies 2 and 4). Therefore, analysis using the inverse-variance

method estimated a pooled IRR of 0.207 with 95% con-

fidence interval (CI) 0.026 to 1.646. This finding can be

interpreted as providing insufficient evidence to conclude

whether or not the barriers reduce the number of suicide

jumping deaths per year. Repeating the analysis using the

continuity correction meant that all eight studies could

be included in the analysis and this approach yielded a

pooled IRR of 0.085 with 95% CI 0.026 to 0.284, sug-

gesting strong evidence of a protective effect. Analysis

using a Poisson regression model with fixed interven-

tion effects estimated a pooled IRR of 0.151 with 95% CI

0.089 to 0.229 and a Poisson regression model with ran-

dom intervention effects estimated a pooled IRR of 0.008

with 95% CI 0.0002 to 0.300. The estimates of the ran-

dom effects parameters varied between methods. Using

inverse-variance methods, τ̂ = 1.34 and with the continu-

ity correction τ̂ = 1.25. In a a Poisson regression model

with random intervention effects, τ̂ = 2.48. The results

using the two Bayesian approaches gave a similar effect

size for the pooled IRR and the estimate of heterogeneity.

Table 3 shows the counts of HIV infections and expo-

sure time in 11 studies that followed heterosexual couples

who “always” used condoms (the intervention group) and

10 studies of couples who “never” used condoms (the

control group). The data pose a number challenges for tra-

ditional meta-analysis. Only 5 studies have data in both

treatment arms, and unusually, there is less data available

for the control group than the intervention group. The

data were also sparse, with seven studies in the interven-

tion and three studies in the control group having zero

counts. The combination of these two elements means

that the study-specific log IRR and its standard error were

undefined for all studies. Therefore, it is not possible to

calculate a pooled IRR using the inverse-variance method.

Weller and Davis-Beaty [8] overcame this problem by

collapsing all the data into a single table and calculat-

ing a pooled IRR from this aggregated information. This

approach estimated a pooled IRR of 0.198. Weller and

Davis-Beaty derive their confidence limits using a best

case/worst case scenario. But using an aggregated analysis

gives a 95% CI of 0.081 to 0.470.

Estimates from a Poisson regression model with fixed

intervention effects could not be estimated reliably (due

to the imbalance in the number of studies in the con-

trol and intervention groups), but they could be derived

when the indicator variables were omitted. This gave a

pooled IRR of 0.198 (95% CI 0.090 to 0.437) which is

very similar to the estimates from the aggregated analy-

sis. Analysis of this data using a Poisson regression model

with random intervention effects estimated a pooled IRR

of 0.171 with 95% CI 0.057 to 0.515. Weller and Davis-

Beaty [8] excluded a number of studies from their primary

analysis because of concerns about heterogeneity. Our

simulation results suggested that the intervention effect

parameters are unbiased in the presence of heterogene-

ity when using a Poisson regression model with random

intervention effects. Therefore, we re-analysed their data

using all the available information (this information also

contained in Table 3). The revised analysis estimated a

pooled IRR of 0.147 (95% CI 0.053 to 0.407). Using a

Bayesian Poisson regression approach with an inverse-

gamma distribution for the variance components gave an

IRR of 0.122 with 95% credible interval 0.014 to 0.396.

Using a half-Cauchy prior distribution for the variance

components yielded a pooled IRR of 0.102 with 95% cred-

ible interval 0.010 to 0.500. Turning to the random effects,

the Poisson regression model with random intervention

effects gave an estimate of τ̂ = 0.616. Using the inverse-

gamma prior gave an estimate of τ̂ = 0.666 while the

half-Cauchy prior gave τ̂ = 0.841.

Discussion
Methods for the meta-analysis of incidence rate data

(counts of events in time) have received relatively little

attention [40], and no work has addressed how to under-

take a meta-analysis when there are structural zeros in

the data (multiple studies within a meta-analysis which

have counts of zero events). Nonetheless, there is a need

to undertake meta-analyses on this type of data. We have

shown that the inverse-variance method of meta-analysis

(one of the most commonly used and recommended

methods) is biased in the presence of structural zeros.

We show that this finding holds even after adjustment

using the continuity correction as recommended by the

Cochrane Handbook [6].

We explored several alternatives to the inverse method.

In the context of pooling rates when exposure time varies

between groups, Guevara et al. [5] proposed using Poisson
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regression with indicator variables for each study. Since

the Poisson distribution includes zeros [41,42], this sug-

gests a potentially useful means of pooling incidence rate

data with structural zeros. The issue that then arises is

how the pooled IRR and the other fixed-effects estimates

are effected by baseline variability and heterogeneity. The-

oretically, this approach accounts for baseline variability

(i.e. variability in the incidence rates in the control group)

via the use of indicator variables for each study. Our sim-

ulations show that this method produces relatively unbi-

ased estimates when there is low baseline variability. But

as the level of baseline variability increases the method

displays bias in the pooled IRR. Interestingly, this bias is

constant across simulations regardless of the amount of

zeros in the data. Our simulations also show that Poisson

regression with fixed intervention effects has high mean

square error (relative to the competing method) under

high heterogeneity conditions and has poor coverage. As

such, we do not recommend using Poisson regression

with fixed intervention effects for meta-analysis unless the

baseline variability and between-study heterogeneity are

both close to zero.

