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Abstract8

Meta-analysis is increasingly used to synthesise major patterns in the large literatures within9

ecology and evolution. Meta-analytic methods that do not account for the process of observing10

data, which we may refer to as ‘informal meta-analyses’, may have undesirable properties. In11

some cases, informal meta-analyses may produce results that are unbiased, but do not neces-12

sarily make the best possible use of available data. In other cases, unbiased statistical noise in13

individual reports in the literature can potentially be converted into severe systematic biases in14

informal meta-analyses. I first present a general description of how failure to account for noise in15

individual inferences should be expected to lead to biases in some kinds of meta-analysis. In par-16

ticular, informal meta-analyses of quantities that reflect the dispersion of parameters in nature,17

for example, the mean absolute value of a quantity, are likely to be generally highly mislead-18

ing. I then re-analyse three previously published informal meta-analyses, where key inferences19

were of aspects of the dispersion of values in nature, for example, the mean absolute value of20

selection gradients. Major biological conclusions in each original informal meta-analysis closely21

match those that could arise as artefacts due to statistical noise. I present alternative mixed22

model-based analyses that are specifically tailored to each situation, but where all analyses may23

be implemented with widely available open-source software. In each example meta-re-analysis,24

major conclusions change substantially.25
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1 Introduction26

Many questions in ecology and evolution concern the distribution of effects across space, time,27

taxa, and ecological conditions. Consequently, synthetic works have a critical role to play28

in organising the general knowledge that accumulates in the vast literatures within ecology29

and evolution. Recently, meta-analytical approaches have become increasingly popular for30

describing accumulated results (Nakagawa and Poulin, 2012).31

Meta-analyses are studies that employ a quantitative approach to draw robust conclusions32

about natural phenomena, by drawing on all available and appropriate estimates, typically33

as reported in the primary scientific literature. This is an intentionally inclusive definition,34

appealing to the motivation, conception, and likely perceived comprehensiveness and general35

validity, of meta-analytic exercises. This definition is consistent with the original (Glass, 1976)36

and subsequent (Gurevitch and Hedges, 1999; Nakagawa and Santos, 2012; O’Rourke, 2007)37

uses of the term. Within exercises conducted in the meta-analytic spirit, a range of approaches38

exists. ‘Informal meta-analysis’, as I will refer to some studies conducted in the meta-analytic39

spirit, make inferences about phenomena in nature (for example, the effect of an environmental40

perturbation on some aspect of a species’ biology, or the strength of natural selection) by41

reporting summary statistics of the distribution of estimated values in a meta-dataset (i.e.,42

a database constructed from the available literature). While the motivation, and typically43

the perceived validity, of such studies falls entirely within the domain of the meta-analytic44

enterprise, some authors object to their characterisation as meta-analyses, preferring instead45

to categorise as meta-analyses only those studies that use specific statistical methods that are46

deemed to be meta-analytical (Koricheva and Gurevitch 2013a, page 8; Vetter et al. 2013).47

More ‘formal meta-analyses’ will generally apply some system for accounting for the varying48

precision or quality of individual elements of a meta-database. However, it seems undesirable49

to place arbitrary limits on what such methods should be.50

Some meta-analyses will investigate average effects, i.e., means of distributions of quantities,51

or factors that influence the mean, such as covariates or “moderator variables” (Nakagawa and52

Santos, 2012). For example, a meta-analysis in a conservation context may seek to determine53
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whether some environmental condition has a negative impact on some aspect of an organism’s54

biology. Sometimes, the key questions of interest pertain to higher-order aspects of the distri-55

butions of effects. We may be interested in the average magnitudes, or average absolute values,56

of some phenomena, rather than the average values. For example, the directionality of many57

phenomena, such as the form of natural selection, is either arbitrary in general (selection of58

development rate vs. development time), or is arbitrary at the level of meta-data. We might59

therefore be interested in the variance or standard deviation of effects, the averages of abso-60

lute values, the average magnitude of differences between treatments, or other aspects of the61

variation in effects.62

Statistical noise, or sampling error, generates variation in estimated parameter values, over63

and above any true variation in those parameter values. Consequently, informal meta-analyses64

of some types of parameters will generally mistake unbiased statistical noise at the level of in-65

dividual parameter estimates for biologically interesting variation at the level of meta-datasets.66

In general, informal meta-analytic inference of the means of natural phenomena will be un-67

biased by sampling error (this assertion conflicts with a recent survey of the topic Koricheva68

and Gurevitch 2013b; see further formal treatment below). Other quantities, such as average69

magnitudes (i.e., mean absolute values), will be upwardly biased in informal meta-analyses.70

For example, variation in estimated selection gradients in temporally replicated studies can71

be erroneously interpreted as evidence for pervasive variation in natural selection, if sampling72

error is not taken into account (Morrissey and Hadfield, 2012; Siepielski et al., 2009). Ad-73

ditionally, complexities in the observation process in individual studies, over and above pure74

statistical noise, can also generate spurious, but superficially biologically interesting and con-75

vincing, results in meta-analyses. For example, the inclusion of studies conducted at different76

scales can generate serious spurious meta-analytical patterns in synthetic studies of species77

richness-productivity relationships (Whittaker, 2010).78

Here I first analyse some simple models of meta-analyses. This clarifies what types of79

informal meta-analyses may be, or may not be, biased by statistical noise in individual studies.80

I then conduct a simulation study of the performance of three different approaches to meta-81

analysis, specifically focusing on cases where interest is not directly in the quantities that are82
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reported in the literature, but rather in some derived value. For example, a derived value may83

be the absolute value (e.g., magnitude) of some quantity, when what is actually reported in the84

literature is the quantity itself, not the absolute value. I suggest a general approach of modelling85

distributions of quantities in the literature as they are reported, and then subsequently deriving86

different quantities that may be of interest. I then re-analyse three important informal meta-87

analyses. In each instance, I first present simple arguments showing why the main results88

in each of three different informal meta-analyses are inevitably and strongly influenced by89

sampling error. I discuss, in each situation, how white noise at the level of individual studies is90

converted to biases by informal meta-analytic procedures. For each study, I present alternative91

model-based versions of the key analyses. In each case, major results change substantially.92

2 Statistical noise and bias in meta-analysis: a model93

In this section, I consider a very simple model of a meta-analysis. This allows both analytical94

and simulation results to be presented to show different situations where meta-analyses might95

be unbiased or biased.96

2.1 Model structure97

I assume that N studies exist, each reporting a single estimate of some quantity, x. Each98

estimate of x will be denoted x̂i; the “hat” symbol indicates that we are dealing with an99

estimate, not a known quantity, and i indexes the estimates from the N studies. I assume that100

each available value of x̂i is obtained by some method (which may differ among the N studies)101

that is unbiased. Formally, “unbiased” means that for each estimate,102

E[x̂i]− xi = 0. (1)

Of course, each estimate is not the true value, i.e., we do not require that x̂i = xi. Rather,103

across many estimates, x̂i, we require that the true value is not, on average either over- or104

under-estimated. Many statistical procedures in common use, when used correctly, provide105

unbiased estimates of natural phenomena. For example, x̂ values could be estimates of the106
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mean, or regression slopes from least-squares analysis.107

True values of the parameter of interest, i.e., of the xi, are assumed to come from some108

distribution. For simplicity, I model that true values as normally distributed. Formally, we can109

write this as110

xi ∼ N
(
µx, σ

2
x

)
, (2)

which simply states that each (in practice, unknown) true value is drawn from a normal distri-111

bution with some mean (µx) and variance (σ2
x). Features of the distribution of true values of x112

that may be of interest in a meta-analysis could be the mean (µx), the variance (σ2
x), or some113

other property of the distribution of x, such as the mean absolute value E[|x|].114

I also assume that each estimate is associated with information about its uncertainty. We115

cannot know the true values, xi, associated which each estimate x̂i in a meta-database. Rather,116

each x̂i value will be drawn from some distribution defined by the true value, x, and its measure-117

ment error. For simplicity, I assume that the distributions of measurement errors are normal,118

such that119

x̂i = xi + ei, (3a)

ei ∼ N
(
0, σ2(m)i

)
, (3b)

which simply states that each estimate is drawn from a normal distribution around the true120

value for that study, and the “noise” in the x̂i values around the xi values is defined by each121

estimate’s sampling variance, σ2(m)i (which is the square of the standard error). Conclusions122

drawn assuming normal sampling error should be quite generally informative: for example, the123

sampling distribution of a mean (if xi values are the means of some quantity in each study) is t-124

distributed, but this distribution approaches a normal distribution quite rapidly with increasing125

sample size.126

2.2 Meta-analysis of the mean127

We may be interested in the mean of some quantity in nature. In our model, this is µx. For128

example, our xi values may be differences in bird singing volume between two habitats (e.g.,129
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natural vs. urban), and we may be interested in the overall mean difference, µx. We might130

estimate the overall mean by131

µ̂x =
1

N

N∑
i=1

x̂i, (4)

i.e., our estimator of µx, µ̂x, may simply be the average of all available estimates.132

A number of sources on meta-analysis place emphasis on the need to weight results from133

individual studies in some way determined by their sampling variance (e.g., Arnqvist and134

Wooster 1995; Koricheva et al. 2013; Vetter et al. 2013). These views represent cautions against135

analyses such as that represented by equation 4. For example, Handbook of Meta-analysis in136

Ecology and Evolution chapter 7 page 81, Koricheva and Gurevitch (2013b) state that:137

...it is essential to be able to derive a variance [meaning σ2(e)i in the model here] for138

the metric obtained in each study [for each x̂i], and to use these to weight the effect139

sizes in the meta-analysis. Unweighted analyses produce biased estimates of overall140

effects [e.g., of quantities such as µx].141

Formally, this view contends that142

E[µ̂x]− µx 6= 0

when µ̂x is that obtained by the informal meta-analysis method in equation 4. Of course we143

never know µx, and so we never know whether our estimate, µ̂x, is too large or small in any144

given case. However, we can use statistical theory and/or simulation to determine whether a145

given meta-analytic procedure, such as that in equation 4, would on average give too high or146

too low an estimate, if applied over many meta-analyses. Equation 3 states that the mean of147

sampling errors is zero (this is just a corollary of the assumption reports of x̂ in the literature148

are unbiased). In general the expectation of a sum is equal to the sum of expectations1:149

E[A+B] = E[A] +E[B]. For our possible meta-analysis in equation 4, the mean of true values150

and the mean of sampling errors would correspond to E[A] and E[B]. These are defined as µx151

(in equation 2) and zero (in equation 3b), respectively. So, E[x+e] = E[x]+E[e] = µx+0 = µx.152

1E[A+B] can be written as all possible values of the sum of A and B, weighted by the probability density of each possible set
of values of A and B: E[A + B] =

∫
A

∫
B(A + B)f(A,B)dBdA, where f(A,B) is an arbitrary joint probability function of A and

B. Using the summation/subtraction rule: E[A + B] =
∫
A

∫
B Af(A,B)dBdA +

∫
A

∫
B Bf(A,B)dBdA. The expression simplifies:

E[A+B] =
∫
A Af(A)dA+

∫
B Bf(B)dB. Since E[X] =

∫
XF (X)dX, E[A+B] = E[A]+ E[B].
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Therefore, provided that each x̂i is an unbiased estimate of xi, then the mean of x̂i values is153

an unbiased estimator of µx. This proves that an average of unbiased estimates of x, i.e., of x̂i154

values, is an unbiased estimator of their means, even if no formal meta-analysis is implemented.155

Just because a simple summary statistic of values in a meta-database is not biased does not156

necessarily mean that it is the best analytical approach. In general, different studies will have157

different sampling variances. Those x̂ values with the smallest sampling variances contain the158

most reliable information about the true distribution of x. Weighting schemes for calculating159

meta-analytic estimates of quantities such as µx (reviewed in Koricheva et al. 2013) have been160

developed to minimise the sampling variance of meta-analytic quantities, i.e., to make them as161

precise as possible, and not to reduce bias. When information about statistical uncertainty is162

available (e.g., when standard errors are reported), such approaches should be used. However,163

in the absence of standard errors, or when they are inconsistently reported, it is possible that164

an informal, summary statistic-based, meta-analysis such as that represented by equation 4165

can be highly precise (potentially more precise than a formal meta-analysis that can only use166

a restricted database of estimates with standard errors) and unbiased.167

2.3 Meta-analysis of the mean absolute value (i.e., the average magnitude)168

However, there is no guarantee that any particular informal meta-analysis will be unbiased.169

In this section I consider that a meta-analysis may seek to determine, not the mean of x, but170

the average magnitude of x. These may seem like very similar problems, but we will see that171

meta-analyses of these different parameters involve very different considerations.172

For simplicity, assume that all estimates of x have the same standard error, and therefore that173

all values of σ2(e)i are equal. In our model, both true values and sampling errors are normal,174

and so the distribution of estimates is also normal. Situations where the mean magnitude will175

be of interest will often be when the mean is close to zero, such that both positive and negative176

values occur; so an simple instructive case to consider will be the situation when µx = 0. The177

mean absolute value of a centred normally-distributed variable is the mean of a χ distribution178

with one degree of freedom, times the standard deviation of that variable (this arises simply179
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from the definition of the χ distribution). The mean of a χ distribution is
√

2Γ((k−1)/2)
Γ(k/2)

, where180

Γ() represents the gamma function. We are interested in the situation where k = 1, and so181

using Γ(1) = 1 and Γ(1
2
) =
√
π we obtain182

E[|x|] =

√
2

π
σ(x) (5)

when µx = 0. This equation for the mean absolute value of a centred normal variable allows us183

to obtain an expression for bias in a summary statistic-based meta-analysis of mean absolute184

values. If we were to estimate mean absolute value by185

µ̂|x| =
1

N

N∑
i=1

|x̂i|,

then the expected value of this estimator would be186 √
2

π

√
σ2(x) + σ2(m).

√
σ2(x) + σ2(e) is the standard deviation of estimates of x, assuming errors to be independent187

of true values. In contrast, the mean absolute value of true values of x would be188 √
2

π
σ(x).

From the definition of bias, we can obtain the bias in the informal meta-analysis of mean189

absolute values as190

E[µ̂|x|]− E[|x|] =

√
2

π

√
σ2(x) + σ2(m)−

√
2

π
σ(x)

=

√
2

π

(√
σ2(x) + σ2(m)−

√
σ2(x).

)
(6)

If there is any sampling error in estimates of x, then
√
σ2(x) + σ2(e) will be greater than191 √

σ2(x), and the summary statistic-based meta-analysis of mean absolute value will be up-192

wardly biased.193
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3 Analytical options for meta-analysis: a small simulation study194

Here, I explore the results of three possible meta-analytic procedures for inference of means195

and mean absolute values, i.e., average magnitudes, of arbitrary quantities. The first method196

is an informal, summary statistic-based meta-analysis. The second option is to derive sampling197

variances of any derived quantities in a meta-database, for use with established meta-analytic198

procedures. This is the standard approach in meta-analysis, though transformation is often199

not required. I refer to this as the “transform-then-analyse” approach. The third option is200

to apply meta-analytic mixed model analysis to estimate parameters of the distribution of x201

(i.e., the quantities in the literature as they are reported, even if some transformation of x,202

say the absolute value, is ultimately of interest), accounting for sampling error in individual203

x̂i estimates, and then to derive the desired quantity of interest (e.g., E[|x|]). I refer to this204

as the “analyse-then-transform” approach. This last approach has previously been used as205

an alternative to summary statistic-based informal meta-analysis (see Morrissey and Hadfield206

2012’s re-analysis of temporal variation in selection as first reported on by Siepielski et al.207

2009), but it has yet not been explored as a general approach to meta-analysis.208

3.1 Simulation scheme209

For each replicate simulation, I simulated a meta-database of 50 studies. Each study had one210

associated value of x̂i and an associated standard error, σ2(m)i. The x̂i values were drawn211

from a normal distribution according to x̂i ∼ N (µx, σ
2(m)i), and the true values of x were212

simulated according to xi ∼ N (µx, σ
2(x)). This closely follows the model that was investigated213

analytically, above. I simulated all combinations of values of µx of 0 and 0.25, and a range of214

values of σ2(x) between 0.01 and 1.0. Furthermore, for all combinations of values, I simulated215

two different average magnitudes of statistical noise. Each xi value’s associated value of σ2(m)i216

was drawn from a gamma distribution with mean and standard deviation of either 0.25 or217

0.5. This is merely a convenient way of ensuring that some estimates within each simulated218

meta-analysis are more precise than others (while none is absolutely perfect), and also of219

simulating meta-analyses that contend with different overall levels of statistical noise. For each220



Morrissey, mixed model-based meta-analysis 11

combination of true mean and variance of x, and of statistical noise, I simulated 1000 replicate221

meta-analyses.222

The true overall mean of x, i.e. µx, is simply one of the parameters of the simulation.223

However, the true value mean absolute value of x is determined both by µx and by σ2(x). As224

such, the true value of E[|x|] in each study is defined by a folded normal distribution225

µ̄|x| =

√
2

π
σ(x)e−µ

2
x/2σ

2(x) + µx(1− 2Φ(
−µx
σ(x)

)), (7)

which is simply the mean of a normal distribution defined by µx and σ2(x), folded about the226

origin.227

For each simulation, I implemented the informal meta-analyses of the mean and mean ab-228

solute value by calculating the mean of the simulated x̂i values, and the mean of their absolute229

values. In order to implement the ‘transform-then-analyse’ meta-analysis, I had to first obtain230

the sampling variance of the transformed values of x̂i, i.e., the sampling variance of |x̂i|. This231

is defined by the variance of a folded normal distribution, for each x̂i and and its corresponding232

sampling variance σ2(m)i233

σ2(m)|x̂i| = x̂2
i + σ2(m)i −

(√
2

π
σ(m)e−x̂

2/2σ2(m)i + x̂i(1− 2Φ(
−x̂i
σ(m)i

))

)2

. (8)