Our primary interest was in comparing the two afore-

mentioned methods to Poisson regression with random

intervention effects. This method extends Poisson regres-

sion with fixed intervention effects by allowing study-

specific random intercepts and slopes. These parameters

therefore estimate the baseline variability and between-

study heterogeneity in the intervention effect. This latter

estimate is often of interest when conducting meta-

analysis. We explored several implementations of this

method: one based on adaptive Gaussian quadrature esti-

mation (referred to as a frequentist model), and two based

on Bayesian techniques (a full probability model with

prior distributions for all parameters including the study-

specific intercepts and slopes).We tested the usefulness of

an inverse-gamma prior distribution and the half-Cauchy

distribution for the random-effect parameters while using

the traditional non-informative normal distribution for

the fixed-effect parameters.

Our simulations show that the (frequentist) Poisson

regression model with random intervention effects esti-

mated the pooled IRR without bias, generally had the

lowest mean square error and had good coverage. These

results held in a variety of situations, for instance when

there was only a small number of studies in each meta-

analysis, when there was high baseline variability or high

heterogeneity, and when there was a large number of

zeros in the data. The estimates of baseline variability and

between-study heterogeneity were close to their true val-

ues, but did exhibit bias in some circumstances – most

notability when there was a small number of studies in

each meta-analysis and when there was a large number of

zeros in the data. It is worth pointing out, however, that

all methods did poorly in these situations, and that Pois-

son regression with random intervention effects had the

lowest bias of those tested. Neither Bayesian implemen-

tation of this method were able to estimate the pooled

IRR or the variance components as accurately. Based on

these findings, we see Poisson regression with random

intervention effects as a useful method for conducting

a meta-analysis of incidence rate data, especially when

the data contains structural zeros. In line with this, we

give code in the Additional file 1: Appendix for setting

up the data and undertaking analysis using Stata [25].

There are two important caveats to this recommenda-

tion. First, our simulations show that the accuracy of the

pooled IRR improves as the number of studies increases.

Thus, while it is possible to conduct a meta-analysis using,

for example five studies, a meta-analysis with more stud-

ies than this will provide more stable estimates for all

parameters. Second, our results show that the estimates

of baseline variability and between-study heterogeneity

remain biased regardless of the number of studies in the

meta-analysis. As such, while the pooled IRR is likely to be

accurate, the variance parameters will be estimated with

error.

Although not reported here, our simulations included

several other methods. We evaluated two other fixed-

effects methods – complete pooling of the data to calcu-

late the pooled incidence rate ratio and stratified pooling

(by study) to calculate the pooled effect size [43]. In simu-

lations, these results were effectively the same as those for

the fixed-effects Poisson regression.We also explored sev-

eral other prior distributions for the variance components

in a Bayesian analysis – a log normal prior distribu-

tion for the variance components and an Empirical Bayes

approach. Results for both were similar to that reported

for the Bayesian methods reported here. In general, we

found that the Bayesian approach was able to reproduce

the results from adaptive Gaussian quadrature but we

believe its performance could be improved by taking an

iterative approach to determine the parameters defin-

ing the prior distribution of the variance components –

an approach that has been demonstrated previously [44].

Finally, it is worth noting, that the BUGs language, the tool

used to implement Bayesian analysis, is very flexible and

able to draw from a complex structure for the random-

effects parameters. Thus, there is likely to be situations

where a Bayesian approach will out-perform a frequentist

analysis.

Our study has several limitations. First, we evaluated

only six methods of analysing incidence rate data, but

a number of different methods have been proposed, for

example, theMantel Haenszel method [45], Peto’s method

[46], the Binomial-Normal method [7]. It may be fruitful

for future research to compare and contrast these meth-

ods with our preferred approach. Second, our simulations
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did not allow for a correlation between baseline variabil-

ity and heterogeneity. This was mainly because with k =

5 or 10 studies, there is likely to be insufficient infor-

mation in the data to estimate this parameter reliability.

Nonetheless, in real-world data, such an association could

plausibly occur. Finally, we did not directly manipulate the

sample sizes in each study. Yet, in typical meta-analyses,

for example where the effect size of interest is a pooled

odds ratio or rate ratio, then studies with large num-

bers will tend to have a strong influence on the overall

result. This effect of this on estimating a pooled IRR using

Poisson regression with random intervention effects is

unknown.

Conclusion
Our approach is a simple yet flexible method of under-

taking meta-analyses on incidence rate data when there

are zero counts in the data. Our proposed method of

using Poisson regression with random intervention effects

has several merits. First, many popular statistical pro-

grams (e.g. Stata, R) can perform the analysis using

routinely available command. In Stata, the command is

meqrpoisson and in R, the glmer command in the

lme4 package. We give example Stata code in the Addi-

tional file 1: Appendix. The commands also enable the

basic model to be extended – for instance it is trivial

to estimate a correlation between σ and τ with modern

statistical software. This is also true of Bayesian meth-

ods as implemented by JAGS,WinBUGS and OpenBUGS.

Second, because the method is based on regression tech-

niques, in principle it is possible that the models them-

selves can be extended to include additional covariates.

For example, it is common to report separate meta-

analyses for subgroups such as males and females, or

for observational studies and randomised control trials.

When data is available at the subgroup level, parame-

ters representing these groups could be entered into the

model either as additive terms or multiplicative terms

(for instance, with the variable representing the treat-

ment arm). Further research could investigate this more

fully.
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described in the methods section. The data used in the
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