I then applied a mixed-model based meta-analysis of the |x̂i| values and their derived sampling234

variances. A mixed model meta-analysis is a generalisation of various weighting schemes that235

exist in the meta-analysis literature. The mixed model took the form236

yi = µy +mi + ei, (9)

where yi are the data in the meta-analytic database; in the ‘transform-then-analyse’ procedure,237

the yis are the |x̂i| values. µy is the model intercept, which is the meta-analytic estimator238

of the mean of whatever the yi values are. mi are the measurement errors for each value239

of yi. Of course we cannot know these errors in each case, but the model integrates over240

the possible values that the mi can take, using the information available about their sampling241
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variances. This is accomplished by defining the measurement errors to come from a distribution242

mi ∼ N (0, σ2(m)i), where the sampling variances σ2(m)i are appropriate to whatever the yi243

are; in the case of the simulated ‘transform-then-analyse’ meta-analyses, the σ2(m)i values244

associated with the |x̂i| values are those given by equation 8. Finally, the residuals, i.e., the245

ei values are modelled according to ei ∼ N (0, σ2(e)), where σ2(e) is estimated by the mixed246

model. σ2(e) is thus the meta-analytic estimator of the variance of x, i.e., of σ2(x) in the247

notation used in the analytical sections, above.248

Finally, the ‘analyse-then-transform’ meta-analysis was simulated using a mixed model of249

the form described by equation9, except the x̂i values were used for the yi, along with their250

associated sampling variances (the simulated standard errors, squared). This provided meta-251

analytic estimates of the simulated µx and σ2(x) values (i.e., the µy and σ2(e) values estimated252

from the mixed model). These estimates were then used to obtain estimated mean absolute253

values, using the expression for the mean of a folded normal distribution (equation 7). I254

fitted all meta-analytic mixed models using the rma() function from the R package metafor255

(Viechtbauer, 2010).256

4 Simulation results, and conclusions from analytical models and257

simulations258

As suggested by theory, all three meta-analytic approaches yielded unbiased results of the259

overall means, and are not considered further. Also as expected from analytical results (equation260

6), naive summary statistic-based meta-analysis of mean absolute values are upwardly biased,261

across a range of parameters (figure 1). Simulation results support various features of the262

analytical expression for bias (equation 6): the bias is greatest when sampling variance is high,263

and especially when sampling variances are high relative to true variances. While the theoretical264

analysis did not deal with situations where the true mean is non-zero2, the simulations give265

2Expressions for bias in the mean absolute value when the mean is non-zero can be written down; however, I was unable to
make them simple enough to be generally informative. Expressions for bias in informal meta-analysis of mean absolute values can
be constructed either using folded normal distributions or the non-central χ distribution. In both cases, the expressions involve
complicated functions, the parameterisation using the folded normal involves the error function, and the parameterisation using
the non-central χ distribution requires generalised Laguerre polynomials; neither is conducive to useful simplifications.
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fairly intuitive results. When the true mean is not zero, mean absolute values are less biased,266

in informal meta-analyses.267

For the range of parameters investigated, the standard ‘transform-then-analyse’ formal meta-268

analytic approach was consistently biased. The bias was intermediate between the naive meta-269

analysis and the ‘analyse-then-transform meta-analysis’. The bias in this formal approach to270

meta-analysis arises because the model for sampling error in the random effects meta-analysis271

is a poor reflection of the distribution of sampling errors of absolute values. The distribution of272

sampling errors will be highly skewed for modest estimates with substantial uncertainty (i.e.,273

when σ(m)i is large relative to |x̂i|), while the mixed-effects meta-analysis assumes normal274

errors.275

The ‘analyse-then-transform’ approach, i.e., of modelling the raw meta-data, i.e., the x̂i276

values rather than the derived |x̂i| values, and then deriving the mean absolute value, was277

unbiased across the majority of the range of parameter values. To some extent, this can be278

interpreted as the analysis being a match to the data-generating mechanism. It is true that I279

simulated the data under the statistical model that the mixed-effect meta-analysis applies to280

values of x̂i and their associated standard errors. However, this type of model might in fact281

often be a very reasonable approximation to how values in many meta-datasets are obtained.282

This meta-analytic approach was slightly upwardly biased at the very lowest values of the true283

variance of x. This is because I constrained the estimate of σ(x) to be positive, and so at the284

smallest true values of σ(x), the estimate must be at least a slight over-estimate (in general, it285

is hard to imagine an estimator of a variance that is constrained to be positive, that will not286

be upwardly biased for small true values). Since the absolute value depends positively on the287

variance, this generates slight upward bias at the smallest true values.288

Here, I have only focused on meta-analysis of the mean, and of the mean absolute values.289

There are of course many other quantities that may be of interest in a meta-analysis. Most290

quantities that are derived from quantities in the literature, according to a non-linear function,291

will be biased in informal and ‘transform-then-analyse’ meta-analyses. In addition to the mean292

(but not the mean absolute value), quantities such as regressions should generally be unbiased,293

even if sampling error is not explicitly considered. For example, consider a meta-dataset with294
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estimates of birds’ singing rates from different studies. Suppose that standard errors of singing295

rates were not available. We have seen that the estimate of mean singing rate would not be296

biased in a summary statistic-based informal meta-analysis. Similarly, we should not expect an297

inference of the average regression of singing rate on a predictor variable, such as a measure of298

forest cover, to be biased in informal meta-analyses. In contrast, quantities such as variances,299

mean absolute values, or the mean absolute differences among treatments, all depend on the300

dispersion of values among studies, and will therefore be biased in informal meta-analyses, and301

will also be biased in ‘transform-then-analyse’ approaches to formal meta-analysis.302

5 Re-analyses of informal meta-analyses303

5.1 The average magnitude of natural selection304

Kingsolver et al. (2001) reported on an informal meta-analysis of selection gradients and dif-305

ferentials (Endler, 1986; Lande, 1979; Lande and Arnold, 1983). One of their most important306

findings is that non-trivial directional selection is common in nature. They report an average307

magnitude of variance-standardised directional selection gradients of 0.23 (the full distribution308

is depicted in figure 2a)3. As we have seen (equation 6), this finding potentially represents a309

substantial over-estimate, due to sampling error. The average standard error of selection gradi-310

ent estimates in the database is about 0.15. So, in the improbable but instructive hypothetical311

scenario where there was no selection in any study (just statistical noise arising from finite312

sample size), the estimated mean absolute value of selection gradients that would be inferred313

in an informal meta-analysis would be on the order of314 √
2

π
· 0.15 = 0.12.

Re-analysis315

I used a mixed model to decompose the observed variation in selection gradients into that316

arising from statistical noise and that which may represent real variation. The model took the317
3There is a small difference in the mean absolute value of directional selection gradients in the database as a whole (0.23), and

in that subset of the database that has standard errors (about 0.19). It probably arises from studies with very small sample size
being over-represented in the portion of the database without standard errors.
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form318

β̂i = µ̂β +mi + ei. (10)

β̂i are estimated selection gradients, and µ is the model intercept, or the estimated mean319

selection gradient. mi are measurement errors, which are of course unknown, although we know320

they are drawn from estimate-specific distributions approximately following mi ∼ N(0, SE2
i ).321

ei are residuals, and are assumed to follow ei ∼ N(0, σ̂2(β)), where σ̂2(β) is estimated. I then322

derived an estimate of the mean absolute value of selection as the mean of a folded normal323

distribution (equation 7) defined by the mixed-models estimates of µ̂β and σ̂2(β). To produce a324

comparable mixed model-based analysis that does not account for sampling error, I also fitted325

the model326

β̂i = µ̂β + ei. (11)

I fitted both models using MCMCglmm (Hadfield, 2010), using default diffuse priors. I then327

derived the mean absolute value of selection gradients as the expectation of a folded normal328

distribution defined by the parameters estimated in the models defined by equations 10 and329

11.330

Accounting for statistical noise generates an estimate of the variance of selection gradients331

of 0.0156 (i.e., from the model in equation 10; this is the posterior mode of the parameter in the332

mixed model; this statistic is used for estimates throughout), with a 95% credible interval of333

0.0121 - 0.0207. By contrast, the model in equation 11 yields a variance of estimated selection334

gradients of 0.0775 (95% CI: 0.0689 - 0.0890). The corresponding standard deviations are 0.12335

(95% CI: 0.11 - 0.14) and 0.28 (as for the estimate from the raw data, see above, with 95% CI:336

0.26-0.30).337

The model-based estimate of the average magnitude of selection gradients obtained as the338

mean of a folded normal distribution is 0.10 (95% CI: 0.09 - 0.12). The corresponding estimate339

based on the estimated selection gradients without accounting for sampling error is 0.23 (95%340

CI: 0.21 - 0.24), which closely matches the estimate obtained by simply calculating the mean341

of the absolute values of all the estimated directional selection gradients in the database.342

While the purpose of the present work is not necessarily to perform a comprehensive re-343
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analysis of any given study, the average strengths of selection for different strata of the King-344

solver et al. (2001) dataset are clearly of interest. I therefore ran the basic mixed model345

analyses, with and without accounting for sampling error, for several major subsets of the346

database, continuing to focus on directional selection gradients. Because (a) analyses are (cor-347

rectly) much less apparently powerful when accounting for sampling error, and (b) sample sizes348

for some strata are small and further reduced by incomplete reporting of the standard errors349

necessary for meta-analysis, I did not conduct every possible analysis. Rather I subsetted the350

database taxonomically for vertebrates, invertebrates, and plants, by trait type for life history351

and morphology, and by fitness component for fecundity, mating success, and survival.352

The general pattern that the magnitude of selection is inflated in analyses that do not353

account for statistical noise at the level of individual estimates is supported at every level within354

the database that I considered (table 1). Selection for life history traits is weakest, but this355

probably reflects the definition used for life history traits. Many of the traits represent timing356

in the life cycle, rather than life history traits sensu stricto, i.e., as in variables defined by a life357

table. The general previously-reported patterns hold for means of selection gradients, which358

are not expected to be biased by sampling error. Selection is generally positive for morphology,359

and positive selection often acts through mating success (this may be primarily driven by360

selection for morphology). Statistical noise at the level of the meta-analysis is increased (see361

credible intervals reported in table 1), relative to the magnitudes of the estimates, in the formal362

model that accounts for sampling error at the level of the component studies. This does not363

represent a decrease in statistical power, but rather an improvement in realism relative to the364

over-optimism of analyses that do not account for statistical noise.365

The normal approximation to the distribution of selection gradients assumed in the residual366

structure of a model such as that in equation 10 may generally provide a pragmatic and robust367

approach to investigating components of variation in any observed dataset. However, we may be368

interested in other aspects of the distribution. For example, it is very reasonable to think that369

the true distribution of selection gradients may have thicker tails than the normal distribution.370

I therefore constructed a model that is analogous to that in equation 10, except that the371

underlying variation in selection gradients is modelled with a three parameter t-distribution.372
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This model takes exactly the same form as equation 10, except that the normal distribution373

from which the ei are drawn is replaced by the three parameter t-distribution with mean zero374

(because the model contains an intercept), and estimated variance and degrees of freedom.375

The distribution of selection gradients from the t-distribution based model is depicted in376

figure 2b. Comparison to figure 2a shows the dramatic difference between the distribution of377

estimated selection gradients and the underlying distribution of selection gradients. The inset378

figure depicts the relationship between unit variance-standardised trait values and relative379

fitness that is implied by the average magnitude of estimated selection gradients, which is very380

strong selection (see arguments in Hereford et al. 2004); |β| = 0.22 corresponds to approximately381

a 2.5-fold change in fitness over a range from two standard deviations below to above the mean382

phenotype. Such a selection gradient clearly does occur in nature (figure 2b), but is far rarer383

than the original informal meta-analysis suggested. The mean absolute magnitude of directional384

selection gradients in the t-distribution model4 is 0.090 (95% CI: 0.076 - 0.108).385

Other inferences about the mean absolute value of selection386

Knapczyk and Conner (2007) argued that the mean magnitude of selection gradients in King-387

solver et al.’s meta-analysis was not inflated by sampling error. Their analysis relied on sub-388

sampling from a restricted array of very large datasets. This is a potentially very useful ap-389

proach, but it relies on an assumption that the relevant properties of the restricted array of390

datasets are the same as in the larger database. Close inspection reveals that this cannot be391

the case in this instance. The restricted array of estimates of β in Knapczyk and Conner (2007)392

contains some very large selection gradients including β = 1.12 for selection of flower number393

via seed production, and three gradients of the fifteen in the Knapczyk and Conner (2007)394

dataset have an absolute value above 0.5.395

Inspection of the raw data from the Kingsolver et al. (2001) database (Kingsolver et al.’s fig-396

ure 5, figure 2a here), reveals that such large selection gradients are very far from representative397

of the data as a whole. The selection gradients in Kingsolver et al. (2001) have larger sampling398

errors, overall, than those in the Knapczyk and Conner (2007) dataset, and this larger sampling399
4obtained as

∫
|x|d(x|µ, σ2, k) dx, where d(x|µ, σ2, k) is the density of the three parameter t-distribution with mean µ, variance

σ2 and degrees of freedom k.
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error can only inflate the apparent frequency of very large selection gradient estimates. If such400

large (true) selection gradients were similarly frequent in the study systems from which the401

Kingsolver et al. dataset was constructed, then similarly large (or larger) estimated selection402

gradients would be similarly common, and they are not (Figure 2a). Furthermore, the few403

selection gradient estimates of similar magnitude in the meta-database come exclusively from404

studies with very small sample size (Kingsolver et al., 2001) - precisely those that would be405

expected to yield estimates of large magnitude due to sampling error alone.406

Note that Knapczyk and Conner (2007) made no errors that cause their dataset to be non-407

representative; it is simply by inspection of the distribution of estimates in the Kingsolver et al.408

(2001) database that it is apparent that no true underlying distribution of selection gradients,409

observed with sampling error, can be compatible with the high frequency of very large estimates410

in the Knapczyk and Conner (2007) analysis. The similarity between the results of Conner et411

al.’s analyses and the distribution of selection gradient estimates in the Kingsolver et al. (2001)412

dataset is coincidental, and does not conflict with the inevitability that sampling error will413

(potentially greatly) inflate estimates of the magnitude of effects in informal meta-analyses.414

Hereford et al. (2004) clearly described the statistical mechanism by which sampling error415

can inflate inferenes of the mean magnitude of selection. They applied a post-hoc correction for416

sampling error using reported standard errors, and investigated the effect on the inference of the417

mean absolute values of selection gradients. Their correction was not expected to completely418

alleviate the problem, and the degree to which it solved the problem was not clear. Their419

partially-corrected estimate of the mean absolute value of selection gradients was consequently420

intermediate to that given by the original informal meta-analysis, and the formal model-based421

analysis presented here.422

Finally, Kingsolver et al. (2012) reported on an effort to apply a formal meta-analysis to423

an updated database of selection gradient estimates. They performed several analyses of a424

database originally presented in Kingsolver and Diamond (2011), which combined datasets425

from Kingsolver et al. (2001) and Siepielski et al. (2009). Their position on the effects of426

accounting for error is unclear. They specifically state, with respect to quantities such as427

the mean absolute value of selection gradients, both that their results are similar to previous428
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studies, and also that there are large effects of accounting for error (which previous studies did429

not do).430

Kingsolver et al. (2012)’s inference of the mean absolute value of selection, accounting for431

sampling error, is much greater than their inference based on a naive analysis (which they432

refer to as ‘uncorrected |β|’). This is a mathematical impossibility, or at least could only occur433

if the properties of selection gradient estimates that are reported with and without standard434

errors are vastly greater than seems plausible. It seems likely that some error occurred in435

those analyses. My own re-analysis of the combined dataset reveals a mean absolute value436

of estimated selection gradients (i.e., via informal meta-analysis) of about 0.21, both for the437

subsets of the data with and without reported standard errors. This contrasts sharply with438

the the ‘uncorrected’ value of about 0.05 reported in Kingsolver et al. (2012). I was able to439

closely replicate their estimate of the mean |β| from formal mixed effects meta-analysis (the440

analyse-then-transform approach) of about 0.14.441

It may initially seem that the inference of the mean absolute value of selection from the442

combined Kingsolver et al. (2001) and Siepielski et al. (2009) databases should be superior, as443

it is based on a larger sample size. However, the credible intervals of the mean |β| from the444

Kingsolver et al. (2001) and combined datasets do not overlap (95% CIs of 0.09 - 0.12 and445

0.14 - 0.17, respectively). Therefore there must be some underlying difference between the two446

databases. Specifically, in that portion of the estimates from the Siepielski et al. (2009) study,447

which are temporally-replicated studies, must have stronger selection on average. I suspect that448

people will be mostly inclined to invest long-term efforts in studies of traits that they already449

know to be under selection. If this is the case, then the studies contributing to the original450

Kingsolver et al. (2001) dataset might give the best impression of the average magnitude of451

selection across a wide range of trait types and scenarios.452

5.2 The frequency and magnitude of sexually antagonistic selection453

Cox and Calsbeek (2009) present an informal meta-analysis of sexually antagonistic selection.454

They report that 41% of pairs of selection coefficient estimates, obtained for each sex for455

homologous traits, are sexually antagonistic, i.e., take opposite signs in the sexes. The standard456
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deviations of male and female selection coefficients (gradients and differentials combined) are457

0.37 and 0.34, and the correlation between them is 0.19. The coefficient estimates are plotted458

in figure 3a. The coefficient estimates that have associated standard errors are plotted in figure459

3b.460

The mean standard errors of selection coefficients are 0.17 for males and 0.20 for females.461

The sex-specific sampling errors are expected to be uncorrelated, i.e., due to statistical noise462

alone, there are few conditions in which studies that overestimate the true value of a selection463

coefficient in one sex are no more or less likely to overestimate the corresponding coefficient464

in the other sex. I simulated a set of random numbers, with one number corresponding to465

every selection coefficient in the meta database that had a reported standard error. These466

random numbers all had expectations of zero, and variances determined by the square of the467

standard error. The distribution of these samples reflects the instructive though implausible468

scenario of the distribution of estimated sex-specific selection coefficients that would arise in the469

hypothetical situation where no selection occurred in either sex in any study from the literature.470

Thus, this scenario can give some insight into the influence of sampling error alone on inferences471

of the frequency of sexually-antagonistic selection. The distribution of these hypothetical data472

points is given in figure 3c; in this scenario, statistical noise causes approximately 50% of473

estimates to appear to be sexually antagonistic. A key feature of the pattern in figure 3c is474

that, no matter how many estimates are included in the informal meta-analysis, a substantial475

impression of sexually-antagonistic selection will result, as a result of sampling error at the476

level of the individual studies.477

We can treat the problem more formally. Cox and Calsbeek (2009) used a measure of478

sexually-antagonistic selection based on the absolute difference between paired male and female479

selection coefficients480

ŜAi = |Ŝm − Ŝf | (12)

where Ŝm and Ŝf are estimated male and female variance-standardised selection coefficients481

(either differentials or gradients). Cox and Calsbeek (2009) provide a discussion of how this482

coefficient relates to different aspects of sexually-antagonistic selection. If we assume that the483
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true distribution of selection coefficients in males and females is bivariate normal, and that484

sampling errors of male and female selection gradients are both normal and uncorrelated, we485

can derive an expression for the bias in an informal meta-analysis of sexually-antagonistic486

selection.487

The variance of the distribution of differences in true selection coefficients in males and488

females is489

σ2(Sm − Sf ) = σ2(Sm) + σ2(Sf )− 2σ(Sm, Sf ) (13)

where σ2(Sm), and σ2(Sf ) are the variances in true selection coefficients in males and females,490

and σ(Sm, Sf ) is the covariance of true selection coefficients. The variance of the distribution491

of differences in estimated selection coefficients in males and females is492

σ2(Ŝm − Ŝf ) = σ2(Ŝm) + σ2(Ŝf )− 2σ(Ŝm, Ŝf )

= σ2(Sm) + σ2(m)Sm + σ2(Sf ) + σ2(m)Sf
− 2σ(Sm, Sf ), (14)

where σ2(m)Sm and σ2(m)Sf
are the sampling variances of male and female selection coefficients.493

The mean absolute value of the difference between two independent draws from the same494

normal distribution is495

E[|xi − xj|] =
2√
π
σ(x) (15)

(Nair 1936, eq. 35). The bias in an informal meta-analysis of SA can therefore be written496

using equations 13, 14 and 15497

2√
π

√
σ2(Sm) + σ2(m)Sm + σ2(Sf ) + σ2(m)Sf

− 2σ(Sm, Sf )−
2√
π

√
σ2(Sm) + σ2(Sf )− 2σ(Sm, Sf )

=
2√
π

(√
σ2(Sm) + σ2(m)Sm + σ2(Sf ) + σ2(m)Sf

− 2σ(Sm, Sf )−
√
σ2(Sm) + σ2(Sf )− 2σ(Sm, Sf )

)
.

(16)

The expression is inelegant, but we can see that the quantity in brackets will be positive any498

time that σ2(m)Sm and/or σ2(m)Sf
are positive, which in practice will always be the case.499
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Re-analysis500

I constructed a bivariate-response mixed model to partition (co)variation in sex-specific pairs501

of selection coefficients into portions arising from sampling error, and reflecting the underlying502

biological pattern. The model took the form503 Sm,i
Sf,i

 =

µm
µf

+

mm,i

mf,i

+

em,i
ef,i

 (17)

where Sm,i and Sf,i are the male and female-specific estimates for pairs of selection coefficients5504

indexed by i. Sampling errors are assumed to be drawn according to505 mm,i

mf,i

 ∼ N

0

0

 ,
SE2

m,i 0

0 SE2
f,i


and residuals according to506 em,i

ef,i

 ∼ N

0

0

 ,
 σ2(m) σ(m, f)

σ(m, f) σ2(f)


where residual variances and covariance of male and female selection gradients, σ2(m), σ2(f),507

and σ(m, f), as well as the sex-specific means in equation 17 are estimated parameters. I508

implemented the model in jags (Plummer, 2010), with diffuse normal priors on the sex-specific509

means and a redundant prior parameterisation on the residual covariance matrix of selection510

coefficients.511

The mean selection coefficient in each sex is positive: males: 0.092 (95% CI: 0.040 - 0.153),512

females: 0.074 (95% CI: 0.030 - 0.108). Critically, male and female selection coefficients covary513

strongly and positively. The residual covariance matrix obtained by fitting the model described514

5The analysis is conducted on a mix of selection differentials and gradients, following Cox and Calsbeek 2009. This combination
is reasonable as the values are all variance standardised.
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in equation 17 (95% CIs in brackets) is515

 σ2(m) = 0.067 (0.054− 0.106) σ(m, f) = 0.038 (0.024− 0.054)

r(m, f) = 0.794 (0.666− 0.928) σ2(f) = 0.029 (0.016− 0.045)

 ;

note that the sub-diagonal element is reported as the correlation. The consequence of this516

positive correlation of male and female coefficients is that sexually antagonistic selection is517

rare, and when it occurs, it is typically not highly antagonistic. Simulated values drawn form518

the inferred joint distribution of male and female selection coefficients are plotted in figure 3d.519

The proportion of pairs of selection coefficient estimates that differ in sign6 is 20% (95% CI: 12520

- 25%). Furthermore, when selection is sexually antagonistic, it is also weakest.521

Figure 4 shows the distributions of two possible metrics of sexually-antagonistic selection.522

These metrics are calculated both from the raw data, i.e., by informal meta-analysis, and523

calculated from the ‘analyse-then-transform’ analyses made possible by the bivariate response524

random regression model. The first metric (figure 4a) is the distribution of products of male525

and female selection coefficients. This quantity is negative when selection takes different signs526

in the two sexes, and positive when selection is of the same sign. Values near zero indicate that527

there is little selection in one or both sexes. The second metric (figure 4a) is Cox and Calsbeek528

(2009)’s measure based on the absolute value of differences in male and female coefficients.529

The model specified by equation 17 does not account for different levels of non-independence530

in the data. Accounting for statistical non-independence is not expected (on average, i.e., the531

analysis presented to this point is not expected to be biased) to change the inference about the532

underlying variance and covariance of sex-specific selection coefficients. However, accounting533

for non-independence may change our impression of how precisely we have characterised any534

given overall effect. A source of non-independence considered by Cox and Calsbeek (2009)535

is that pairwise reports of sex-specific selection coefficients from the same study tend to be536

6obtained by
∫ ∫ Sm·Sf

|Sm|·|Sf |
·N([Sm, Sf ]T , µ, σ)dSmdSf , where µ and σ are the mean vector and covariance matrix of selection

coefficients.
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similar. I therefore fitted the model537 Sm,ij
Sf,ij

 =

µm
µf

+

mm,ij

mf,ij

+

rm,ij
rf,ij

+

em,ij
ef,ij

 (18)

where r denotes study, and j indexes the studies to which individual records belong. As538

above, the upper left elements are variances associated with male selection coefficients, the539

bottom right correspond to female selection coefficients, and the entries above the diagonal540

are covariances, and below the diagonal are correlations. The covariance matrix from which541

the r values are assumed to come is constructed and estimated equivalently to the residual542

covariance matrix (described above), and all other model components are treated as they were543

for the model described by equation 17.544

The between-study and within-study covariance matrices of paired sex-specific selection545

coefficients are546 [
0.034 (0.009− 0.066) 0.021 (0.004− 0.055)

0.996 (0.504− 1.000) 0.025 (0.009− 0.069

]
, and

[
0.041 (0.029− 0.071) 0.015 (0.007− 0.028)

0.678 (0.398− 0.901) 0.012 (0.005− 0.022)

]
,

respectively. The male variance is in the top left and the female variance is in the bottom right.547

95% CIs are in brackets. The sub-diagonal element are the correlations. The total (co)variances548

and correlations are thus549 0.075 (0.049− 0.119) 0.045 (0.021− 0.075)

0.755 (0.496− 0.905) 0.043 (0.021− 0.084)

 .
Accounting for non-independence among data points that come from the same studies therefore550

does not appreciably change the overall pattern. The credible intervals of the total variance551

components obtained from the second model are slightly larger and are probably more appro-552

priate. Differences in whether or not selection is sexually antagonistic or not seem to arise more553

from differences among traits, than from differences among studies.554

Sexual dimorphism and sexually antagonistic selection555

Cox and Calsbeek (2009) considered whether any association exists between sexual dimorphism556

and sexually antagonistic selection. This is a very interesting problem. A negative relationship557
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between these phenomena might indicate that the evolution of sexual dimorphism generally558

has resolved sexual conflict, while a positive relationship would indicate a general pattern of559

ongoing conflict between the sexes. In the context of the analyses pursued to this point, a560

relationship between sexual dimorphism and sexually antagonistic selection would primarily561

be manifested as a (statistical) dependence between sexual dimorphism and the covariance562

between male and female selection coefficients. Methods for estimating the dependence of a563

covariance on a continuous variable are not well developed.564

Standard modelling procedures do not exist to accommodate hypotheses about how covari-565

ance structures vary according to continuous variables. Therefore, determining how typical566

magnitudes of sexually antagonistic selection covaries with a predictor such degree of sexual567

dimorphism would deserve an independent study in itself. Here I make only a preliminary568

attempt. A model structure that may be pragmatic would be to treat the correlation of male569

and female selection gradients as a continuous function of the degree of sexual dimorphism,570

and model the shape of that function as a sigmoidal relationship ranging between -1 and +1.571

I therefore parameterised the correlation as572

rSm,Sf ,i =
2ea+b·Di

1 + ea+b·Di
− 1 (19)

where α and b are the regression parameters controlling the shape of the logistic curve that573

is scaled between negative and positive one (note that ea+b·Di

1+ea+b·Di
would represent a logistic574

curve between 0 and 1). rSm,Sf ,i can then be thought of as the correlation that would be575

observed among a group of paired sex-specific selection coefficients, all from systems with576

sexual dimorphism Di. I used the absolute value of the measure of sexual dimorphism avail-577

able in the Cox and Calsbeek (2009) database, which is the difference between sex-specific578

means. I specified the variances of the sex-specific selection coefficients independently, and579

then obtained the dimorphism-dependent covariance of paired sex-specific selection coefficients580

as rSm,Sf ,i

√
σ2(m)

√
σ2(f).581

The parameters of the regression of rSm,Sf ,i on the degree of sexual dimorphism are α: 2.2582

(95% CI: 0.5 - 4.3), and b: 2.1 (95% CI: -7.8 - 25.0). About 80% of the posterior distribution583
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of b is greater than zero. Thus the overall pattern appears to be for sexual dimorphism to be584

associated with a reduction in the degree of sexually antagonistic selection, although the value585

of the coefficient controlling this pattern has a posterior distribution that substantially overlaps586

zero. It is not surprising that this regression has a very large standard error. Considering that587

each pair of estimates does not provide a concrete datapoint, but rather a very uncertain588

inference about sexually-antagonistic selection, the formal meta-analysis may correctly have589

great uncertainly in measures that seem easily estimable in an informal meta-analysis. The590

correlation between male and female coefficients in the absence of sexual dimorphism is thus591

about 0.85, while at higher levels of dimorphism, the correlation approaches one.592

5.3 Population and species differences in reaction norm shape593

Murren et al. (2014) report on differences between average values, slopes, curvatures, and594

higher-order aspects of the shapes of reaction norms between species and populations. Their595

primary conclusions include (1) that shapes, i.e., slopes and curvatures, of reaction norms596

evolve more than average trait values, and (2) that curvature of reaction norms evolves more597

than the slope. Statistical noise will inflate apparent differences between parameters such as598

means7, slopes and intercepts. Furthermore, depending on the scaling of the environmental599

variables, statistical noise will contribute differently to apparent variation in means, slopes and600

curvatures. Therefore, sampling error alone will create specific patterns in the mean absolute601

differences of averages, slopes, and curvatures of pairs of reaction norms.602

A simple simulation may be instructive. Again, we will start with a simple situation with603

trivial biology, and focus on how unbiased statistical noise in the literature may be converted604

into superficially, and misleadingly, biologically interesting patterns in a naive meta-analysis.605

Assume that some large number of studies are conducted, and that in each, two populations606

are assayed for mean phenotype in each of three (ordered) environments. Assume that every607

7Here, four different words will be used for aspects of the average value of a reaction norm. The mean will represent the population
mean, which is the mean value of the reaction norm weighted by the distribution of the environment that the population experiences.
The offset will refer to the mean value, weighting all values (given some range) of the environment equally. The intercept will be
the value of the reaction norm at a given value of the environmental variable that is defined as the origin. The intercept is the
same as the mean when the environmental variable is symmetrically distributed about the origin, and the reaction norm is linear.
The intercept is the same as the offset when the environmental variable is centred on the origin, and the reaction norm is linear.
The means and offsets can be calculated for non-linear reaction norms, and this will be done as appropriate. The term ‘average’
will be used to refer to these values collectively, when the distinctions are not critical.
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population in every study and in every environment has the same mean value (the mean value608

is actually irrelevant), and that the standard error of the mean is 1 unit in every case (this609

value is also completely irrelevant to the pattern that results, so long as it is non-zero). For610

this null scenario, I simulated data, and calculated the difference in means between populations611

(species) for each of the simulated studies, as well as the differences in slopes and curvatures,612

following the expressions used by Murren et al. (2014). The distribution of the magnitudes,613

i.e., absolute values, of these differences is plotted in figure 5. Murren et al. (2014) report614

estimates of mean absolute differences in reaction norm components from an analysis that is615

weighted by (the square root of) sample size. Note that weighting does not solve the problem616

illustrated here. A well-designed weighting scheme will be analogous to the transform-then-617

analyse approach to meta-analysis, which can perform poorly for arbitrary derived quantities618

(figure 1). Consider that these simulations assume equal error across all estimates, which may619

occur if (among other things) there are equal sample sizes. As such, weighting by sample size620

would provide a trivially identical result to an unweighted analysis, and the spurious pattern621

would remain.622

The pattern in figure 5 can also be obtained analytically. Again, I will focus on the scenario623

where there are three environmental treatments, as these dominate the available data. Assume,624

as above, that a pair of reaction norms (e.g., a congeneric or conspecific pair) are identical. Let625

the mean phenotypes in the three environments for one population be denoted x̂1, x̂2, and x̂3,626

and denote the corresponding three estimated mean phenotypes in the other population with627

ŷ1, ŷ2, and ŷ3. Assume that all mean values are estimated with the same precision, such that628

x̂i ∼ N(µ, σ(m)), ŷi ∼ N(µ, σ(m)).629

The variance of the mean of the x̂ or ŷ values is630

σ2(¯̂x) = σ2(¯̂y) = 3

(
1

3

)2

σ2(m) =
1

3
σ2(m) (20)

which is simply the variance of three independent random values, each with the same variance.631

The average of the slopes of the two line segments in each reaction norm is 1
2
(x̂2− x̂1) + 1

2
(x̂3−632

x̂2) = 1
2
x̂3− 1

2
x̂1 (or equivalent expressions with ŷ). Therefore the sampling variance of average633
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slopes is634

σ2(x̂i − x̂i−1) = 2

(
1

2

)2

σ2(m) =
1

2
σ2(m). (21)

Curvature (defined by Murren et al. 2014 as the difference of slopes between adjacent intervals)635

for a study with three points is636

(x̂3 − x̂2)− (x̂2 − x̂1) = x̂3 − 2x̂2 + x̂1

and so the variance in curvatures is637

σ2((x̂i+1 − x̂i)− (x̂i − x̂i−1)) = 2σ2(m) + 22σ2(m) = 6σ2(m). (22)

The mean difference between different reaction norm components is given by the expression638

2√
π
σ, just as we used for the mean difference in male and female selection coefficients. Conse-639

quently, in the absence of any differences in reaction norms between conspecific or congeneric640

populations, a pattern in estimated mean differences in means, slopes, and curvatures will arise641

by sampling error alone. In our toy model, the pattern will be:642

2√
π

√
1

3
σ2(m)

for means643

2√
π

√
1

2
σ2(m)

for slopes, and644

2√
π

√
6σ2(m)

for curvatures. This pattern will be super-imposed on any true differences among these prop-645

erties of reaction norms in nature.646

Re-analysis647

Distributions of intercepts, slopes, and curvatures can be modelled using mixed effects models,648

just as differences in mean values can, and were, in the preceding examples. To obtain model-649
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based estimates of differences in properties of reaction norms, I fitted the model650

xijk =A+B · Ej + C · E2
j

+ ar,k + br,k · Ei + cr,k · E2
i

+ as,j + bs,j · Ei + cs,j · E2
i

+ ap,i + bp,i · Ei + cp,i · E2
i

+ ei.

(23)

This is a quadratic random regression mixed model. xijk are the environment-specific estimated651

mean values, and Ei are the corresponding values of the environmental covariate (expressed652

as treatment intervals in the raw data). I standardised the environment-specific estimated653

means in two ways. Murren et al. (2014) divided by the overall mean, and I did this as well.654

Furthermore (and see discussion below) a scaling that may better facilitate inference of both655

intraspecific and congeneric variation in reaction norms is to log (actually ln(x + 1), as there656

are zero values in the data) transform, and so I used logged data as well. i indexes studies, and657

j indexes paired estimates within studies. A, B, and C are the average intercept, slope, and658

curvature. The a, b, and c terms are the study-specific (or rather trait within study) random659

intercept, slope and curvature terms, associated with study r, species s, and population p. I660

modelled these terms as being drawn from the multivariate normal distribution661 
a

b

c


x,y

∼ N




0

0

0

 ,

σ2(a) σ(a, b) σ(a, c)

σ(a, b) σ2(b) σ(b, c)

σ(a, c) σ(b, c) σ2(c)


y


where the parameters of the covariance matrix of ai, bi, and ci values are estimated parameters,662

with x ∈ {k, j, i} and y ∈ {r, s, p}. I modelled the residuals as coming from a common663

distribution, i.e., eij ∼ N (0, σ2(e)).664

I have preferred Bayesian approaches for all analyses (except simulations) to this point.665

While the random regression mixed model of variation in reaction norms can be fitted in a666

Bayesian analysis, I found that its results were extremely sensitive to prior specifications for the667
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variance components. This is not surprising (with hindsight), because only studies with four or668

more environmental treatments can contribute to inferences about intercepts, slopes curvatures,669

and residual variance. To avoid the need to use essentially arbitrary priors, I fitted this model670

by restricted maximum likelihood, using lme4 (Bates et al., 2014). Standard errors for variance671

components in random regression models are not easily obtained from this software, and in672

any case can be misleading when variance components are small and imprecisely estimated. I673

therefore report only the (restricted) maximum likelihood estimates of the parameters of the674

simplest model that reports parameters that are analogous to the main quantities reported by675

Murren et al. (2014). These should be interpreted in the light that, given the model and the676

currently-available data, the inferences about curvature are highly uncertain.677

The scaling of the environmental variable, E in equation 23, is important to consider. Mur-678

ren et al. (2014)’s calculations of means, slopes, and curvatures assume that all intervals be-679

tween environmental treatments have equal meaning. This is one of two potential treatments.680

Assuming equal biological meaning of all intervals assumes that those studies that use fewer681

environmental treatments cover a proportionately smaller portion of the relevant range of the682

environmental variable. I think that an alternative treatment may be more sensible. It seems to683

me more likely that, on average, most studies are designed to span most of the relevant range of684

environmental conditions, whatever that range may be for the study, species, populations, en-685

vironmental variable, and traits in question. If this second option represents a more reasonable686

model of how reaction norm studies are generally designed, the consequences of assuming equal687

scaling of intervals, rather than equal scaling of the total environmental range, may be serious.688

If two studies covered the same range of the environment, the one with fewer increments of689

environmental conditions within that range would have greater calculated slopes and curva-690

tures than the study with more increments, and thus would also have relatively exaggerated691

differences between slopes and curvatures if equal scaling of increments was assumed.692

Because neither treatment of the environmental variables is an obviously superior approach693

for every study in the database, I applied both standardisations. These can be seen as useful694

extremes, with truths for how each study was designed typically lying somewhere in between.695

First (my a priori preference), I standardised the environmental variable in each study to696
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span the range from -2 to +2. The exact bounds are not necessarily important, although I697

chose -2 and +2 on the grounds that it might very roughly put the environmental variable698

in units of standard deviations, under the supposition most researchers will design studies699

with environmental variation that span the approximate limits of meaningful variation. If700

‘meaningful variation’ is approximately normally distributed, 2 SD units spans most of the701

range. As a second treatment, that reflects Murren et al. (2014)’s assumptions, I mean-centred702

the environmental covariates, giving each increment equal value of one unit.703

The model described by equation 23 does not explicitly account for sampling error. Rather,704

the different major potentially biasing factors (statistical noise, variation among treatments not705

associated with the focal reaction norm, and variation over and above quadratic effects) are706

treated together by the residual variance, in this case. The residual variance therefore combines707

these three major effects. The core difference between the quadratic random regression model,708

and the Murren et al. (2014) analysis is that there is some place, other than complexity in the709

form of reaction norms, for variation over and above that associated with reaction norms to710

be represented. It would be preferable to specifically model statistical noise; as it is, there will711

still be some effect of statistical noise to inflate inferences of reaction norm shape evolution.712

However, the standard errors necessary to explicitly model statistical noise are inconsistently713

reported in the literature, and as the relative amount of error in mean phenotype estimates714

is typically substantially smaller than that which occurs in selection coefficient estimates (see715

examples above), the effect could be modest. The analyses that I present should thus be716

considered conservative relative to my assertion that reaction norm shape evolution should be717

much more modest than reported by Murren et al. (2014).718

The most immediately relevant variance components of the fitted mixed model defined by719

equation 23 are given in table 2. These model parameters represent variation among reaction720

norms. Mean absolute differences in intercepts, slopes, and curvatures are monotonic functions721

of the variance (true variance and/or sampling variance) according to E[|xi − xj|] = 2√
π
σ(x)722

(see above). As such, the variances of intercepts, slopes and curvatures are the first pieces of723

information that the random regression mixed models provide about the relative importances724

of evolution of intercepts, slopes and curvatures. Under both standardisations, variation in725
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intercepts is the major component of variation in intercepts, both among species (table 2a)726

and among populations (table 2b). Transformation of these variances can put the relationships727

in a slightly different terms, that might also be useful for interpretation, and that relate more728

directly to the quantities (mean absolute differences) reported by Murren et al. (2014). In729

table 2d,e the mixed model results are reported in terms of mean absolute differences, and the730

results for curvature are reported as mean absolute differences in second derivatives. There731

is no overall pattern for reaction norm evolution to be dominated by evolution of reaction732

norm shape, although evolution of reaction norm shape among species may be somewhat more733

important than among populations. All these interpretations should be made keeping in mind734

that a modest quantity of data contributes to the inferences about variation in reaction norm735

curvatures.736

The variances of reaction norm parameters among congeneric species, as estimated form737

the mixed model, has a different interpretation than the quantity estimated with summary738

statistics by Murren et al. (2014). Because any data from a given species necessarily is collected739

on individuals from some population within that species, the summary statistic-based approach740

includes both among-population and among-species variation in the inferences about congeneric741

differences in reaction norms. In contrast, the species-level variation inferred from the mixed742

model analysis is more hierarchical, representing the variation attributable to species.743

Probably the best way to visualise the information about evolution of quadratic reaction744

norms that is contained in the fitted mixed models is by predictive simulation. Figures 6 and 7745

show simulated pairs of reaction norms (with environmental variables standardised to common746

ranges), for intra-specific and congeneric reaction norms, respectively. Thus, these are not fitted747

results for any specific pairs of reaction norms in the meta-dataset, but rather, these are visual-748

isations of the fitted model, converted for presentation into a format that closely corresponds to749

the main biological questions. Figures 6 and 7 show that among-species differences in reaction750

norm shapes are indeed generally greater than within-species differences. While reaction norms751

do vary in shape at both levels, most differences are in the mean, especially in the centre of752

the ranges of the reaction norms, where the quadratic form of the random regressions should753

provide the most reasonable approximations.754
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6 Discussion755

The primary goal of this article is to highlight the conditions under which it is necessary to756

account for the observation process in synthetic meta-analysis, and how this can be accom-757

plished with mixed models. In support of this goal, I suggest that many quantities of potential758

meta-analytic interest might best be obtained by modelling the distribution of quantities that759

are reported in the literature (rather than quantities derived from literature reports), and760

subsequently using these models to address biological questions. It should be clear that many761

meta-analytic questions, especially those relating to average magnitudes (or average magnitudes762

of differences, as in the second and third example re-analyses) absolutely require procedures763

that can separate biological signal from statistical noise. It must be stressed that, in each764

of the three examples, the results presented here and their modified interpretation are not a765

result of more powerful analyses. Even with infinite sample size (i.e., number of studies in a766

meta-dataset) the misleading conclusions of the informal meta-analyses would have occurred.767

Importantly, it has been possible to clarify that there are conditions under which meta-768

analyses that do not account for statistical error will be biased. Meta-analytic quantities that769

do not depend on the dispersion of the values reported in the literature should generally fall770

into this category. This may be a useful finding in itself. Quantitative information about771

uncertainty, e.g., standard errors, are not universally reported, and in fact are disappointingly772

inconsistently reported in some literatures (e.g., in analyses of natural selection). While meta-773

analytic inferences of a given dataset will always be more precise if differences in precision among774

studies are taken into account, formal meta-analyses may not necessarily be most powerful when775

a choice must be made between a large dataset without, and a smaller dataset with, standard776

errors.777

In the course of developing the mixed model-based meta-re-analyses, several useful biological778

results have come to light. First, the average magnitude of selection gradients is likely not as779

large as has been reported. In fact, the average magnitude of selection gradients as estimated780

in the analyse-then-transform meta-analysis is approximately half (0.10 vs. 0.19 or 0.23, de-781

pending on what subset of the data is considered) that which was previously reported. This is a782
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rather substantial difference in terms of interpretations of potential rates of adaptive evolution,783

and a very substantial difference in terms of the size of studies that may need to be designed to784

characterise typical strengths of selection in the wild. Second, the frequency at which sexually785

antagonistic selection occurs is probably much less than that suggested by summary statistics786

of paired estimated sex-specific selection coefficients. Furthermore, when sexually antagonistic787

selection does occur, it is far more subtle than the impression given from considering the joint788

distribution of male and female selection coefficient estimates. Third, evolution of reaction789

norms is not generally dominated by evolution of their shape. In fact the formal meta-analysis790

yields the opposite qualitative finding to that of the informal analysis: at least at the popula-791

tion level, most trait evolution seems to be of mean values across environments, particularly792

for divergence among conspecific populations.793

None of these new findings should be viewed as a negative result. Relatively more mod-794

est selection than is suggested by summary statistics applied to estimated selection gradients795

goes some way toward explaining stasis (Merilä et al., 2001; Walsh and Blows, 2009), at least796

in general terms. In practical terms, the approximate halving of the inference of the typical797

strength of selection means that the sample sizes required to characterise ‘typical’ selection will798

be quadrupled, following power calculations such as those in Hersch and Phillips (2004). Simi-799

larly, it is useful to know that patterns of sexual antagonism (note that, in general, homologous800

traits generally have very high genetic correlations between the sexes; Poissant et al. 2010) may801

generally be much more subtle than is suggested by the main high profile results on the topic802

(for e.g., Chippindale et al. 2001 and Foerster et al. 2007). Finally, the revised finding that803

reaction norm shapes are not incredibly evolutionarily labile may be an interesting indication804

that developmental systems are relatively stable (see also Voje et al. 2014).805

Some statistical procedures may seem initially useful for dealing with sampling error in806

meta-analysis. First, it is important to note that the issues discussed here are not a result807

of a lack of statistical hypothesis testing in previous meta-analyses. Only formal statistical808

methods that account for observation processes, as necessary for the specific goals of a given809

meta-analysis, will prevent white noise at the level of individual datasets from being converted810

into severe biases in meta-analyses. Second, weighting by sample size, the inverse of standard811
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errors, or other aspects of precision, will not necessarily solve the problems discussed here,812

when the interest in a meta-analysis is in any feature other than the mean of a phenomenon.813

Formal meta-analytic weighting methods, e.g., the method of moments estimators of means814

and variances (reviewed in Rosenberg 2013) will perform very similarly to the transform-then-815

analyse mixed model approach in the simulation section of this paper (dotted line in figure 1)816

when applied to derived quantities that depend on the dispersion. Third, subsetting meta-data817

to consider only statistically significant results may seem like a way to make inferences using818

only the most reliable portion of a meta-dataset, but such a practice will generally make the819

problems much worse. The subset of results in any literature that are statistically significant will820

generally provide very upwardly biased impressions of the magnitudes of phenomena (Gelman821

and Weakliem, 2009).822

How is one to know if some specific inference will be biased by statistical noise in a meta-823

analysis? For each of the three examples I re-analysed, instructive analytical results about bias824

was obtainable (typically for simplified, but instructive, models). However, for other meta-825

analyses of the many potentially complex but interesting quantities that may be of interest826

in ecology and evolution, analyses such as these may not be tractable. Two useful guiding827

principles should be that: (1) biases should arise if the quantity of interest in an aspect of828

the dispersion (e.g., standard deviation, variance, mean difference) of quantities that are re-829

ported in the literature (see for e.g., Morrissey and Hadfield 2012), and (2) if the quantity of830

interest is obtained from a non-linear transformation (e.g., absolute value) of the quantities831

that are reported in the literature. A simulation approach may be useful in any specific sit-832

uation. Before or after a meta-dataset is assembled, one can simulate some biologically null833

(or otherwise) “true” values, and then generate simulated estimates by adding error to those834

simulated true values (these errors can be drawn from distributions defined by standard errors,835

if available). Researchers can then apply their meta-analytic methods (informal or otherwise)836

to these simulated data to check whether sampling error causes appreciable deviation from their837

simulated patterns. This is the procedure that I did in the simple simulations to demonstrate838

how sampling error would affect the informal meta-analyses of sexually-antagonsitic selection839

(figure 3) and variation in reaction norms (figure 5). This type of simulation led to the deletion840
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of a meta-analysis of measures of spatial autocorrelation (e.g., of Moran’s I, which is a com-841

plex transformation raw data from each study) in selection from Siepielski et al. (2013), as it842

uncovered severe biases arising from sampling error and non-random selection of study sites.843

Further developments of meta-analytic techniques may be required for analysis of many844

parameters of interest in evolutionary biology. In this paper, I have focused on analysis of845

quantities that are non-linear transformations of quantities that are reported in the literature.846

Another class meta-analytic problems that is worthy of more methodological attention may be847

the analysis of bounded quantities. For example, meta-analysis of variance may potentially be848

of interest, but variances cannot (typically) be less than zero. Consequently, sampling errors of849

variance estimates will be asymmetric, potentially causing bias (similarly to simulations herein850

for the transform-then-analyse approach; figure 1). For variances, Nakagawa et al. (2015)851

have suggested that analyses could be conducted on the log scale. Results of such log-scale852

analyses could subsequently be transformed back into the original scale, if desired. Another853

situation where conducting meta-analyses on a different scale (and subsequently transforming854

results) could prove useful is in analysis of quantities such as heritability (e.g., see informal855

meta-analyses in Postma 2014) and other estimates of phenomena that are biologically useful856

to express as bounded quantities (e.g., measures of reproductive isolation, Sobel and Chen857

2014, or phenotypic or genetic correlations). Means for transformation of estimates and their858

sampling variances to a scale where errors will be symmetric are not currently obvious in such859

cases.860

Additional development of the “analyse-then-transform” approach to meta-analysis advo-861

cated here may be very useful as well. For meta-analytic inferences such as those made here,862

derived quantities (e.g., the mean magnitude of selection) may depend on complexities of the863

distribution of untransformed quantities. It is reassuring that the analyses assuming normal864

distributions and t-distributions of directional selection gradients yielded very similar inferences865

of the average magnitude of selection. It seems plausible that inferences based on normal distri-866

butions might typically be quite pragmatic. However, it should not be surprising if situations867

arise where the use of much more flexible random distributions in meta-analysis (Higgins et al.,868

2009) proves useful or even necessary.869
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The surge in popularity of meta-analysis may be occurring at the cost of qualitative synthesis.870

There is probably a great deal that can be gained from considering the expert opinion of871

a person who has invested time and thought in a particular topic. Much of what can be872

gained by qualitative review may easily be missed in the developing paradigm where synthesis873

is achieved primarily via meta-analysis. The insight provided by those rare studies that are874

particularly cleverly designed so as to strike at the core of an outstanding issue is greatly diluted875

in a meta-analysis. The most creative and insightful studies may even be excluded from meta-876

analyses, if they rely on particularly clever, but non-standard, approaches. We should not877

dismiss the service provided to any given field by a dedicated worker determining just what878

specific qualitative insights may be buried in large literatures.879
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Table 2: Mixed model-based estimates of variation in reaction norm intercepts, slopes, and curvatures. The
main results are (a) variation in random coefficients among populations and (b) variation in random coefficients
among populations, along with (c) residual variances of each of the four models with different standardisations
of environmental variables and environment-specific mean phenotypes. Parts (d) and (e) report results from
the same models, but transformed to represent mean absolute differences, rather than variances, and where the
measures of curvature are re-scaled to second derivatives, rather than quadratic terms. Note that in parts (d)
and (e) mean absolute differences are reported for second derivatives, which are twice the values of quadratic
coefficients (and so their variance is four times that of the variance of quadratic coefficients), to allow comparison
with metrics calculated in Murren et al. (2014).

mean-standardised response log response

environmental standardisation: equal range equal interval equal range equal interval

(a) among-population variation (SD)

intercept 0.179 0.174 0.121 0.083
slope 0.047 0.019 0.016 0.019
curvature 0.016 0.002 0.009 0.008

(b) among-species variation (SD)

intercept 0.161 0.054 0.064 0.274
slope 0.071 0.093 0.011 0.146
curvature 0.061 0.010 0.001 0.039

(c) residual variation (SD)

residual 0.288 0.306 0.307 0.309

(d) among-population mean absolute differences

intercept 0.202 0.197 0.137 0.094
slope 0.053 0.021 0.018 0.022
second derivative 0.035 0.004 0.020 0.017

(e) among-species mean absolute differences

intercept 0.182 0.061 0.285 0.309
slope 0.080 0.105 0.116 0.165
second derivative 0.134 0.023 0.071 0.090
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Figure 1: Bias in estimates of the mean absolute value of a meta-analytic quantity (x; all notation follows
that given in the text) in three different approaches to meta-analysis. The different panels show results for
different true mean values (µx) and mean standard errors (σ̄(e)), and across a range of true standard deviations
of the meta-analytic quantity (σ(x)). The ‘transform-then-analyse’ meta-analytic option calculates estimated
absolute values and their standard errors, from the signed values and their standard errors in the meta-dataset,
and then applies a random effects meta-analysis. The ‘analyse-then-transform’ option directly models the mean
and variance of the (signed) values in the meta-dataset (accounting for their uncertainty via reported standard
errors), and then obtains the mean absolute value from the inferred distribution of the original statistic.
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Figure 2: The distinction between distributions of estimated selection gradients and the distribution of selection.
(a) the distribution of estimated directional selection gradients from the Kingsolver et al. (2001) meta-dataset.
(b) 40 samples of the posterior distribution of a three parameter t-distribution based model estimating the
distribution of directional selection gradients, accounting for the tendency for sampling error to inflate the
apparent variation and mean magnitude (i.e., absolute value) of selection gradients. Inset plots depict the
slopes of the relative fitness functions corresponding to the mean absolute value of selection gradients in each
analysis.
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Figure 3: Observed and inferred distributions of male and female selection coefficients. (a) all data, (b) the
subset of the data with available standard errors. (c) shows simulated pairs, where all male and female selection
coefficients are zero, plus random noise drawn from the standard errors in the dataset. (d) shows random draws
from a fitted model, accounting for sampling error.
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Figure 4: Distributions of two metrics of sexually-antagonistic selection, as applied to the raw data (black
lines), and as inferred from a model that accounts for the effect of sampling error to bias inference of sexually-
antagonistic selection (red lines). The multiplicative metric (a) is the product of male and female selection
coefficients. Negative values occur when selection in males and females differs in sign, and positive values occur
when the signs are the same across the sexes. Values near zero occur when there is little selection in one or
both sexes. The additive metric (b) is the difference in male and female coefficients, and thus represents the
distribution of total differences, but the values of the metric are not so directly tied to the coefficients in either
sex.
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Figure 5: Analytical (crosses representing expectations) and simulation results (distributions in boxplots, with
solid lines showing means) for bias in reaction norm parameters in an informal meta-analysis. For the special
(and most frequent in the database) case of three environments, the analysis/simulation gives the expected
values of the differences in average value, average slope, and average curvature between two reaction norms that
are identical, but where residual variation exists in environment-specific estimated means. The case in this plot
is for a residual variance of one unit, however this variance is arbitrary. The critical results are that (i) even
in the limit of infinite data, the metrics do not converge on their true values (if zero, in this example), and (ii)
the differences in the different metrics due to statistical noise alone follow a superficially interesting biological
pattern.
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Figure 6: Simulated (log) quadratic approximations to intra-specific pairs of reaction norms, based on a random
regression mixed-model analysis. The mixed-model analysis was conducted with the range of environmental
variables in each study standardised to lie between -2 and +2. The values are somewhat arbitrary, and these
specific values reflect loose assumptions that the relevant environmental variable might be normally-distributed
in nature, and that researchers use their available resources to cover the majority of this range; under these
assumptions, the scaling from -2 to +2 would make each unit equal to one SD of the environmental variable
in nature. Quadratic approximations, or models of families of quadratic approximations, are most likely to
provide good fits in the proportion of the range where the most data are available; the darker colouring from
the environmental rage of -1 SD to +1 SD is arbitrary, but intended to draw focus to the range over which the
model is likely to be most reliable.
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Figure 7: Simulated (log) quadratic approximations to congeneric pairs of reaction norms, based on a ran-
dom regression mixed-model analysis. See text and caption of figure 6 for an explanation of the scaling and
interpretation of the environmental variables.


